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a b s t r a c t

In this paper stabilization of switched differential algebraic equations is considered, where Dirac
impulses in both the input and the state trajectory are to be avoided during the stabilization process.
First it is shown that stabilizability of a switched DAE and the existence of impulse-free solutions are
merely necessary conditions for impulse-free stabilizability. Then necessary and sufficient conditions
for the existence of impulse-free solutions are given, which motivate the definition of (impulse-free)
interval-stabilization on a finite interval. Under a uniformity assumption, which can be verified for
a broad class of switched systems, stabilizability on an infinite interval can be concluded based on
interval-stabilizability. As a result a characterization of impulse-free interval stabilizability is given
and as a corollary we provide a novel impulse-free null-controllability characterization. Finally, the
results are compared to results on interval-stabilizability where Dirac impulses are allowed in the
input and state trajectory.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In this paper we consider switched differential algebraic equa-
tions (switched DAEs) of the following form:

Eσ ẋ = Aσ x + Bσu, (1)

where σ : R → N is the switching signal and Ep, Ap ∈

Rn×n, Bp ∈ Rn×m, for p, n,m ∈ N. In general, trajectories of
switched DAEs exhibit jumps (or even impulses), which may
exclude classical solutions from existence. Therefore, we adopt
the piecewise-smooth distributional solution framework introduced
in [1]. We study impulse-free stabilizability of (1) where impulse-
free stabilizability means the ability to find for each initial value a
control signal such the state converges towards zero and remains
impulse free (see the forthcoming Definition 9).

Differential algebraic equations (DAEs) arise naturally when
modeling physical systems with certain algebraic constraints on
the state variables. Examples of applications of DAEs in electrical
circuits (with distributional solutions) can be found in e.g. [2]. The
algebraic constraints are often eliminated such that the system is
described by ordinary differential equations (ODEs). In the case
that a system undergoes abrupt structural changes a switched
DAE is obtained. Examples of applications are electronic circuits
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containing switches or mechanical systems with component fail-
ure. Since each mode generally has different algebraic constraints,
there does not exist a switched ODE description of the system
with a common state variable. This problem can be overcome by
studying switched DAEs directly.

Several structural properties of switched DAEs have been stud-
ied recently. Among those are null-controllability [3], stability [4],
stabilizability [5] and observability [6]. All of these studies allow
for Dirac impulses in the state trajectory, whereas for some
applications Dirac impulses are undesirable. Examples of such ap-
plications are electrical circuits containing switches where Dirac
impulses in the voltage can damage components or cause electric
sparks to occur at the switch [7]. Furthermore, in the case com-
ponents need to be replaced, e.g. for maintenance reasons, or if
new components are attached to an operational electrical circuit,
some state components might, for safety reasons, be required to
be stabilized in a impulse-free fashion. Impulse-controllability of
switched DAEs, i.e., the ability to avoid Dirac impulses in the state
trajectory by means on an input, has been studied in [8]. How-
ever, switched systems that are both impulse-controllable and
stabilizable are not necessarily stabilizable with an impulse-free
trajectory, as is shown in the following example.

Consider the electrical circuit given in Fig. 1. For maintenance
reasons the capacitor and the component consisting of the oper-
ational amplifier combined with an inductor are disconnected at
t = t1. In order to keep the network to which this circuit is con-
ected running, the voltage source V0 needs to remain constant.

However, there is another controllable voltage source u available.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.sysconle.2020.104870
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysconle.2020.104870&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:p.wijnbergen@rug.nl
https://doi.org/10.1016/j.sysconle.2020.104870
http://creativecommons.org/licenses/by/4.0/


P. Wijnbergen and S. Trenn Systems & Control Letters 149 (2021) 104870

i

S

Fig. 1. An example of an electrical circuit that is stabilizable and
mpulse-controllable, but not stabilizable without Dirac impulses.

ince the system is operational at t = t0 it is assumed that the
state at t0 is consistent. Defining the state as x = [ VL IL VC ,IC ,V0 ],
we obtain that for t ∈ [t0, t1) the system is described by Eq. (2),
whereas for t ∈ [t1, ∞) it is described by Eq. (3).[

0 L 0 0 0
0 0 0 0 0
0 0 C 0 0
0 0 0 0 0
0 0 0 0 1

]
ẋ =

[
1 0 0 0 0
0 R 0 0 0
0 0 0 1 0
0 0 1 0 −1
0 0 0 0 0

]
x +

[
0

−1
0
1
0

]
u, (2)[

0 L 0 0 0
0 0 0 0 0
0 0 C 0 0
0 0 0 0 0
0 0 0 0 1

]
ẋ =

[
1 0 0 0 0
0 R 0 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 0

]
x (3)

The current through the resistors is given by IR = u/R and hence
RIL = u. After opening the switch, the voltage over the resistor is
zero and thus IR = IL = 0. Hence for a non-zero input u at t−1 ,
we obtain that IL jumps to zero at t+1 and consequently a Dirac
impulse occurs in VL = LİL. However, if the input is brought to
zero smoothly, no Dirac impulses occur and hence the system is
impulse-controllable.

However, since the amount of charge stored on the capacitor
is given by q = C(V0 − u), we have for a nonzero u at t1, that
the capacitor is charged and is unable to discharge, since the
current IC = 0. The capacitor can be discharged before t1, but that
requires a nonzero u at t−1 , which produces a Dirac impulse yet
stabilizes the state of the components. Hence we have an example
of a system which is impulse controllable and stabilizable, but not
stabilizable with an impulse free trajectory.

Motivated by this example, this paper considers stabilization
of switched DAEs where Dirac impulses are to be avoided, so
called impulse-free stabilization.

The outline of the paper is as follows: notations and results for
non-switched DAEs are presented in Section 2. In Section 3 the
definition of impulse-free stabilizability is given, together with
the introduction of the concept of interval-stabilizability. Results
on impulse controllability and (impulse-free) stabilizability are
given in Section 4. Finally, the paper ends with a conclusion in
Section 5.

Notation The sets of natural, real and complex numbers are
denoted by N, R and C, respectively, C+

= {λ ∈ C | ℜ(λ) ⩾ 0}
denotes the closed right-half complex plane. For a vector x ∈ Rn,
|x| is its Euclidean norm; ei ∈ Rn is the vector of all zeros except
for a one in position i. Let X , Y ⊆ Rn be vector spaces and
consider the linear map A : X → Y . Then, im A = {Ax | x ∈ X }

and ker A = {x ∈ X | Ax = 0}, respectively. The inverse image of
a subspace V ⊆ Y is given as A−1V = {x ∈ X | Ax ∈ V}. Finally,
V⊥

= {x ∈ X | x⊤v = 0 ∀v ∈ V} is the orthogonal complement of
a subspace V ⊆ X in the inner product space X .

2. Mathematical preliminaries

2.1. Properties and definitions for regular matrix pairs

In the following, we consider regular matrix pairs (E, A), i.e.
for which the polynomial det(sE − A) is not the zero polynomial.
Recall the following result on the quasi-Weierstrass form [9].
2

Proposition 1. A matrix pair (E, A) ∈ Rn×n
× Rn×n is regular if,

and only if, there exist invertible matrices S, T ∈ Rn×n such that

(SET , SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
, (4)

where J ∈ Rn1×n1 , 0 ⩽ n1 ⩽ n, is some matrix and N ∈ Rn2×n2 ,
n2 := n − n1, is a nilpotent matrix.

The matrices S and T can be calculated by using the so-called
Wong sequences [9,10]:

V0 := Rn, Vi+1 := A−1(EVi), i = 0, 1, . . .
W0 := {0}, Wi+1 := E−1(AWi), i = 0, 1, . . . (5)

The Wong sequences are nested and get stationary after finitely
many iterations. The limiting subspaces are defined as follows:

V∗
:=

⋂
i

Vi, W∗
:=

⋃
Wi. (6)

For any full rank matrices V ,W with im V = V∗ and imW = W∗,
the matrices T := [V ,W ] and S := [EV , AW ]

−1 are invertible and
(4) holds.

Based on the Wong sequences we define the following projec-
tors and selectors.

Definition 2. Consider the regular matrix pair (E, A) with corre-
sponding quasi-Weierstrass form (4). The consistency projector of
(E, A) is given by

Π(E,A) := T
[
I 0
0 0

]
T−1,

the differential selector and impulse selector are given by

Πdiff
(E,A) := T

[
I 0
0 0

]
S, Π

imp
(E,A) := T

[
0 0
0 I

]
S,

respectively.

In all three cases the block structure corresponds to the block
structure of the quasi-Weierstrass form. Furthermore we define

Adiff
:= Πdiff

(E,A)A = T
[
J 0
0 0

]
T−1, Bdiff

:= Πdiff
(E,A)B,

E imp
:= Π

imp
(E,A)E = T

[
0 0
0 N

]
T−1, Bimp

:= Π
imp
(E,A)B.

Note that all the above defined matrices do not depend on the
specifically chosen transformation matrices S and T ; they are
uniquely determined by the original regular matrix pair (E, A).
An important feature for DAEs is the so called consistency space,
defined as follows:

Definition 3. Consider the DAE Eẋ(t) = Ax(t) + Bu(t), then the
consistency space is defined as

V(E,A) :=

{
x0 ∈ Rn

⏐⏐⏐⏐ ∃ smooth solution x of
Eẋ = Ax, with x(0) = x0

}
,

and the augmented consistency space is defined as

V(E,A,B) :=

{
x0 ∈ Rn

⏐⏐⏐⏐ ∃ smooth solutions (x, u) of
Eẋ = Ax + Bu and x(0) = x0

}
.

In order to express (augmented) consistency spaces in terms of
the Wong limits we introduce the following notation for matrices
A, B of conformable sizes:

⟨A | B⟩ := im[B, AB, . . . , An−1B].

Proposition 4 ([11]). Consider the DAE Eẋ = Ax + Bu and assume
the matrix pair (E, A) is regular, then V(E,A) = imΠ(E,A) = imΠdiff

(E,A)
and V(E,A,B) = V(E,A) ⊕ ⟨E imp

| Bimp
⟩.
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.2. Distributional solutions

The switched DAE (1) usually will not have classical solutions,
ecause each mode of the switched DAE given by the DAE Eiẋ =

ix + Biu might have different (augmented) consistency spaces
hich enforce jumps in the state-variable x. We therefore utilize
he piecewise-smooth distributional framework as introduced
n [1], i.e. x and u are vectors of piecewise-smooth distributions
iven by

pwC∞ :=

⎧⎨⎩D = fD +

∑
t∈T

Dt

⏐⏐⏐⏐⏐⏐
f ∈ C∞

pw, T ⊆ R is
discrete,∀t ∈ T : Dt
∈ span{δt , δ

′
t , δ

′′
t , . . .}

⎫⎬⎭ ,

here C∞
pw denotes the space of piecewise-smooth functions, fD

enotes the regular distribution induced by f , δt denotes the Dirac
mpulse with support {t} and δ′

t denotes distributional derivative
f δt . For a piecewise smooth distribution D = fD +

∑
t∈T Dt ∈

pwC∞ three types of ‘‘evaluation at time t" are defined: left side
valuation D(t−) := f (t−), right side evaluation D(t+) := f (t+)
nd the impulsive part D[t] := Dt if t ∈ T and D[t] = 0 otherwise.
It can be shown (see e.g. [12]) that the space DpwC∞ can

e equipped with a multiplication, in particular, the multiplica-
ion of a piecewise-constant function with a piecewise-smooth
istribution is well defined and the switched DAE (1) can be
nterpreted as an equation within the space of piecewise-smooth
istributions. Hence the following solution behavior (depending
n σ ) is well defined:

σ := {(x, u) ∈ Dn+m
pwC∞ | Eσ ẋ = Aσ x + Bσu},

nd restrictions of x and u to intervals, are well defined as well.
iven the notation xI for the restriction of x to the interval I ⊆ R,
t is shown in [1] that the initial trajectory problem (ITP) (7)

x(−∞,0) = x0(−∞,0), (7a)

Eẋ)[0,∞) = (Ax)[0,∞) + (Bu)[0,∞), (7b)

as a unique solution for any initial trajectory if, and only if,
he matrix pair (E, A) is regular. As a direct consequence, the
witched DAE (1) with regular matrix pairs is also uniquely solv-
ble (with piecewise-smooth distributional solutions) for any
witching signal with locally finitely many switches.

.3. Properties of DAEs

For the rest of this section we are considering the DAE

ẋ = Ax + Bu. (8)

ecall the following definitions and characterization of (impulse)
ontrollability [11].

roposition 5. The reachable space of the regular DAE (8) defined
s

:=

{
xT ∈ Rn

⏐⏐⏐⏐ ∃T > 0 ∃ smooth solution (x, u) of (8)
with x(0) = 0 and x(T ) = xT

}
atisfies R = ⟨Adiff

| Bdiff
⟩ ⊕ ⟨E imp

| Bimp
⟩.

It is easily seen that the reachable space for (8) coincides with
the (null-)controllable space, i.e.

R =

{
x0 ∈ Rn

⏐⏐⏐⏐ ∃T > 0 ∃ smooth solution (x, u) of (8)
with x(0) = x0 and x(T ) = 0

}
.

Note that V(E,A,B) = V(E,A) + R = V(E,A) ⊕ ⟨E imp, Bimp
⟩.
3

Definition 6. The DAE (8) is impulse controllable if for all initial
conditions x0 ∈ Rn there exists a solution (x, u) of the ITP (7) such
that x(0−) = x0 and (x, u)[0] = 0, i.e. the state and the input are
impulse free at t = 0. The space of impulse controllable states of
the DAE (8) is given by

Cimp
(E,A,B) :=

{
x0 ∈ Rn

⏐⏐⏐⏐ ∃ solution (x, u) ∈ DpwC∞ of (7)
s.t. x(0−) = x0 and (x, u)[0] = 0.

}
.

In particular, the DAE (8) is impulse controllable if and only if
Cimp
(E,A,B) = Rn.

The impulse controllable space can be characterized as fol-
lows [13].

Proposition 7. Consider the DAE (8) then

Cimp
(E,A,B) = V(E,A,B) + ker E

= V(E,A) + R + ker E

= V(E,A) + ⟨E imp
| Bimp

⟩ + ker E.

Definition 8. The DAE (8) is stabilizable if for all initial conditions
x0 ∈ Rn there exists a solution (x, u) of the ITP (7) such that
x(0−) = x0 and limt→∞ x(t) = 0.

According to [7] if the input u(·) is sufficiently smooth, trajec-
tories of (8) are continuous on the open interval (t0, ∞) and given
by

x(t) = xu(t, t0; x0) = eA
diff(t−t0)Π(E,A)x0

+

∫ t

t0

eA
diff(t−s)Bdiffu(s) ds −

n−1∑
i=0

(E imp)iBimpu(i)(t). (9)

In particular, all trajectories can be written as the sum of an
autonomous part xaut(t, t0; x0) = eA

difftΠ(E,A)x0 and a controllable
part xu(t, t0) as follows:

xu(t, t0; x0) = xaut(t, t0; x0) + xu(t, t0).

This decomposition remains valid for switched DAEs when eval-
uated at the initial condition at time t−0 ; the impulsive part of x
at the initial time t0 is then given by

x[t0] = −

n−1∑
i=0

(E imp)i+1

⎛⎝x0δ(i) +

i∑
j=0

Bimpu(i−j)(t+0 )δ(j)

⎞⎠ .

3. Stabilizability concepts

The concepts introduced in the previous section are now uti-
lized to investigate impulse free stabilizability of switched DAEs.
In order to use the piecewise-smooth distributional solution
framework and to avoid technical difficulties in general, we only
consider switching signals from the following class

Σ :=

{
σ : R → N

⏐⏐⏐⏐ σ is right continuous with a
locally finite number of jumps

}
,

i.e. we exclude an accumulation of switching times (see [1]). By
further excluding infinitely many switches in the past and by
appropriately relabeling the matrices we can assume that

σ (t) = k, for tk ⩽ t < tk+1. (10)

and that for the first switching instant t1 it holds that t1 >
t0 := 0. After some results relating interval-wise properties to
global properties in the remainder of this section, we will restrict
our attention to the bounded interval (t0, tf ) for some tf > 0.
As a consequence there are only finitely many switches in this
interval, say n ∈ N, and for notation convenience we let t = t .
n+1 f
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Roughly speaking, in classical literature on non-switched sys-
tems, a linear system is called stabilizable if every trajectory can
be steered towards zero as time tends to infinity. This definition
can readily be applied to switched DAEs. Hence we will define
impulse free stabilizability for switched DAEs in a similar fashion
as follows, based on the definition of stabilizability in [5].

Definition 9 (Impulse-free Stabilizability). The switched DAE (1)
ith switching signal (10) is stabilizable if the corresponding
olution behavior Bσ is stabilizable in the behavioral sense on
he interval [0, ∞), i.e.

(x, u) ∈ Bσ ∃(x∗, u∗) ∈ Bσ :

x∗, u∗)(−∞,0) = (x, u)(−∞,0),

and lim
t→∞

(x∗(t+), u∗(t+)) = 0.

f in addition (x, u)[t] = 0 for all t ∈ [0, ∞), then the system is
alled impulse-free stabilizable.

In the case of switched DAEs, it is reasonable to assume that
here are an infinite amount of switching instances as time tends
o infinity. This poses a problem when it comes to verifying con-
itions for stabilizability in a finite amount of steps. To overcome
his problem, we investigate stabilizability on a bounded interval.
herefore we introduce the following definition of (impulse-free)
nterval stabilizability.

efinition 10 (Interval Stabilizability). The switched DAE (1) is
alled (t0, tf )-stabilizable for a given switching signal σ , if there
xists a class KL function1 β : R⩾0 × R⩾0 → R⩾0 with

(r, tf − t0) < r, ∀r > 0,

nd for any initial value x0 ∈ VE0,A0,B0 there exists a local solution
x, u) of (1) on (t0, tf ) with x(t−0 ) = x0 such that

x(t+)| ⩽ β(|x0|, t − t0), ∀t ∈ (t0, tf ).

If in addition (x, u)[t] = 0 for all t ∈ (t0, tf ), then the system is
called impulse-free (t0, tf )-stabilizable.

One should note that a solution on some interval is not nec-
essarily a part of a solution on a larger interval. Consequently,
stabilizability does not always imply interval stabilizability. The
switched system 0 = x on [0, t1) and ẋ = 0 on [t1, ∞) is obviously
stabilizable, since the only global solution is the zero solution.
However, on the interval [t1, s) there are nonzero solutions which
do not converge towards zero.

Furthermore according to Definition 10 it is required that the
norm of the state is smaller at the end of an interval. This means
that (impulse-free) interval stability could depend on the length
of the interval considered instead of the asymptotic behavior
of the system. An unstable oscillating system is thus possibly
(impulse-free) interval stable and an asymptotically stable os-
cillating system is not necessarily (impulse-free) interval stable,
depending on the choice of interval. However, under the follow-
ing uniformity assumption on the switched DAE we can conclude
global stabilizability.

Assumption 11 (Uniform Interval-stabilizability). Consider the
switched system (1) with switching signal σ . Let τ0 := t0
and assume that there exists an unbounded, strictly increasing
sequence τi ∈ (t0, ∞), i ∈ N \ {0}, of non-switching times such

1 A function β : R⩾0 × R⩾0 → R⩾0 is called a class KL function if (1) for
each t ⩾ 0, β(·, t) is continuous, strictly increasing, with β(0, t) = 0; (2) for
ach r ⩾ 0, β(r, ·) is decreasing and converging to zero as t → ∞.
4

that the system is (impulse-free) (τi−1, τi) -stabilizable with KL
function βi for which additionally it holds that

βi(r, τi − τi−1) ⩽ αr, ∀r > 0, ∀i ∈ N>0

βi(r, 0) ⩽ Mr, ∀r > 0, ∀i ∈ N>0,

for some uniform α ∈ (0, 1) and M ⩾ 1.

Proposition 12. If the switched system (1) is uniformly (impulse-
free) interval-stabilizable in the sense of Assumption 11 then (1) is
(impulse-free) stabilizable.

The proof of Proposition 12 is along the same lines as the proof
of Proposition 8 in [14].

4. Impulse-free stabilization and controllability

Assumption 11 can be verified for a general class of systems
such as systems with periodic switching and systems with a finite
amount of modes. Therefore we turn our attention to finding
necessary and sufficient conditions for interval stabilizability.

As follows from Definition 10, for any initial condition x0,
there needs to exist a solution on [t0, tf ) that is impulse-free
and satisfies the stability property. Hence we will first discuss
necessary and sufficient conditions for a switched DAE to have
impulse free solutions for any initial condition x0 on a bounded
interval, i.e. impulse controllability for switched DAEs. Once these
conditions are discussed, we will investigate under which con-
ditions these impulse-free solutions are satisfying the stability
property.

In the remainder of this section we will use Πi, Adiff
i , E imp

i ,
Bimp
i , Bdiff

i , Ri, Ci, C
imp
i to denote the corresponding matrices and

subspaces associated to the ith mode.

4.1. Impulse controllability

As mentioned above, we will first investigate the concept of
impulse controllability of a switched DAE, of which the definition
is formalized as follows.

Definition 13. The switched DAE (1) with some fixed switching
signal σ is called impulse controllable on the interval (t0, tf ), if for
all x0 ∈ V(E0,A0,B0) there exists a solution (x, u) ∈ Dn+m

pwC∞ of (1)
with x(t+0 ) = x0 which is impulse free.

Remark 14. As an alternative for Definition 13, impulse control-
lability could also be defined in terms of arbitrary initial values
x0 ∈ Rn. This would result in the immediate necessary condition
that the first mode of a switched DAE needs to be impulse
controllable. However, given a higher index DAE, Dirac impulses
cannot be avoided for initial conditions in (Cimp

0 )⊥. Therefore it is
reasonable to consider initial conditions in Cimp

0 = V(E0,A0,B0) +

ker E0. Considering the linearity of solutions and the fact that
initial conditions in ker E0 result in trajectories that jump to zero
in an impulse free manner, the initial conditions of interest are
those contained in V(E0,A0,B0).

Remark 15. If the interval (t0, tf ) does not contain a switch, then
the corresponding switched DAE is always impulse controllable
on that interval due the definition of the augmented consistency
space in terms of smooth (in particular, impulse free) solutions.
This seems counter intuitive, because the active mode on that
interval is not necessarily impulse controllable; however, recall
that impulse controllability for a single mode (see Definition 6) is
formulated in terms of the ITP (7), which can be interpreted as a

switched system with one switch at t1 = 0. In fact, letting t0 =
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ε, tf = ε, (E0, A0, B0) = (I, 0, 0) and (E1, A1, B1) = (E, A, B), the
DAE (8) is impulse controllable if, and only if, the corresponding
ITP (reinterpreted as a switched DAE) is impulse controllable on
(−ε, ε).

A solution of a switched DAE can only be impulse free, if at
each switching instance the solution evaluated at t−i is in the
impulse controllable space Cimp

i . Therefore we consider the largest
set of points from which the impulse controllable space of the
next mode can be reached impulse freely from the preceding
mode. To that extent we define the following sequence of sub-
spaces regarding the switched DAE (1) with switching signal (10):

Kb
n = Cimp

n ,

Kb
i−1 = imΠi−1 ∩

(
e−Adiffi−1(ti−1−ti)Kb

i + Ri−1
)

+ ⟨E imp
i−1 | Bimp

i−1⟩ + ker Ei−1,

i = n, n − 1, . . . , 1.

(11)

Note that imΠi−1 = V(Ei,Ai) and that Cimp
i = V(Ei,Ai) + Ri + ker Ei.

Therefore we have that Kb
i ⊆ Cimp

i . Note furthermore, that the
definition is backwards in time; the sequences start with the last
mode n and end with the initial mode 0. With these sets, we can
prove the following lemma.

Lemma 16. Consider the (interval restricted) switched DAE
(Eσ ẋ)[ti−1,ti) = (Aσ )[ti−1,ti) + (Bσu)[ti−1,ti). Then Kb

i−1 is the largest
set of points at time t−i−1 from which Kb

i can be reached (at t−i ) in
an impulse free way.

The proof is similar to the proof of Lemma 19 in [8] and
therefore omitted.

Corollary 17. Consider the switched system (1) with switching
signal (10). The system is impulse controllable if and only if

V(E0,A0,B0) ⊆ Kb
0.

The proof is similar to the proof of Theorem 21 in [8] and
therefore omitted.

Example 18. Consider the example given in the introduction
on the interval (0, tf ) with a switch at t = t1. The matri-
ces (E0, A0, B0) correspond the system matrices given in (2) and
(E1, A1, B1) are the system matrices given in (3). The projectors
Πi and selectors Πdiff

i , Π
imp
i , i ∈ {0, 1} can be calculated from the

Wong sequences. Then it follows that

Cimp
1 = span

{[
0
0
1
0
0

]
,

[
1
0
0
0
0

]
,

[
0
0
0
1
0

]}
, Π0 = span

{[
0
0
1
0
1

]}
,

R0 = span

{[
0

−1
R
0
0

]
,

[
−L
0
0
RC
0

]}
= ⟨E imp

0 | Bimp
0 ⟩

and thus from (11) it is calculated that Kb
0 = R5. Furthermore, it

can be calculated that

V[E0,A0,B0] = span

{[
0

−1
R
0
0

]
,

[
−L
0
0
RC
0

]
,

[
0
0
1
0
1

]}
. (12)

and hence we can conclude that the system is impulse-
controllable.

4.2. Impulse-free stabilizability

As shown in the introduction, a switched DAE which is im-
pulse controllable and stabilizable is not necessarily impulse-
free stabilizable. However, impulse-controllability is an obvious
5

necessary condition for impulse-free stabilizability. In order to
stabilize a state on a bounded interval in an impulse-free way,
there needs to exist an impulse-free solution in the first place.
To that extent, we will make the following standing assumptions
throughout the rest of this section:

1. The switched DAE (1) is impulse-controllable.
2. The initial condition is consistent, i.e. x(t+0 ) = x0 ∈ VE0,A0,B0 .

Under these assumptions, we will derive necessary and suf-
ficient conditions for impulse-free stabilizability. The approach
taken is as follows. First we consider the space of points that
can be reached in an impulse free way from an initial value x0.
It will then be shown that this space is an affine subspace. We
then consider an element of this affine subspace with minimal
norm; if this norm is smaller than the norm of the corresponding
initial value, we can conclude interval stabilizability.

Towards this goal, we consider the following sequence of
(affine) subspaces (defined forward in time)

Kf
0(x0) = eA

diff
0 (t1−t0)Π0x0 + R0,

Kf
i (x0) = eA

diff
i (ti+1−ti)Πi(K

f
i−1(x0) ∩ Cimp

i ) + Ri, i > 0,
(13)

For x0 = 0 we drop the dependency on x0, i.e.

Kf
i := Kf

i (0).

Remark 19. Note that the above Kf
i is different from Kf

i in [8],
the latter is defined as the space of all points that can be reached
in an impulse-free way, i.e., it is the union of Kf

i (x0) over all
x0 ∈ V(E0,A0,B0).

The intuition behind the sequence is as follows: Kf
0(x0) are all

values for xu(t−1 , x0) which can be reached in an impulse free (in
fact, smooth) way during the initial mode 0. Now, inductively, we
calculate the set Kf

i (x0) of points which can be reached just before
the switching time ti+1 by first considering the points Kf

i−1(x0)
which can be reached in an impulse free way just before ti, then
pick those which can be continued in mode i impulse-freely by
intersecting them with Cimp

i , propagate this set forward according
to the evolution operator and finally add the reachable space of
mode i. This intuition is verified by the following lemma.

Lemma 20. Consider the switched system (1) on some bounded
interval (t0, tf ) with the switching signal given by (10). Then for all
i = 0, 1, . . . , n and x0 ∈ V(E0,A0,B0)

Kf
i (x0) =

{
ξ ∈ Rn

⏐⏐⏐⏐⏐⏐
∃ an impulse-free solution (x, u)
of(1) on (t0, ti+1) s.t.
x(t+0 ) = x0 ∧ x(t−i+1) = ξ

}
.

Proof. First we will show that xu(t−i , x0) is contained in Kf
i (x0)

if (x, u) is an impulse free solution on (t0, tf ). To that extent,
consider an impulse-free solutions (x, u) of (1) on (t0, t1), which
by definition satisfies the solution formula (9), i.e.,

xu(t−1 , x0) = eA
diff
0 (t1−t0)Π0x0 + η0,

or some η0 ∈ R0 and x0 ∈ V(E0,A0,B0). This shows that xu(t−1 , x0) ∈
f
0(x0). We proceed inductively by assuming that the statement
olds for i > 0 and prove the statement for i + 1.
Let (x, u) be an impulse-free solution on (t0, ti+1). Then we

ave that xu(t−i+1, x0) is of the form

u(t−i+1, x0) = eA
diff
i (ti+1−ti)Πiξi−1 + ηi,

or some ηi ∈ Ri and ξi−1 ∈ Cimp
i . Furthermore, since (x, u)

s impulse-free on (t , t ), it follows that ξ can be reached
0 i+1 i
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i
mpulse-freely from x0 and hence ξi−1 ∈ Kf
i−1(x0). This proves

that xu(t−i+1, x0) ∈ Kf
i (x0).

In the following we will prove that for all elements of Kf
i (x0)

there exists an impulse-free solution (x, u) with initial condition
xu(t+0 , x0) = x0. We will again prove this inductively. Therefore,
consider ξ0 ∈ Kf

0(x0). Then for some η0 ∈ R0 we have

ξ0 = eA
diff
0 (t1−t0)Π0x0 + η0.

Since x0 ∈ V(E0,A0,B0) ⊆ Cimp, we have that there exists a ũ such
that xũ(t, x0) is impulse-free on [t0, t1). Then it follows from the
solution formula (9) that

xũ(t−1 , x0) = eA
difft1Πx0 + η̃0,

for some η̃0 ∈ R0. Since η0 ∈ R0, there exists a smooth input
û such that xû(t−1 , 0) = η0 − η̃0 and xû(t, 0) is impulse-free on
[t0, t1).

If we define u = û+ũ it then follows from linearity of solutions
that xu(t−1 , x0) = ξ0 and is impulse-free on (t0, t1). Assuming
that the statement holds for i > 0 we continue by proving the
statement for i + 1.

Let ξi ∈ Kf
i+1(x0), then we have for some ξi−1 ∈ Kf

i (x0) ∩ Cimp
i−1

that

ξi = eA
diff
i (ti+1−ti)Πiξi−1 + ηi.

It follows from the induction assumption that there exists an
impulse-free solution (x, u) on (t0, ti) with xu(t−i , x0) = ξi−1,
because ξi−1 ∈ Kf

i (x0). Furthermore, ξi−1 ∈ Cimp
i−1 and ηi ∈

Ri implies that the impulse-free input u can be altered on the
interval [ti, ti + 1) such that xu(t−i+1, x0) = ξi and xu(·, x0) is
impulse-free. ■

Remark 21. The assumption that x0 ∈ V(E0,A0,B0) is of crucial
importance for Lemma 16. If the zeroth mode is not impulse
controllable and we would choose x0 ∈ (V(E0,A0,B0) + ker E0)⊥ the
occurrence of a Dirac impulse would be inevitable. This means
that Kf

0(x0) should be empty. However, the algorithm (13) would
state that Kf

0(x0) is nonempty, which is not true.

Remark 22. If the system is not impulse controllable, then there
exists x0 for which Kf

i (x0) = ∅ as follows from the definition. This
also follows from the subspace algorithm because Kf

i−1(x0)∩ Cimp
i

would be empty for some mode i and the sum of an empty set
and a subspace is empty.

Lemma 20 gives rise to another characterization of impulse
controllability, which follows as a corollary.

Corollary 23. Consider the switched system (1) on some inter-
val (t0, tf ) with the switching signal given by (10) and the se-
quence of affine subspaces Kf

i (x0) given by (13). Then (1) is impulse
controllable on (t0, tf ) if and only if

∀x0 ∈ V(E0,A0,B0) : Kf
n(x0) ̸= ∅.

Proof. If the system is impulse controllable, then for every initial
condition x0 there exists an impulse free solution (x, u) on (t0, tf ).
Therefore x(t−f ) ∈ Kf

n+1(x0) (recall the convention that tn+1 := tf )
and hence Kf

n+1(x0) ̸= ∅. Conversely, if Kn(x0) ̸= ∅, then let
ξ ∈ Kf

n+1(x0). By definition there exists an impulse free solution
(x, u) on (t0, tf ) with x(t−0 ) = x0 and x(t−f ) = ξ . This holds for
every x0 ∈ V(E0,A0,B0) and hence (1) is impulse controllable. ■

Note that in contrast to Corollary 17 the computations in

Corollary 23 run forward in time. Hence this result is useful in

6

the case that not all modes are determined yet and the next mode
is to be chosen. If Corollary 17 would be used, all computations
would need to be redone, whereas with a forward computation
only parts need to be redone.

In the following we will show that Kf
i (x0) is an affine shift

of Kf
f and hence Kf

i (x0) is an affine subspace. In proving this
statement, we will use some general results which can be found
in the Appendix.

Lemma 24. Consider the switched system (1) with switching
signal (10) and assume it is impulse-controllable. The impulse-free-
reachable space from x0 at ti is an affine shift from the impulse-free
reachable space, i.e., there exists a matrix Mi, such that

Kf
i (x0) = Mix0 + Kf

i . (14)

Proof. First we simplify the notation introducing the following
short hand notation Yi := eA

diff
i (ti+1−ti)Πi. Then we prove the

statement inductively. The statement holds trivially for n = 0, for
Kf

0 = Y0x0 + R0 and hence we assume that the statement holds
for n. Since we assumed that the system is impulse controllable,
we have that Kf

i (x0)∩Cimp
i+1 ̸= ∅ for all x0. Then for n+1 we obtain

that

Kf
i+1(x0) = Yi+1(K

f
i (x0) ∩ Cimp

i+1 ) + Ri+1
∗
= Yi+1((Mix0 + Kf

i ) ∩ Cimp
i+1 ) + Ri+1,

∗∗
= Yi+1(NiMix0 + (Kf

i ∩ Cimp
i+1 )) + Ri+1,

= Yi+1NiMix0 + K f
i+1,

for some matrix Ni, i ∈ {0, 1, . . . , n}, where (∗) follows from
the induction step and (∗∗) follows from Proposition 42 in the
Appendix. Defining Mi+1 = Yi+1NiMi yields the result. ■

Note that the matrix Mi in (14) exists only in case that the
system is impulse-controllable, otherwise Mi would also need to
map to the empty set. In the case Mi does exist, this matrix can be
chosen independently of x0. It is however not necessarily unique,
because Mi+1 is dependent on Ni obtained from Proposition 42 in
a nonunique way. It follows from Lemma 43 from the Appendix
that Ni can be any matrix for which

1. im(Ni − I)Mi ⊆ Ri,

2. imNiMi ⊆ Cimp
i+1 .

(15)

Thus, from the proof of Lemma 24 together with Lemma 43 from
the Appendix the following constructive result can be obtained.

Corollary 25. Consider the switched system (1) with switching sig-
nal (10) and assume it is impulse-controllable. Let M0 = eA

diff
0 (t1−t0)

Π0. Then for any choice of Ni satisfying (15), a matrix Mi+1 satisfying
(14) can be calculated sequentially as follows:

Mi+1 = eA
diff
i+1(ti+2−ti+1)Πi+1NiMi.

Remark 26. In order to compute an Ni that satisfies (15) we
can invoke Lemma 44 from Appendix. This means that given
projectors onto Ri and Cimp

i+1 , an Ni that satisfies the conditions
(15) can be constructed by solving

(I − ΠRi )ΠCimp
i+1

QiMi = (I − ΠRi )Mi (16)

for Qi and defining Ni := ΠCimp
i+1

Qi. Since the existence of a
solution of (16) is guaranteed by the assumption of impulse-
controllability, such a matrix equation can be solved using a linear

programming solver.
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Since Kf
i (x0) contains all the states that can be reached from

x0 in an impulse free way, it follows that the norm of the state
with minimal norm is given by the distance dist(Kf

i (x0), 0). The
computation of this distance is straightforward, because Kf

i (x0) is
n affine subspace. It follows from elementary linear algebra that
he distance between an affine subspace and the origin, is equal to
he norm of any element projected to the orthogonal complement
f the vector space associated to the affine subspace. In the case
f Kf

i (x0) we would need to project onto (Kf
i )

⊥ with a projector

(Kf
i )

⊥ . An important property of these projectors is that their
estriction to the corresponding augmented consistency space is
ell defined.

emma 27. Consider the DAE (1) with switching signal (10). For
ny i ∈ {0, 1, . . . , n} let ξ ∈ V(Ei,Ai,Bi), then

(Kf
i )

⊥ξ ∈ V(Ei,Ai,Bi).

roof. From ξ ∈ V(Ei,Ai,Bi) and Π(Kf
i )

⊥ + (I −Π(Kf
i )

⊥ ) = I , it follows
that

Π(Kf
i )

⊥ξ + (I − Π(Kf
i )

⊥ )ξ ∈ V(Ei,Ai,Bi).

Since im(I − Π(Kf
i )

⊥ ) = Kf
i and Kf

i ⊆ V(Ei,Ai,Bi) we obtain

Π(Kf
i )

⊥ξ ∈ V(Ei,Ai,Bi) − (I − Π(Kf
i )

⊥ )ξ ⊆ V(Ei,Ai,Bi).

as was to be shown. ■

Consequently, the following result follows.

Lemma 28. Consider the DAE (1) with switching signal (10) and
assume it is impulse-controllable. For any Mi satisfying (14) we have
that

min
x∈Kf

i (x0)
|x| = |Π(

Kf
i

)⊥Mix0|

It follows that we can consider Π(
Kf

i

)⊥Mi as a linear map

from the initial condition x0 to the state with minimal norm in
Kf

i (x0). This allows us to formulate the following characterization
of impulse-free stabilizability, which is independent of the initial
condition x0 and independent of any coordinate system.

Theorem 29. Consider the switched DAE (1) with switching signal
(10) and assume it is impulse controllable. Then the system is
impulse-free interval-stabilizable on (t0, tf ) if and only if

∥Π(Kf
n)⊥

Mn∥2 = sup
x̸=0

|Π(
Kf
n

)⊥Mnx|
2

|x|2
< 1

roof. It follows from Lemma 28 that Π(
Kf
n

)⊥Mn is the linear

perator that maps x0 to the element in Kf
n(x0) with minimal

orm. Therefore we see that if ∥Π(
Kf

i

)⊥Mi∥2 < 1 that for all x0

here exists an input u such that

xu(tf , x0)| = |Π(
Kf

i

)⊥Mix0| < |x0|.

From this we can conclude that there exists a class KL function
β(|x0|, tf − t0) such that the system is impulse-free interval
stabilizable in the sense of Definition 8.

Conversely, if the system is impulse-free interval stabilizable,
then there exists a trajectory for each initial condition x0 ∈

V(E0,A0,B0) such that |xu(t−f , x0)| ⩽ βi(|x0|, tf −t0) < |x0|. This means
that for the operator Π M that maps |x | to the element with
(Kf

n)⊥ n 0

7

minimal norm that can be reached in an impulse-free way it must
hold that

∥Π(Kf
n)⊥

Mn∥2 = sup
x̸=0

|Π(
Kf
n

)⊥Mnx|
2

|x|2
< 1,

hich proves the result. ■

For many applications it is not sufficient to reduce the norm
f the state, but it is necessary to control the state to zero
ithout any Dirac impulses occurring. If a state can be steered
o zero in an impulse free way, we call this state impulse-free
ull-controllable. A formal definition of this concept is as follows.

efinition 30. Consider the system (1) with switching signal
10). An initial condition x0 is called impulse-free null-controllable
f there exists an input u such that xu(t−f , x0) = 0 and the
rajectory is impulse-free. We call the system impulse-free null-
ontrollable if every x0 ∈ V(E0,A0,B0) is impulse-free null-
controllable.

Using the method from the previous section, the following
characterization can readily be stated.

Theorem 31. Consider the system (1) with switching signal (10).
n initial value x0 is impulse-free null-controllable, if and only if for
ome i ⩾ 0
f
i (x0) ⊆ Kf

i .

roof. If an initial condition is impulse-free null-controllable,
here exists an input u such that xu(t−f , x0) = 0 and the trajectory
s impulse free. This means that 0 ∈ Kf

n+1(x0). As a consequence

⊆ Mn+1x0 + Kf
n+1,

from which it follows that Mn+1x0 ∈ Kf
n+1 and therefore Kf

n+1(x0)
⊆ Kf

n+1.
Conversely if for some i = k ⩾ 0 Kf

i (x0) ⊆ Kf
i , it follows that

Mix0 ∈ Kf
i . As a consequence 0 ∈ Mix0 + Kf

i = Kf
i (x0). It follows

from the sequence (13) if Kf
i ⊆ Kf

i for i = k ⩾ 0 that it holds for
all i ⩾ k. ■

As a direct consequence we can state the following result.

Corollary 32. Consider the switched system (1) with switching
signal (10) and assume it is impulse controllable. Then the system
is impulse-free null-controllable on (t0, tf ) if, and only if, for some
i ∈ {0, 1, . . . , n}

Π(Kf
i )

⊥Mi = 0.

Proof. If the system is impulse-null controllable, we have that
Kf

i (x0) ⊆ Kf
i for all x0. Then it follows that

Mix0 + Kf
i ⊆ Kf

i ,

for all x0 and hence imMi ⊆ Kf
i . The result then follows.

Conversely, if Π(Kf
i )

⊥Mi = 0, then Π(Kf
i )

⊥K
f
i (x0) = 0 for all x0,

which implies that Kf
i (x0) ⊆ Kf

i for all x0. ■

Kf
i and Mi can both be computed sequentially forward in time.

This means that it might not be necessary to have knowledge of
all the modes of the switched system. According to Corollary 32
we can conclude impulse-free null-controllability already if the
conditions are satisfied for some i ∈ N.
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.3. Impulsive stabilizability and impulse-controllability

In the case that Dirac impulses are allowed in the trajectory
imilar results as in the above can be formulated. The crucial
ondition for impulse-free trajectories is that the state is in the
mpulse controllable space of the next mode at each switching in-
tance. If this condition is dropped, a similar lemma as Lemma 20
an be formulated after considering the following sequence of
ets

K̃f
0(x0) = eA

diff
0 (t1−t0)Π0x0 + R0,

K̃f
i (x0) = eA

diff
i (ti+1−ti)ΠiK̃

f
i−1(x0) + Ri, i > 0,

(17)

or x0 = 0 we drop the dependency on x0, i.e.

K̃f
i := K̃f

i (0).

Lemma 33. Consider the switched system (1) on some bounded
interval (t0, tf ) with the switching signal given by (10). Then for all
i = 0, 1, . . . , n

K̃f
i (x0) =

{
ξ ∈ Rn

⏐⏐⏐⏐⏐⏐
∃ a solution (x, u)
of (1) on (t0, ti+1) s.t.
x(t+0 ) = x0 ∧ x(t−i+1) = ξ

}
.

Proof. The proof is along similar lines as the proof of Lemma 20
when Cimp

i is replaced by Rn for all i ∈ {1, 2, . . . , n}. ■

It follows directly that K̃f
i (x0) is an affine shift from K̃f

i , whether
he system is impulse controllable or not. This is formalized in the
ext lemma.

emma 34. Consider the switched system (1) with switching signal
10). Then K̃f

i (x0) is an affine shift of K̃f
i , i.e. for all i there exists a

atrix M̃i such that

˜
f
i (x0) = M̃ix0 + K̃f

i . (18)

roof. Denote Yi = eA
diff
i (ti+1−ti)Πi for shorthand notation. Then

or i = 0 we have M̃0 = Y0 satisfies (18). Hence assume the
tatement holds for i. Then if we define M̃i+1 = YiM̃i for i + 1
we have that

K̃f
i+1(x0) = Yi+1K̃

f
i (x0) + Ri,

= Yi(M̃ix0 + K̃f
i ) + Ri,

= YiM̃ix0 + K̃f
i+1

= M̃i+1x0 + K̃f
i

which proves the statement. ■

Lemma 35. Consider the DAE (1) with switching signal (10). For
ny M̃i satisfying (18) we have that

min
∈K̃f

i (x0)
|x| = |Π(

K̃f
i

)⊥M̃ix0|

heorem 36. Consider the switched DAE (1) with switching signal
10). Then the system is stabilizable if and only if for any M̃n
atisfying (18)

Π(K̃f
n)⊥

M̃n∥2 = sup
x̸=0

|Π(
K̃f
n

)⊥M̃nx|
2

|x|2
< 1

roof. The proof follows the proof of Theorem 29 analogou-
ly. ■
8

As was already shown in the introduction, not every stabi-
lizable system that is also impulse-controllable, is automatically
impulse-free stabilizable. This can be explained by viewing Kf

i (x0)
and K̃f

i (x0) as affine subspaces. Note that since every state that
an be reached impulse-free from x0 is by definition also an
lement of K̃f

i (x0). This leads to the following result.

emma 37. Consider the switched system (1) with switching signal
10) and assume the system is impulse-controllable. Then
f
i (x0) ⊆ K̃f

i (x0).

Proof. This follows immediately from Lemmas 20 and 33. ■

As a consequence, we can state the following corollary.

Corollary 38. Consider the system (1) with switching signal (10)
and assume it is impulse-controllable. Then for any Mi satisfying (14)
we have

K̃f
i (x0) = Mix0 + K̃f

i ,

i.e. Mi satisfies (18).

Proof. For any two x, y ∈ K̃f
i (x0) we have that x − y ∈ K̃f

i . This
means that x = y + η̃ for some η̃ ∈ K̃f

i . By Lemma 37 we have
that y = Mix0 + η ∈ Kf

i (x0) ⊆ K̃f
i (x0). This means that for any

x ∈ K̃f
i (x0) we obtain that x = Mix0 + η + η̄ ⊆ Mix0 + K̃f

i (x0). This
proves that Kf

i (x0) ⊆ Mix0 + K̃f
i .

Consider α = Mix0 + η̃ for some η̃ ∈ K̃f
i . Then since Kf

i ⊆ K̃f
i

there exist an η̄ ∈ K̃f
i and an η ∈ Kf

i such that η̃ = η̄ + η.
Hence we obtain that α = Mix0 + η̄ + η = β + η for some
β ∈ Kf

i (x0) ⊆ K̃f
i (x0). But this means that for some M̃i satisfying

(18) and η̂ ∈ K̃f
i that α = M̃ix0 + η̂ + η. Because η̂ + η ∈ K̃f

i we
have that α ∈ K̃f

i (x0). Since α was chosen arbitrary, it follows that
Mix0 + K̃f

i ⊆ K̃f
i (x0). ■

Given that a system is impulse-controllable and stabilizable,
we have that there exists an Mi satisfying (14) and we know
that ∥Π(K̃f

n)⊥
Mn∥2 < 1. However, the system is impulse-free

stabilizable if and only if ∥Π(Kf
n)⊥

Mn∥2 < 1. This is however not
implied by the statement that ∥Π(K̃f

n)⊥
Mn∥2 < 1. Indeed, since

Kf
i ⊆ K̃f

i we have that imΠ(K̃f
n)⊥

⊆ imΠ(Kf
n)⊥

, which means that
it could happen that there exists an initial condition x0 ̸= 0 for
which
|Π(Kf

n)⊥
Mnx0|

|x0|
⩾ 1, and

|Π(K̃f
n)⊥

Mnx0|

|x0|
< 1.

Example 39. Again consider the example given in the intro-
duction on the interval (0, tf ) with a switch at t = t1. The
matrices (E0, A0, B0) correspond the system matrices given in (2)
and (E1, A1, B1) are the system matrices given in (3). Then it
follows from the algorithm (17) that the reachable space of the
switched system K̃f

1, a suitable matrix M̃1 and Π(K̃f
1)

⊥ are given
espectively by

K̃f
1 = span

{[
0
0
1
0
0

]}

M̃1 =

[
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

]
, Π

(K̃f
1)

⊥ =

[
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1

]
.

From which it follows that ∥Π(K̃f
1)

⊥M̃1∥ =
1

√
2

< 1 and hence the
system is stabilizable. However, the impulse-free reachable space
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f
1 can be calculated from (13) and is given by

f
1 = 0, Π(K̃f

1)
⊥ = I, M1 =

[
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 1 0 0

]
= Π(Kf

1)
⊥M1

From which it follows that ∥Π(K̃f
1)

⊥M̃1∥ =

√
2

√
2

= 1 and hence the
ystem is not impulse-free stabilizable.

emark 40. In the case V0 becomes a control input after the
witch the system would be null-controllable, but not impulse-
ree null-controllable. Furthermore, since the state of the ini-
ial condition can be reduced via an impulse-free trajectory, the
ystem would also become impulse-free (interval) stabilizable.
owever, since there is no way of discharging the capacitor, it
ollows that there exists no input such that limt→∞ x(t) = 0.

Remark 41. All the results on stabilizability in this paper can
be applied to switched ordinary differential equations (ODEs)
without difficulty. In the case of a switched ODE we have Ei = I ,

i = I , Bdiff
i = Bi and Adiff

i = Ai. Note that all solutions are trivially
mpulse-free, hence, impulse-free stabilizability is equivalent to
tabilizability.

. Conclusion

In this paper stabilization of switched differential algebraic
quations was considered, where Dirac impulses in both the input
nd state-trajectory were to be avoided. Necessary and sufficient
onditions for the existence of impulse-free solutions were given,
ollowed by characterizations of (impulse-free) interval stabiliz-
bility. The results rely on the fact that the points that can be
eached from an initial condition form an affine subspace. It
ollowed that the system is (impulse-free) interval stabilizable if
nd only if the operator that maps the initial condition to the
lement of minimal norm (that can be reached in an impulse-free
anner) has a norm strictly smaller than one.
A natural future direction of research would be the investiga-

ion of controllers achieving interval stabilizability for switched
ystems. The theory established in this paper could be used as
tarting point in the search (for feedback) controllers. Further-
ore, a natural extension would be to consider stabilizability
roperties of switched systems with unknown switching signals.
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ppendix

Here we recap some general results on (affine) subspaces that
esult from linear algebra.

roposition 42. Let V and S be subspaces of Rn and let M ∈ Rn×n

be of rank r ⩽ n. If (Mx0 + S) ∩ V ̸= ∅ for all x0 ∈ Rn, then there
exists a matrix N ∈ Rn×n such that for all x0

(Mx0 + S) ∩ V = NMx0 + S ∩ V. (19)
9

Proof. Let m1,m2, . . . ,mp be a basis for the image of M . Then the
statement is proven if we can prove that

(mi + S) ∩ V = Nmi + S ∩ V, ∀i ∈ {1, 2, . . . , p}

Since we have that (mi + S)∩ V ̸= ∅ we have that for all i we
have that there exists an ηi ∈ S such that mi + ηi ∈ V . Let N̂ be a
linear map such that

N̂mi = ηi.

Then if we define N = I + N̂ we have that

Nmi = mi + N̂mi,

= mi + ηi,

∈ V ∩ (mi + S)

Since subspaces are closed under addition, it follows that for all
η̄ ∈ S ∩ V ⊆ V we have that

Nmi + η̄ = mi + ηi + η̄ ∈ V.

and

mi + ηi + η̄ = mi + η̂ ∈ mi + S,

for some ηi + η̄ = η̂ ∈ S , which proves that there exists an N
such that Nmi + S ∩ V ⊆ (mi + S) ∩ V .

Conversely, we have for ξ ∈ (mi + S) ∩ V and for some β ∈ S
that ξ = mi + β ∈ V . Let β = N̂mi + γ , for some γ ∈ S. Then we
obtain

mi + β = mi + N̂mi + γ ,

= Nmi + γ ,

= ξ ∈ (mi + S) ∩ V.

It remains to prove that γ ∈ S ∩V . Since Nmi ∈ (mi +S)∩V ⊆ V
by definition, we have that ξ − Nmi = γ ∈ V . Furthermore, by
definition, we had γ ∈ S and hence γ ∈ S ∩ V . Hence we have
proven that (mi + S) ∩ V ⊆ Nmi + S ∩ V . With the inclusion in
both direction proven, the equality follows. ■

It follows from Proposition 42 that if the intersection (Mx0 +

S)∩V ̸= ∅ for all x0, that this matrix N is not unique. In fact, this
observation results in the next lemma.

Lemma 43. With the same notation as in Proposition 42 we have
that N ∈ Rn×n satisfies (19) if and only if

1. im(N − I)M ⊆ S ,
2. imNM ⊆ V ,

Proof. Assume that N satisfies im(N−I) ⊆ S and imNY ⊆ V . This
means that im(N− I)Y ⊆ S. Hence NMx0 ∈ S+Mx0. Furthermore,
by assumption we had that NMx0 ∈ imN ⊆ V and hence NMx0 ∈

(Mx0+S)∩V . Hence it follows that NMx0+S∩V ⊆ (Mx0+S)∩V .
On the otherhand, let ξ ∈ (Mx0 + S) ∩ V . Then ξ = Mx0 + η

for some η ∈ S and ξ ∈ V . Since NMx0 ∈ V we have that
NMx0 − ξ ∈ V . From which it follows that (N − I)Mx0 ∈ V and
also (N − I)Mx0 ∈ S. Thus we have that NMx0 − ξ ∈ S ∩ V . From
this it follows that ξ ∈ NMx0 + S ∩ V and thus it is proven that
under the assumptions (14) holds.

Next assume that (14) holds. Then it follows that

NMx0 ∈ (Mx0 + S) ∩ V + S ∩ V
= (Mx0 + S) ∩ V.

Since this holds for all x0 it follows that imNM ⊆ V . Furthermore,
it follows that NMx0 ∈ Yx0 + S , from which it follows that
(N − I)Mx0 ∈ S for all x0, and thus im(N − I)M ⊆ S. Which
proves the result. ■
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Given the subspaces V , S and the matrix M , a matrix N satisfy-
ng the conditions of Lemma 43 can constructively be computed.

emma 44. Let ΠV and ΠS be projectors onto V and S respec-
ively. For any Q that solves

I − ΠS )ΠVQM = (I − ΠS )M

he matrix N = ΠVQ solves (19).

roof. Since imN ⊆ imΠV = V the condition imNM ⊆ V is
atisfied. Furthermore, we have that

m(N − I)M = im(ΠVQ − I)M,

= im(ΠS + (I − ΠS ))(ΠVQ − I)M
⊆ S + im(I − ΠS )(ΠVQ − I)M,

= S + im ((I − ΠS )M − (I − ΠS )M) = S

Hence N satisfies the conditions of Lemma 43, which proves the
result. ■
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