**Funding scheme/agency**: VIDI, NWO

**Budget**: 800.000 EUR

**Duration**: 11/2017-10/2022

**Summary:** The combined presence of sudden structural changes and constrained dynamics in mathematical models of dynamical systems leads to non-existence of classical solutions. This problem occurs e.g. in models of power grids, electrical circuits, mutlibody systems or water distribution networks. Switched differential algebraic equations (switched DAEs) are a novel modeling framework for these dynamical systems. So far, switched DAEs are not used for modeling because neither a general solution theory nor control-theoretical methods are available. However, many systems need to be modeled as switched DAEs to capture essential effects like jumps or even Dirac impulses; the latter occur in reality e.g. in the form of sparks in electrical circuits or as water hammers in water networks.

In this VIDI project a distributional solution theory for nonlinear switched DAEs encompassing jumps and Dirac impulses will be developed. Based on the rigorous treatment of these impulsive effects, new diagnostic methods (e.g. observers and fault detectors) as well as new controller designs (in particular optimal controllers) will be derived. The distributional solution framework with its corresponding novel control theoretic approaches will not only be a mathematical breakthrough but will also have the potential to lead to sophisticated new methods to solve real world problems.

A special emphasis will be on analyzing models of the electrical power grid, which consist of the so called swing equations (ordinary differential equations) together with the power balance equations (nonlinear algebraic constraints). Faults or scheduled activation/deactivation of generators yield sudden structural changes of the power network (switches). The groundbreaking new diagnostic and control tools for switched DAEs will therefore have the potential to solve problems like the very pressing need to stabilize the power grid in the presence of an increasing number of renewable energy sources in order to prevent blackouts.

**Researchers financed by the project:**

– Stephan Trenn (PI, paid by project, 11/2017 – 10/2022)

– Paul Wijnbergen (PhD, paid by project, 08/2018-07/2022)

– Yahao Chen (Postdoc, paid by project, 09/2019-08/2021)

###### Researchers involved in project without being financed by it

Anh, Pham Ky; Berger, Thomas; Borsche, Raul; Gross, Tjorben; Hossain, Sumon; Iervolino, Raffaele; Jeeninga, Mark; Kocoglu, Damla; Lee, Jin Gyu; Linh, Pham Thi; Shim, Hyungbo; Thuan, Do Duc; Unger, Benjamin; Vasca, Francesco; Wirsen, Andreas

**Research results obtained during the project:**

Iervolino, Raffaele; Trenn, Stephan; Vasca, Francesco Asymptotic stability of piecewise affine systems with Filippov solutions via discontinuous piecewise Lyapunov functions Journal Article IEEE Transactions on Automatic Control, 2021, (to appear). @article{IervTren21, title = {Asymptotic stability of piecewise affine systems with Filippov solutions via discontinuous piecewise Lyapunov functions}, author = {Raffaele Iervolino and Stephan Trenn and Francesco Vasca}, url = {https://stephantrenn.net/wp-content/uploads/2020/02/Preprint-ITV200204.pdf, Preprint}, doi = {10.1109/TAC.2020.2996597}, year = {2021}, date = {2021-04-01}, journal = {IEEE Transactions on Automatic Control}, abstract = {Asymptotic stability of continuous-time piecewise affine systems defined over a polyhedral partition of the state space, with possible discontinuous vector field on the boundaries, is considered. In the first part of the paper the feasible Filippov solution concept is introduced by characterizing single-mode Caratheodory, sliding mode and forward Zeno behaviors. Then, a global asymptotic stability result through a (possibly discontinuous) piecewise Lyapunov function is presented. The sufficient conditions are based on pointwise classifications of the trajectories which allow the identification of crossing, unreachable and Caratheodory boundaries. It is shown that the sign and jump conditions of the stability theorem can be expressed in terms of linear matrix inequalities by particularizing to piecewise quadratic Lyapunov functions and using the cone-copositivity approach. Several examples illustrate the theoretical arguments and the effectiveness of the stability result.}, note = {to appear}, keywords = {}, pubstate = {published}, tppubtype = {article} } Asymptotic stability of continuous-time piecewise affine systems defined over a polyhedral partition of the state space, with possible discontinuous vector field on the boundaries, is considered. In the first part of the paper the feasible Filippov solution concept is introduced by characterizing single-mode Caratheodory, sliding mode and forward Zeno behaviors. Then, a global asymptotic stability result through a (possibly discontinuous) piecewise Lyapunov function is presented. The sufficient conditions are based on pointwise classifications of the trajectories which allow the identification of crossing, unreachable and Caratheodory boundaries. It is shown that the sign and jump conditions of the stability theorem can be expressed in terms of linear matrix inequalities by particularizing to piecewise quadratic Lyapunov functions and using the cone-copositivity approach. Several examples illustrate the theoretical arguments and the effectiveness of the stability result. |

Wijnbergen, Paul; Trenn, Stephan Impulse-free interval-stabilization of switched differential algebraic equations Unpublished 2020, (submitted). @unpublished{WijnTren20pp, title = {Impulse-free interval-stabilization of switched differential algebraic equations}, author = {Paul Wijnbergen and Stephan Trenn}, url = {https://stephantrenn.net/wp-content/uploads/2020/11/Preprint-WT201123.pdf, Preprint}, year = {2020}, date = {2020-11-23}, abstract = {In this paper stabilization of switched differential algebraic equations is considered, where Dirac impulses in both the input and the state trajectory are to be avoided during the stabilization process. First it is shown that stabilizability of a switched DAE and the existence of impulse-free solutions are merely necessary conditions for impulse-free stabilizability. Then necessary and sufficient conditions for the existence of impulse-free solutions are given, which motivate the definition of (impulse-free) interval-stabilization on a finite interval. Under a uniformity assumption, which can be verified for a broad class of switched systems, stabilizability on an infinite interval can be concluded based on interval-stabilizability. As a result a characterization of impulse-free interval stabilizability is given and as a corollary we provide a novel impulse-free null-controllability characterization. Finally, the results are compared to results on interval-stabilizability where Dirac impulses are allowed in the input and state trajectory. }, note = {submitted}, keywords = {}, pubstate = {published}, tppubtype = {unpublished} } In this paper stabilization of switched differential algebraic equations is considered, where Dirac impulses in both the input and the state trajectory are to be avoided during the stabilization process. First it is shown that stabilizability of a switched DAE and the existence of impulse-free solutions are merely necessary conditions for impulse-free stabilizability. Then necessary and sufficient conditions for the existence of impulse-free solutions are given, which motivate the definition of (impulse-free) interval-stabilization on a finite interval. Under a uniformity assumption, which can be verified for a broad class of switched systems, stabilizability on an infinite interval can be concluded based on interval-stabilizability. As a result a characterization of impulse-free interval stabilizability is given and as a corollary we provide a novel impulse-free null-controllability characterization. Finally, the results are compared to results on interval-stabilizability where Dirac impulses are allowed in the input and state trajectory. |

Borsche, Raul; Kocoglu, Damla; Trenn, Stephan A distributional solution framework for linear hyperbolic PDEs coupled to switched DAEs Journal Article Mathematics of Control, Signals, and Systems (MCSS), 2020, (Open Access). @article{BorsKoco20, title = {A distributional solution framework for linear hyperbolic PDEs coupled to switched DAEs}, author = {Raul Borsche and Damla Kocoglu and Stephan Trenn}, url = {https://stephantrenn.net/wp-content/uploads/2020/11/23-MCSS2020.pdf, Paper}, doi = {10.1007/s00498-020-00267-7}, year = {2020}, date = {2020-11-18}, journal = {Mathematics of Control, Signals, and Systems (MCSS)}, abstract = {A distributional solution framework is developed for systems con- sisting of linear hyperbolic partial differential equations (PDEs) and switched differential-algebraic equations (DAEs) which are coupled via boundary conditions. The unique solvability is then characterize in terms of a switched delay DAE. The theory is illustrated with an example of electric power lines modeled by the telegraph equations which are coupled via a switching transformer where simulations confirm the predicted impulsive solutions.}, note = {Open Access}, keywords = {}, pubstate = {published}, tppubtype = {article} } A distributional solution framework is developed for systems con- sisting of linear hyperbolic partial differential equations (PDEs) and switched differential-algebraic equations (DAEs) which are coupled via boundary conditions. The unique solvability is then characterize in terms of a switched delay DAE. The theory is illustrated with an example of electric power lines modeled by the telegraph equations which are coupled via a switching transformer where simulations confirm the predicted impulsive solutions. |

Anh, Pham Ky; Linh, Pham Thi; Thuan, Do Duc; Trenn, Stephan Stability analysis for switched discrete-time linear singular systems Journal Article Automatica, 119 (109100), 2020. @article{AnhLinh20, title = {Stability analysis for switched discrete-time linear singular systems}, author = {Pham Ky Anh and Pham Thi Linh and Do Duc Thuan and Stephan Trenn}, url = {https://stephantrenn.net/wp-content/uploads/2020/02/Preprint-ALTT200515.pdf, Preprint}, doi = {10.1016/j.automatica.2020.109100}, year = {2020}, date = {2020-09-01}, journal = {Automatica}, volume = {119}, number = {109100}, abstract = {The stability of arbitrarily switched discrete-time linear singular (SDLS) systems is studied. Our analysis builds on the recently introduced one-step-map for SDLS systems of index-1. We first provide a sufficient stability conditions in terms of Lyapunov functions. Furthermore, we generalize the notion of joint spectral radius of a finite set of matrix pairs, which allows us to fully characterize exponential stability.}, keywords = {}, pubstate = {published}, tppubtype = {article} } The stability of arbitrarily switched discrete-time linear singular (SDLS) systems is studied. Our analysis builds on the recently introduced one-step-map for SDLS systems of index-1. We first provide a sufficient stability conditions in terms of Lyapunov functions. Furthermore, we generalize the notion of joint spectral radius of a finite set of matrix pairs, which allows us to fully characterize exponential stability. |

Chen, Yahao; Trenn, Stephan PAMM, Wiley-VCH Verlag, 2020, (to appear). @inproceedings{ChenTren20ppb, title = {The differentiation index of nonlinear differential-algebraic equations versus the relative degree of nonlinear control systems}, author = {Yahao Chen and Stephan Trenn}, url = {https://stephantrenn.net/wp-content/uploads/2020/08/Preprint-CT200710.pdf, Preprint}, year = {2020}, date = {2020-07-10}, booktitle = {PAMM}, volume = {20}, publisher = {Wiley-VCH Verlag}, abstract = {It is claimed by Campbell and Gear (1995) that the notion of the relative degree in nonlinear control theory is closely related to that of the differentiation index for nonlinear differential-algebraic equations (DAEs). In this paper, we give more insights on this claim via a recent proposed concept (see Chen, 2019) called the explicitation of DAEs. The explicitation attaches a class of control systems to a given DAE, we show that the relative degree of the systems in the explicitation class is invariant in some sense and that the differentiation index of the original DAE coincides with the maximum of the relative degree of the explicitation systems.}, note = {to appear}, keywords = {}, pubstate = {published}, tppubtype = {inproceedings} } It is claimed by Campbell and Gear (1995) that the notion of the relative degree in nonlinear control theory is closely related to that of the differentiation index for nonlinear differential-algebraic equations (DAEs). In this paper, we give more insights on this claim via a recent proposed concept (see Chen, 2019) called the explicitation of DAEs. The explicitation attaches a class of control systems to a given DAE, we show that the relative degree of the systems in the explicitation class is invariant in some sense and that the differentiation index of the original DAE coincides with the maximum of the relative degree of the explicitation systems. |

Wijnbergen, Paul; Jeeninga, Mark; Trenn, Stephan On stabilizability of switched differential algebraic equations Inproceedings Proc. IFAC World Congress 2020, Berlin, Germany, 2020, (to appear). @inproceedings{WijnJeen20, title = {On stabilizability of switched differential algebraic equations}, author = {Paul Wijnbergen and Mark Jeeninga and Stephan Trenn}, url = {https://stephantrenn.net/wp-content/uploads/2019/12/Preprint-WJT200506.pdf, Preprint}, year = {2020}, date = {2020-07-06}, booktitle = {Proc. IFAC World Congress 2020, Berlin, Germany}, abstract = {This paper considers stabilizability of switched differential algebraic equations (DAEs). We first introduce the notion of interval stabilizability and show that under a certain uniformity assumption, stabilizability can be concluded from interval stabilizability. A geometric approach is taken to find necessary and sufficient conditions for interval stabilizability. This geometric approach can also be utilized to derive a novel characterization of controllability.}, note = {to appear}, keywords = {}, pubstate = {published}, tppubtype = {inproceedings} } This paper considers stabilizability of switched differential algebraic equations (DAEs). We first introduce the notion of interval stabilizability and show that under a certain uniformity assumption, stabilizability can be concluded from interval stabilizability. A geometric approach is taken to find necessary and sufficient conditions for interval stabilizability. This geometric approach can also be utilized to derive a novel characterization of controllability. |

Hossain, Sumon; Trenn, Stephan A time-varying Gramian based model reduction approach for Linear Switched Systems Inproceedings Proc. IFAC World Congress 2020, Berlin, Germany, 2020, (to appear). @inproceedings{HossTren20, title = {A time-varying Gramian based model reduction approach for Linear Switched Systems}, author = {Sumon Hossain and Stephan Trenn}, url = {https://stephantrenn.net/wp-content/uploads/2019/12/Preprint-HT200505.pdf, Preprint}, year = {2020}, date = {2020-07-05}, booktitle = {Proc. IFAC World Congress 2020, Berlin, Germany}, abstract = {We propose a model reduction approach for switched linear system based on a balanced truncation reduction method for linear time-varying systems. The key idea is to approximate the piecewise-constant coefficient matrices with continuous time-varying coefficients and then apply available balance truncation methods for (continuous) time-varying systems. The proposed method is illustrated with a low dimensional academic example.}, note = {to appear}, keywords = {}, pubstate = {published}, tppubtype = {inproceedings} } We propose a model reduction approach for switched linear system based on a balanced truncation reduction method for linear time-varying systems. The key idea is to approximate the piecewise-constant coefficient matrices with continuous time-varying coefficients and then apply available balance truncation methods for (continuous) time-varying systems. The proposed method is illustrated with a low dimensional academic example. |

Wijnbergen, Paul; Trenn, Stephan Impulse controllability of switched differential-algebraic equations Inproceedings Proc. European Control Conference (ECC 2020), pp. 1561-1566, Saint Petersburg, Russia, 2020. @inproceedings{WijnTren20, title = {Impulse controllability of switched differential-algebraic equations}, author = {Paul Wijnbergen and Stephan Trenn}, url = {https://stephantrenn.net/wp-content/uploads/2020/02/Preprint-WT200204.pdf, Preprint}, year = {2020}, date = {2020-05-15}, booktitle = {Proc. European Control Conference (ECC 2020)}, pages = {1561-1566}, address = {Saint Petersburg, Russia}, abstract = {This paper addresses impulse controllability of switched DAEs on a finite interval. First we present a forward approach where we define certain subspaces forward in time. These subpsaces are then used to provide a sufficient condition for impulse controllability. In order to obtain a full characterization we present afterwards a backward approach, where a sequence of subspaces is defined backwards in time. With the help of the last element of this backward sequence, we are able to fully characterize impulse controllability. All results are geometric results and thus independent of a coordinate system.}, keywords = {}, pubstate = {published}, tppubtype = {inproceedings} } This paper addresses impulse controllability of switched DAEs on a finite interval. First we present a forward approach where we define certain subspaces forward in time. These subpsaces are then used to provide a sufficient condition for impulse controllability. In order to obtain a full characterization we present afterwards a backward approach, where a sequence of subspaces is defined backwards in time. With the help of the last element of this backward sequence, we are able to fully characterize impulse controllability. All results are geometric results and thus independent of a coordinate system. |

Lee, Jin Gyu; Berger, Thomas; Trenn, Stephan; Shim, Hyungbo Utility of edge-wise funnel coupling for asymptotically solving distributed consensus optimization Inproceedings Proc. European Control Conference (ECC 2020), pp. 911-916, Saint Petersburg, Russia, 2020. @inproceedings{LeeBerg20, title = {Utility of edge-wise funnel coupling for asymptotically solving distributed consensus optimization}, author = {Jin Gyu Lee and Thomas Berger and Stephan Trenn and Hyungbo Shim}, url = {https://ieeexplore.ieee.org/document/9143983, Paper (via ieeexplore) https://stephantrenn.net/wp-content/uploads/2020/02/Preprint-LBTS200204.pdf, Preprint}, year = {2020}, date = {2020-05-14}, booktitle = {Proc. European Control Conference (ECC 2020)}, pages = {911-916}, address = {Saint Petersburg, Russia}, abstract = {A new approach to distributed consensus optimization is studied in this paper. The cost function to be minimized is a sum of local cost functions which are not necessarily convex as long as their sum is convex. This benefit is obtained from a recent observation that, with a large gain in the diffusive coupling, heterogeneous multi-agent systems behave like a single dynamical system whose vector field is simply the average of all agents' vector fields. However, design of the large coupling gain requires global information such as network structure and individual agent dynamics. In this paper, we employ a nonlinear time-varying coupling of diffusive type, which we call `edge-wise funnel coupling.' This idea is borrowed from adaptive control, which enables decentralized design of distributed optimizers without knowledge of global information. Remarkably, without a common internal model, each agent achieves asymptotic consensus to the optimal solution of the global cost. We illustrate this result by a network that asymptotically finds the least-squares solution of a linear equation in a distributed manner.}, keywords = {}, pubstate = {published}, tppubtype = {inproceedings} } A new approach to distributed consensus optimization is studied in this paper. The cost function to be minimized is a sum of local cost functions which are not necessarily convex as long as their sum is convex. This benefit is obtained from a recent observation that, with a large gain in the diffusive coupling, heterogeneous multi-agent systems behave like a single dynamical system whose vector field is simply the average of all agents' vector fields. However, design of the large coupling gain requires global information such as network structure and individual agent dynamics. In this paper, we employ a nonlinear time-varying coupling of diffusive type, which we call `edge-wise funnel coupling.' This idea is borrowed from adaptive control, which enables decentralized design of distributed optimizers without knowledge of global information. Remarkably, without a common internal model, each agent achieves asymptotic consensus to the optimal solution of the global cost. We illustrate this result by a network that asymptotically finds the least-squares solution of a linear equation in a distributed manner. |

Chen, Yahao; Trenn, Stephan On geometric and differentiation index of nonlinear differential-algebraic equations Inproceedings Proceedings of the MTNS 2020/21, 2020, (to appear). @inproceedings{ChenTren20ppa, title = {On geometric and differentiation index of nonlinear differential-algebraic equations}, author = {Yahao Chen and Stephan Trenn}, url = {https://stephantrenn.net/wp-content/uploads/2020/02/Preprint-CT200204.pdf, Preprint}, year = {2020}, date = {2020-02-04}, booktitle = {Proceedings of the MTNS 2020/21}, abstract = {In this paper, we discuss two notions of index (the geometric index and the differentiation index), which appear in the studies of the solvability of nonlinear differential-algebraic equations DAEs. First, we analyze the solutions of nonlinear DAEs via a geometric method, then depending on the analysis of solutions, we show that although both of the two indices serve as a measure of the difficulties of solving DAEs, they are actually related to the existence and uniqueness of solutions in a different manner. We also show that the two DAE indices have close relations with each other when some assumptions of smoothness and constant rankness are satisfied. An example of a pendulum system is used to illustrate our geometric method of solving DAEs and also our results of the relations of the two DAE indices.}, note = {to appear}, keywords = {}, pubstate = {published}, tppubtype = {inproceedings} } In this paper, we discuss two notions of index (the geometric index and the differentiation index), which appear in the studies of the solvability of nonlinear differential-algebraic equations DAEs. First, we analyze the solutions of nonlinear DAEs via a geometric method, then depending on the analysis of solutions, we show that although both of the two indices serve as a measure of the difficulties of solving DAEs, they are actually related to the existence and uniqueness of solutions in a different manner. We also show that the two DAE indices have close relations with each other when some assumptions of smoothness and constant rankness are satisfied. An example of a pendulum system is used to illustrate our geometric method of solving DAEs and also our results of the relations of the two DAE indices. |

Trenn, Stephan The Laplace transform and inconsistent initial values Unpublished 2020, (extended abstract, submitted to MTNS). @unpublished{Tren20b, title = {The Laplace transform and inconsistent initial values}, author = {Stephan Trenn}, url = {https://stephantrenn.net/wp-content/uploads/2020/01/Preprint-Tre200122.pdf, Preprint}, year = {2020}, date = {2020-01-22}, abstract = {Switches in electrical circuits may lead to Dirac impulses in the solution; a real word example utilizing this effect is the spark plug. Treating these Dirac impulses in a mathematically rigorous way is surprisingly challenging. This is in particular true for arguments made in the frequency domain in connection with the Laplace transform. A survey will be given on how inconsistent initials values have been treated in the past and how these approaches can be justified in view of the now available solution theory based on piecewise-smooth distributions.}, note = {extended abstract, submitted to MTNS}, keywords = {}, pubstate = {published}, tppubtype = {unpublished} } Switches in electrical circuits may lead to Dirac impulses in the solution; a real word example utilizing this effect is the spark plug. Treating these Dirac impulses in a mathematically rigorous way is surprisingly challenging. This is in particular true for arguments made in the frequency domain in connection with the Laplace transform. A survey will be given on how inconsistent initials values have been treated in the past and how these approaches can be justified in view of the now available solution theory based on piecewise-smooth distributions. |

Iervolino, Raffaele; Vasca, Francesco; Trenn, Stephan Discontinuous Lyapunov functions for discontinous piecewise-affine systems Unpublished 2020, (extended abstract, submitted to MTNS). @unpublished{IervTren20pp, title = {Discontinuous Lyapunov functions for discontinous piecewise-affine systems}, author = {Raffaele Iervolino and Francesco Vasca and Stephan Trenn}, url = {https://stephantrenn.net/wp-content/uploads/2020/01/Preprint-ITV200122.pdf, Preprint}, year = {2020}, date = {2020-01-22}, abstract = {Asymptotic stability of continuous-time piecewise affine systems defined over a polyhedral partition of the state space, with possible discontinuous vector field on the boundaries, is considered. We first introduce the feasible Filippov solution concept by characterizing single-mode Caratheodory, sliding mode and forward Zeno behaviors. Then, a global asymptotic stability result through a (possibly discontinuous) piecewise Lyapunov function is presented. The sufficient conditions are based on pointwise classifications of the trajectories which allow the identification of crossing, unreachable and Caratheodory boundaries. It is highlighted that the sign and jump conditions of the stability theorem can be expressed in terms of linear matrix inequalities by particularizing to piecewise quadratic Lyapunov functions and using the cone-copositivity approach. }, note = {extended abstract, submitted to MTNS}, keywords = {}, pubstate = {published}, tppubtype = {unpublished} } Asymptotic stability of continuous-time piecewise affine systems defined over a polyhedral partition of the state space, with possible discontinuous vector field on the boundaries, is considered. We first introduce the feasible Filippov solution concept by characterizing single-mode Caratheodory, sliding mode and forward Zeno behaviors. Then, a global asymptotic stability result through a (possibly discontinuous) piecewise Lyapunov function is presented. The sufficient conditions are based on pointwise classifications of the trajectories which allow the identification of crossing, unreachable and Caratheodory boundaries. It is highlighted that the sign and jump conditions of the stability theorem can be expressed in terms of linear matrix inequalities by particularizing to piecewise quadratic Lyapunov functions and using the cone-copositivity approach. |

Lee, Jin Gyu; Trenn, Stephan Asymptotic tracking via funnel control Inproceedings Proc. 58th IEEE Conf. Decision Control (CDC) 2019, pp. 4228-4233, Nice, France, 2019. @inproceedings{LeeTren19, title = {Asymptotic tracking via funnel control}, author = {Jin Gyu Lee and Stephan Trenn}, url = {https://stephantrenn.net/wp-content/uploads/2019/03/Preprint-LT190910.pdf, Preprint}, doi = {10.1109/CDC40024.2019.9030274}, year = {2019}, date = {2019-12-13}, booktitle = {Proc. 58th IEEE Conf. Decision Control (CDC) 2019}, pages = {4228-4233}, address = {Nice, France}, abstract = {Funnel control is a powerful and simple method to solve the output tracking problem without the need of a good system model, without identification and without knowledge how the reference signal is produced, but transient behavior as well as arbitrary good accuracy can be guaranteed. Until recently, it was believed that the price to pay for these very nice properties is that only practical tracking and not asymptotic tracking can be achieved. Surprisingly, this is not true! We will prove that funnel control – without any further assumptions – can achieve asymptotic tracking.}, keywords = {}, pubstate = {published}, tppubtype = {inproceedings} } Funnel control is a powerful and simple method to solve the output tracking problem without the need of a good system model, without identification and without knowledge how the reference signal is produced, but transient behavior as well as arbitrary good accuracy can be guaranteed. Until recently, it was believed that the price to pay for these very nice properties is that only practical tracking and not asymptotic tracking can be achieved. Surprisingly, this is not true! We will prove that funnel control – without any further assumptions – can achieve asymptotic tracking. |

Trenn, Stephan; Unger, Benjamin Delay regularity of differential-algebraic equations Inproceedings Proc. 58th IEEE Conf. Decision Control (CDC) 2019, pp. 989-994, Nice, France, 2019. @inproceedings{TrenUnge19, title = {Delay regularity of differential-algebraic equations}, author = {Stephan Trenn and Benjamin Unger}, url = {https://stephantrenn.net/wp-content/uploads/2019/03/Preprint-TU190910.pdf, Preprint}, doi = {10.1109/CDC40024.2019.9030146}, year = {2019}, date = {2019-12-12}, booktitle = {Proc. 58th IEEE Conf. Decision Control (CDC) 2019}, pages = {989-994}, address = {Nice, France}, abstract = {We study linear time-invariant delay differential-algebraic equations (DDAEs). Such equations can arise if a feedback controller is applied to a descriptor system and the controller requires some time to measure the state and to compute the feedback resulting in the time-delay. We present an existence and uniqueness result for DDAEs within the space of piecewise-smooth distributions and an algorithm to determine whether a DDAE is delay-regular.}, keywords = {}, pubstate = {published}, tppubtype = {inproceedings} } We study linear time-invariant delay differential-algebraic equations (DDAEs). Such equations can arise if a feedback controller is applied to a descriptor system and the controller requires some time to measure the state and to compute the feedback resulting in the time-delay. We present an existence and uniqueness result for DDAEs within the space of piecewise-smooth distributions and an algorithm to determine whether a DDAE is delay-regular. |

Anh, Pham Ky; Linh, Pham Thi; Thuan, Do Duc; Trenn, Stephan The one-step-map for switched singular systems in discrete-time Inproceedings Proc. 58th IEEE Conf. Decision Control (CDC) 2019, pp. 605-610, Nice, France, 2019. @inproceedings{AnhLinh19, title = {The one-step-map for switched singular systems in discrete-time}, author = {Pham Ky Anh and Pham Thi Linh and Do Duc Thuan and Stephan Trenn}, url = {https://stephantrenn.net/wp-content/uploads/2019/03/Preprint-ALTT190910.pdf, Preprint}, doi = {10.1109/CDC40024.2019.9030154}, year = {2019}, date = {2019-12-11}, booktitle = {Proc. 58th IEEE Conf. Decision Control (CDC) 2019}, pages = {605-610}, address = {Nice, France}, abstract = {We study switched singular systems in discrete time and first highlight that in contrast to continuous time regularity of the corresponding matrix pairs is not sufficient to ensure a solution behavior which is causal with respect to the switching signal. With a suitable index-1 assumption for the whole switched system, we are able to define a one-step- map which can be used to provide explicit solution formulas for general switching signals.}, keywords = {}, pubstate = {published}, tppubtype = {inproceedings} } We study switched singular systems in discrete time and first highlight that in contrast to continuous time regularity of the corresponding matrix pairs is not sufficient to ensure a solution behavior which is causal with respect to the switching signal. With a suitable index-1 assumption for the whole switched system, we are able to define a one-step- map which can be used to provide explicit solution formulas for general switching signals. |

Trenn, Stephan Asymptotic tracking with funnel control Inproceedings PAMM - Proc. Appl. Math. Mech., WILEY-VCH Verlag, 2019, (online). @inproceedings{Tren19, title = {Asymptotic tracking with funnel control}, author = {Stephan Trenn}, url = {https://stephantrenn.net/wp-content/uploads/2019/11/45-PAMM19-201900071.pdf, Paper}, doi = {10.1002/pamm.201900071}, year = {2019}, date = {2019-09-09}, booktitle = {PAMM - Proc. Appl. Math. Mech.}, journal = {PAMM - Proc. Appl. Math. Mech.}, publisher = {WILEY-VCH Verlag}, abstract = {Funnel control is a strikingly simple control technique to ensure model free practical tracking for quite general nonlinear systems. It has its origin in the adaptive control theory, in particular, it is based on the principle of high gain feedback control. The key idea of funnel control is to chose the feedback gain large when the tracking error approaches the prespecified error tolerance (the funnel boundary). It was long believed that it is a theoretical limitation of funnel control not being able to achieve asymptotic tracking, however, in this contribution it will be shown that this is not the case.}, note = {online}, keywords = {}, pubstate = {published}, tppubtype = {inproceedings} } Funnel control is a strikingly simple control technique to ensure model free practical tracking for quite general nonlinear systems. It has its origin in the adaptive control theory, in particular, it is based on the principle of high gain feedback control. The key idea of funnel control is to chose the feedback gain large when the tracking error approaches the prespecified error tolerance (the funnel boundary). It was long believed that it is a theoretical limitation of funnel control not being able to achieve asymptotic tracking, however, in this contribution it will be shown that this is not the case. |

Patil, Deepak; Tesi, Pietro; Trenn, Stephan Indiscernible topological variations in DAE networks Journal Article Automatica, 101 , pp. 280-289, 2019. @article{PatiTesi19, title = {Indiscernible topological variations in DAE networks}, author = {Deepak Patil and Pietro Tesi and Stephan Trenn}, url = {https://stephantrenn.net/wp-content/uploads/2019/01/Preprint-PTT181205.pdf, Preprint}, doi = {10.1016/j.automatica.2018.12.012}, year = {2019}, date = {2019-03-01}, journal = {Automatica}, volume = {101}, pages = {280-289}, abstract = {A problem of characterizing conditions under which a topological change in a network of differential algebraic equations (DAEs) can go undetected is considered. It is shown that initial conditions for which topological changes are indiscernible belong to a generalized eigenspace shared by the nominal system and the system resulting from a topological change. A condition in terms of eigenvectors of the nominal system is derived to check for existence of possibly indiscernible topological changes. For homogenous networks this condition simplifies to the existence of an eigenvector of the Laplacian of network having equal components. Lastly, a rank condition is derived which can be used to check if a topological change preserves regularity of the nominal network.}, keywords = {}, pubstate = {published}, tppubtype = {article} } A problem of characterizing conditions under which a topological change in a network of differential algebraic equations (DAEs) can go undetected is considered. It is shown that initial conditions for which topological changes are indiscernible belong to a generalized eigenspace shared by the nominal system and the system resulting from a topological change. A condition in terms of eigenvectors of the nominal system is derived to check for existence of possibly indiscernible topological changes. For homogenous networks this condition simplifies to the existence of an eigenvector of the Laplacian of network having equal components. Lastly, a rank condition is derived which can be used to check if a topological change preserves regularity of the nominal network. |

Tanwani, Aneel; Trenn, Stephan Detectability and observer design for switched differential algebraic equations Journal Article Automatica, 99 , pp. 289-300, 2019. @article{TanwTren19, title = {Detectability and observer design for switched differential algebraic equations}, author = {Aneel Tanwani and Stephan Trenn}, url = {https://stephantrenn.net/wp-content/uploads/2018/09/Preprint-TT180917.pdf, Preprint}, doi = {10.1016/j.automatica.2018.10.043}, year = {2019}, date = {2019-01-01}, journal = {Automatica}, volume = {99}, pages = {289-300}, abstract = {This paper studies detectability for switched linear differential–algebraic equations (DAEs) and its application to the synthesis of observers, which generate asymptotically converging state estimates. Equating detectability to asymptotic stability of zero-output-constrained state trajectories, and building on our work on interval-wise observability, we propose the notion of interval-wise detectability: If the output of the system is constrained to be identically zero over an interval, then the norm of the corresponding state trajectories scales down by a certain factor at the end of that interval. Conditions are provided under which the interval-wise detectability leads to asymptotic stability of zero-output-constrained state trajectories. An application is demonstrated in designing state estimators. Decomposing the state into observable and unobservable components, we show that if the observable component of the system is reset appropriately and persistently, then the estimation error converges to zero asymptotically under the interval-wise detectability assumption.}, keywords = {}, pubstate = {published}, tppubtype = {article} } This paper studies detectability for switched linear differential–algebraic equations (DAEs) and its application to the synthesis of observers, which generate asymptotically converging state estimates. Equating detectability to asymptotic stability of zero-output-constrained state trajectories, and building on our work on interval-wise observability, we propose the notion of interval-wise detectability: If the output of the system is constrained to be identically zero over an interval, then the norm of the corresponding state trajectories scales down by a certain factor at the end of that interval. Conditions are provided under which the interval-wise detectability leads to asymptotic stability of zero-output-constrained state trajectories. An application is demonstrated in designing state estimators. Decomposing the state into observable and unobservable components, we show that if the observable component of the system is reset appropriately and persistently, then the estimation error converges to zero asymptotically under the interval-wise detectability assumption. |

Gross, Tjorben B; Trenn, Stephan; Wirsen, Andreas Switch induced instabilities for stable power system DAE models Inproceedings IFAC-PapersOnLine, pp. 127-132, 2018, (Proc. IFAC Conf. Analysis Design Hybrid Systems (ADHS 2018)). @inproceedings{GrosTren18, title = {Switch induced instabilities for stable power system DAE models}, author = {Tjorben B. Gross and Stephan Trenn and Andreas Wirsen}, url = {https://stephantrenn.net/wp-content/uploads/2018/04/Preprint-GTW180413.pdf, Preprint}, doi = {10.1016/j.ifacol.2018.08.022}, year = {2018}, date = {2018-07-11}, booktitle = {IFAC-PapersOnLine}, journal = {IFAC-PapersOnLine}, volume = {51}, number = {16}, pages = {127-132}, abstract = {It is well known that for switched systems the overall dynamics can be unstable despite stability of all individual modes. We show that this phenoma can indeed occur for a linearized DAE model of power grids. By making certain topological assumptions on the power grid, we can ensure stability under arbitrary switching.}, note = {Proc. IFAC Conf. Analysis Design Hybrid Systems (ADHS 2018)}, keywords = {}, pubstate = {published}, tppubtype = {inproceedings} } It is well known that for switched systems the overall dynamics can be unstable despite stability of all individual modes. We show that this phenoma can indeed occur for a linearized DAE model of power grids. By making certain topological assumptions on the power grid, we can ensure stability under arbitrary switching. |