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Abstract: We propose a model reduction approach for singular linear switched systems in
discrete time with a fixed mode sequence based on a balanced truncation reduction method
for linear time-varying discrete-time systems. The key idea is to use the one-step map to find
an equivalent time-varying system with an identical input-output behavior, and then adapt
available balance truncation methods for (discrete) time-varying systems. The proposed method
is illustrated with a low-dimensional academic example.
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1. INTRODUCTION

In this paper we consider singular linear switched systems
(SLSSs) in discrete time of the form

S� :

(
E�(k)x(k + 1) = A�(k)x(k) +B�(k)u(k),

y(k) = C�(k)x(k), k 2 N, (1)

where x(k) 2 Rn is the state at time k 2 N and � : N !
Q = {0, 1, 2, · · · , m}, m 2 N, is the switching signal with
the switching times 0 < s1 < s2 < · · · < sm in the
bounded interval [k0, kf ) := {k0, k0 + 1, . . . , kf � 1} of
interest. The system matrices are Ei, Ai 2 Rn⇥n, Bi 2
Rn⇥m, Ci 2 Rp⇥n, where i 2 Q. The matrices Ei are in
general singular, which is related to the presence of (mode-
dependent) algebraic constraints. We assume that the i-th
mode is active in the interval [si, si+1), for i = 0, 1, · · · , m
(where s0 := 0) and define the duration of the i-th mode
as ⌧i = si+1 � si. Since we will be interested in the input-
output behavior of S� we assume in the following that
x(0) = 0.

Control problems governed by SLSSs arise in a variety of
practical applications including circuit simulation, compu-
tational electromagnetics, fluid dynamics, mechanical and
chemical engineering; see Luenberger (1977); Xia et al.
(2008). In some cases, these systems lead to analyzing
large-scale and complex dynamical systems. Although,
the computational speed and performance of the modern
computers are increasing; simulation, optimization or real
time controller design for such large-scale systems are still
di�cult due to extra memory requirements and additional
computational complexity. Model order reduction (MOR)
is a useful tool for dealing with such complexity, wherein
one seeks a simpler model that can then be used as an
e�cient surrogate model to the original model. There are
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already some existing results on MOR for switched ODEs,
see e.g. Schulze and Unger (2018); Gosea et al. (2020)
for continuous time case, and Baştuğ et al. (2016, 2014);
Shaker and Wisniewski (2012); Birouche et al. (2012) for
discrete time case. However, in contrast to the existing
literature, we view here the SLSS (1) as a time-varying
linear systems, in particular, the reduction in general de-
pends on the specifically given switching signal and results
in a time-varying reduced model.

The remaining paper is structured as follows. We discuss
the problem formulation and some preliminaries for singu-
lar system in Section 2. Section 3 provides the computation
procedure of time-varying balanced realization in discrete
time. In Section 4, we present time-varying balanced trun-
cation method for SLSS. Finally, some numerical results
are presented in Section 5.

2. PRELIMINARIES AND PROBLEM STATEMENT

In this section, it is shown that the solutions of a SLSS
can equivalently be expressed in terms of a time-varying
system. For the existence and uniqueness of solutions of
SLSSs the following assumption is needed.

Assumption 1. The SLSS (1) is jointly index-1, i.e.

Si � kerEj = Rn, 8i, j 2 Q,

where Si = A�1
i (imEi). ⇧

Under the jointly index-1 assumption, the solution of SLSS
(1) with x(0) = 0 exists. This solution is unique and
satisfies the following lemma.

Lemma 1. (Cf. Anh et al. (2019)) Assume the SLSS (1)
is jointly index-1. For a given switching signal �, there
exist corresponding matrices eAk, eBk and eFk, such that all
solutions of (1) with x(0) = 0 satisfy

x(k + 1) = eAkx(k) + eBku(k) + eFku(k + 1), k 2 N. (2)
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Proof. Let �(�1) := �(0) and, for k 2 N,

eAk := V�(k)


Ā1

�(k),�(k�1) 0
�Ā2

�(k+1),�(k)Ā
1
�(k),�(k�1) 0

�
V �1
�(k�1), (3a)

eBk := V�(k)


B̄1

�(k),�(k�1)

�Ā2
�(k+1),�(k)B̄

1
�(k),�(k�1)

�
, (3b)

eFk := V�(k)


0

�B̄2
�(k+1),�(k)

�
, (3c)

where

Ā1

i,j 0
�Ā2

i,j In2

�
= V �1

i G�1
i,j AiVj ,


B̄1

i,j

B̄2
i,j

�
= V �1

i G�1
i,j Bi,

Gi,j = Ei +AiQi,j , Qi,j = Vj


0 0
0 In2

�
V �1
i ,

Vi = [g1i , ..., g
n1
i , hn1+1

i , ..., hn
i ], g

1
i , ..., g

n1
i are the bases of

Si, and hn1+1
i , ..., hn

i are the bases of kerEi. The remaining
proof is similar to the proof of (Anh et al., 2019, Thm. 5.1)
and therefore omitted. ⌅
Remark 2. The one-step map from x(k) to x(k + 1) de-
pends on the modes at time k � 1, k and k + 1. This
concludes that the allowed space of consistent initial values
also depends on the choice of �(�1), here we assume
that �(�1) = �(0). As pointed out in (Anh et al., 2019,
Rem. 5.2), the e↵ect of a di↵erent choice �(�1) is not yet
fully understood, and is still under investigation; neverthe-
less, since we restrict our attention to the initial condition
x(0) = 0, this is of no further concern to us here.

Motivated by Lemma 1, we consider the following time-
varying surrogate system for (1) with given switching
signal �:

eS� :

(
x(k + 1) = eAkx(k) +

⇥ eBk
eFk

⇤
eu(k),

y(k) = Ckx(k), k 2 N,
(4)

where x(0) = 0, eu(k) =
h

u(k)
u(k+1)

i
, Ck := C�(k) and

eAk, eBk, eFk are given by (3). Writing ũ =
⇥

I
T1

⇤
u, where

T1{u}(k) := u(k + 1) denotes the time-shift operator,
by Lemma 1, (1) and (4) have the same input-output
behaviour.

Note that the solution of jointly index-1 SLSS (1) does
not exist for any initial value x(0) 2 Rn. In fact, the
consistency space of jointly index-1 (1), under the assump-

tion �(�1) = �(0), is imV�(0)

h
I 0

�bA2
�(0),�(0)

bB2
�(0),�(0)

i
. This

has some implications on the relationship between system
S� and eS� in terms of observability and reachability.
Here, observability means that if the input and output are
identically zero on [k0, kf ) also the state has to be zero;
reachability means, that for each xf 2 Rn, there exists an
input such that the corresponding solution satisfies x(kf �
1) = xf . Clearly, a reachable SLSS S� implies a reachable

time varying surrogate system eS� whereas an observable
SLSS S� does not imply that its surrogate system eS� is
observable. However, an observable eS� implies that S� is
also observable.

Our goal is to find for the time-varying system (4) a
reduced size time-varying system

bS� :

(
bx(k + 1) = bAkbx(k) + [ bBk bFk ]

h
u(k)

u(k+1)

i
,

by(k) = bCkbx(k), k 2 N.
(5)

with reduced system matrices bAi 2 Rr⇥r, bBi, bFi 2 Rr⇥m,
bCi 2 Rp⇥r and r ⌧ n, such that by ⇡ y for a large class
of inputs u. Due to the input-output equivalence between
(1) and (4), the reduced system (5) will then also be good
surrogate model for the original SLSS.

3. TIME-VARYING BALANCED REALIZATIONS

3.1 Time-varying Gramians

Consider a time-varying discrete time system of the form

x(k + 1) = Akx(k) +Bku(k), k 2 [k0, kf )
y(k) = Ckx(k).

(6)

Definition 3. The time-varying reachability and observ-
ability Gramians of (6) are defined recursively as

P (k) = Ak�1P (k � 1)A>
k�1 +Bk�1B

>
k�1, (7)

Q(k) = A>
k Q(k + 1)Ak + C>

k Ck, (8)

with some positive semi-definite initial/final values P (k0) =
P0 and Q(kf ) = Qf

Note that the reachability Gramian is constructed forward
in time, while the observability Gramians evolves backward
in time.

Remark 4. The choice of the initial/final Gramians is
crucial in the sense that they play an important role for
the magnitude of all other subsequent Gramians. At this
moment the best choice of the initial/final Gramians is
not clear. In the context of time-varying case, two versions
can be proposed for the initial/final Gramians. One choice
could be to assume that the first mode is active in the
past, i.e. (�1, k0], and the Gramians of the first mode is
considered as the initial reachability Gramian. Similarly,
by assuming that the last mode will be active in the future,
i.e. [kf ,1), and the Gramian of the last is considered
as the final value for observability Gramian. However,
in this choice, the computation of infinite Gramians is
only possible for stable modes; here, we do not assume
stability of each mode. On the other hand, a second choice
could be the identity matrix which would not a↵ect the
direction of the states which are di�cult to control and
di�cult to observe. By scaling the identity matrix with
a smaller magnitude, one can restrict the influence of
these artificial initial/final Gramians relatively to the time-
varying Gramians and also for the bounded time-varying
coordinate transformation matrices.

Note that, P (k) and Q(k) are both symmetric and pos-
itive semidefinite for all k 2 [k0, kf ] if P0 and Qf are
positive definite. It is assumed that the input-output bal-
ancing with respect to the reachability and observability
Gramians is defined over specific time intervals. Hence, no
assumption is needed with regard to the stability of the
system.

Applying any time-varying coordinate transformation

x(k) = T (k)x(k)

to (6) results in an equivalent system
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x(k + 1) = Akx(k) +Bku(k)

y(k) = Ckx(k),

with Ak := T (k+1)�1AkT (k), Bk := T (k+1)�1Bk, Ck :=
CkT (k). It is easily seen, the corresponding Gramians
satisfy

P (k) = T (k)�1P (k)T (k)�>,

Q(k) = T (k)>Q(k)T (k),

if the initial/final values satisfy P 0 = T (0)�1P0T (0)�>

and Qf = T (kf )>QfT (kf ). In particular,

P (k)Q(k) = T (k)�1P (k)Q(k)T (k).

This shows that, under such transformation, the eigenval-
ues of the product of Gramians are invariant.

The key idea of balanced truncation is to find a coordinate
transformation such that the corresponding Gramians be-
come equal and diagonal. How to achieve such a balancing
transformation is given in the following lemma.

Lemma 5. Assume that Gramiens P (k) and Q(k) of the
time-varying system (6) are nonsingular on [k0, kf ). Then,
there exists a transformation T : [k0, kf ] ! Rn⇥n such
that

T (k)�1P (k)T (k)�> = T (k)>Q(k)T (k) = ⌅(k), (9)

for all k 2 [k0, kf ] and ⌅(k) = {⇠1(k), . . . , ⇠n(k)} is a
diagonal matrix. In fact, the transformation matrices are
given by

T (k) = R(k)U(k)⌅(k)�1/2,

T (k)�1 = ⌅(k)�1/2V (k)>L(k)>,

where U(k)⌅(k)V (k)> is the singular value decomposi-
tion of R(k)>L(k), and where R(k)R(k)> = P (k) and
L(k)L(k)> = Q(k) are the Cholesky decompositions of P
and Q, respectively.

Proof. The proof is similar to the proof of (Hossain and
Trenn, 2020, Lemma 11) and therefore omitted. ⌅

4. MODEL REDUCTION

We now combine the above results to propose a model
reduction method for SLSS (1) based on balanced trun-
cation. By Assumption 1, we can instead consider system
(4) and we can construct the corresponding time-varying
reachability/observability Gramians eP (k) and eQ(k) for
( eAk, [ eBk, eFk], eCk) for some initial/final Gramians eP0, eQf .
Now an assumption is needed for model reduction meth-
ods.

Assumption 2. Assume a transformation eT such that the
balanced Gramians are obtained by

eT (k)�1 eP (k) eT (k)�> = eT (k)> eQ(k) eT (k) = e⌅(k)

and let, the (uniformly) partitioned form e⌅(k) =
hb⌅(k) 0

0 ⌅(k)

i
,

where all diagonal entries in ⌅(k) are significantly smaller
than those in b⌅(k). ⇧
With the Assumption 2, the singular value decomposition
is then given by

eR(k)>eL(k) =
⇥ bU(k) U(k)

⇤ b⌅(k) 0
0 ⌅(k)

� ⇥bV (k) V (k)
⇤>

where eR(k) eR(k)> = eP (k) and eL(k)eL(k)> = eQ(k) are
obtained by a Cholesky decomposition. According to this
splitting, let eT (k) = [b⇧R(k), ⇤] and eT (k)�1 = [b⇧L(k), ⇤]>,
and define

bAk := b⇧L(k + 1) eAk
b⇧R(k),⇥ bBk

bFk

⇤
:= b⇧L(k + 1)

⇥ eBk
eFk

⇤
,

bCk := eCk
b⇧R(k),

which results in our proposed reduced system (5), where
the left- and right-projectors are calculated as

b⇧R(k) := eR(k)bU(k)b⌅(k)�1/2 2 Rn⇥r,

b⇧L(k) := b⌅(k)�1/2 bV (k)>eL(k)> 2 Rr⇥n.

5. NUMERICAL RESULTS

This section illustrates the proposed method by providing
an example.

Example 6. Consider a SLSS with two modes

(E0, A0, B0, C0)=

 
1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 0

�
,


1 0 0 0
1 0 1 0
1 1 1 0
0 0 0 1

�
,


0.02
2
1
0.2

�
,

�0.1
0.1
0.1
2

�>!
,

(E1, A1, B1, C1) =

✓
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

�
,


1 0 0 0
0 1 1 0
1 0 1 0
0 0 0 1

�
,


0.01
2
0.5
0.1

�
, C0

◆
,

Consider a switching signal � : [0, 9) ! {0, 1},

�(k) =

⇢
0 : k 2 [0, 4) [ [7, 9),
1 : k 2 [4, 7).

It can easily be verified that the pairs (E0, A0) and
(E1, A1) are jointly index-1. Hence, by Lemma 1, the time-
varying system (4) is obtained with the following system
matrices

( eAk, eBk) =

8
>><

>>:

✓
1 0 0 0
0 0 1 0
1 1 1 0
0 0 0 0

�
,


0.02
1.98
1
0

�◆
: k = 0, 1, 2, 3, 7, 8,

✓
1 0 0 0
0 1 1 0
1 0 1 0
0 0 0 0

�
,


0.01
2
0.5
0

�◆
: k = 4, 5, 6,

eFk =

8
>><

>>:


0
0
0

�0.2

�
: k = 0, 1, 2, 6, 7, 8,


0
0
0

�0.1

�
: k = 3, 4, 5.

The corresponding reachability and observability Grami-
ans are calculated respectively, eP (k) and eQ(k) for k 2
[0, 9) with initial/final values eP0 = 0.002I and eQf =
0.002I. The corresponding HSVs are depicted in Figure 1
and it is apparent that the last two HSVs are significantly
smaller than the first two. Hence, a two dimensional re-
duced system is obtained which approximates the time-
varying system (4) and hence, the original SLSS.

The computed two dimensional reduced systems at each
time steps are given by ( bAk, [ bBk, bFk], bCk) =

⇣⇥
0.9206 �0.0051
�0.0107 0.0012

⇤ ⇥�1.8615 0.0046
�0.0535 0.6305

⇤ ⇥�0.1410
�0.6334

⇤>⌘
,

⇣⇥
0.9761 �0.0071
�0.0058 �0.0076

⇤ ⇥�1.0832 0.0074
�0.0603 0.6287

⇤ ⇥�0.2387
�0.6332

⇤>⌘
,

⇣⇥
0.9887 �0.0116
�0.0027 �0.0071

⇤ ⇥�0.7265 0.0117
�0.0445 0.8861

⇤ ⇥�0.3859
�0.4449

⇤>⌘
,
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⇣⇥
1.1336 �0.0155
�0.4762 �0.0398

⇤ ⇥�0.3934 0.0143
�0.0311 0.4016

⇤ ⇥�0.7193
�0.4515

⇤>⌘
,

⇣⇥
0.9856 �0.0335
�0.0019 0.1912

⇤ ⇥�0.2249 0.0206
�0.0536 0.4158

⇤ ⇥�1.0114
�0.4262

⇤>⌘
,

⇣⇥
0.9719 �0.0475
�0.0036 0.0701

⇤ ⇥�0.1850 0.0286
�0.0047 0.2986

⇤ ⇥�1.3323
�0.5423

⇤>⌘
,

⇣⇥
0.8014 �0.0770
�0.8119 0.0689

⇤ ⇥�0.1249 0.0523
0.1196 �0.5938

⇤ ⇥�1.4777
0.5432

⇤>⌘
,

⇣⇥
0.9471 0.0834
�0.0047 0.0125

⇤ ⇥�0.1026 0.1118
�0.0261 0.4245

⇤ ⇥�2.8391
�0.1943

⇤>⌘
.

1 2 3 4 5 6 7 8
0

1

2

3

4

Fig. 1. Hankel singular values of balanced Gramians at
each time instance.

Consider randomly generated input u(·) with u(0) =
0, and the input-output behavior is calculated for the
system (4) and its reduced system with relative errors.
Figure 2 displays the output, the input signal, and the
relative error for the original system and the proposed two
dimensional reduced system. Clearly, both outputs match
nicely and the relative error is less then 6%.

1 2 3 4 5 6 7 8

0

2

4

6

Original system

Reduced system

1 2 3 4 5 6 7 8
-1

0

1

2

1 2 3 4 5 6 7 8
0

0.05 Relative error

Fig. 2. Outputs and the relative error of the original
system (4) and the proposed 2nd order approximation.

Next, another initial /final value of the Gramians is
considered by increasing the magnitudes as eP0 = 0.5I
and eQf = 0.5I. With the same input sequence as in
Figure 2, the input-output behavior with the relative error
is depicted in Figure 3, which shows that the choice of the
initial /final values of Gramians plays an important role in
the error analysis. Therefore, it is concluded that taking
small magnitude with identity matrix could be the best
choice for the initial /final values of the Gramians.

1 2 3 4 5 6 7 8

0

2

4

6

Original system

Reduced system

1 2 3 4 5 6 7 8
-1

0

1

2

1 2 3 4 5 6 7 8
0

0.5

1

Relative error

Fig. 3. Outputs and relative errors of the original sys-
tem (4) and the proposed 2nd order approximation
with initial/final values eP0 = 0.5I, eQf = 0.5I.

6. CONCLUSION

In this paper, we have presented a time-varying approach
for proposing a reduced system for singular linear switched
systems. The key novelty is the viewpoint of the SLSS
as a piecewise-constant time-varying system. At first, we
have focused on input-extended time-varying ODEs, which
gives identical input-output behavior as the original index-
1 SLSSs. Then, by applying the well known time-varying
balanced truncation method for the discrete time case, we
find a good approximation of the time-varying system.
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