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Abstract: It is well known that for switched systems the overall dynamics can be unstable
despite stability of all individual modes. We show that this phenomenon can indeed occur for a
linearized DAE model of power grids. By making certain topological assumptions on the power
grid, we can ensure stability under arbitrary switching for the linearized DAE model.
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1. INTRODUCTION

In the precursor (Gross et al., 2016) to this work we have
discussed properties of a (linearized) differential-algebraic
equation (DAE) model of power grids. We were able to
show that the resulting DAE is regular, of index one
and also stable (i.e. all solutions remain bounded). The
presence of line failures or disconnection of generators can
mathematically be modelled in the framework of switched
DAEs (Trenn, 2012). It is well known, that switching
between stable systems can lead to an overall unstable
behavior (Liberzon, 2003). It is therefore of interest to
study the stability properties of power DAE models in the
presence of switching.

There is a large amount of literature concerning the
stability of power systems, however, we are not aware of
any references studying the destabilizing effects induced
by structural changes within the modelling framework of
switched DAEs. Hence, we see our main contribution of
this note to demonstrate the possible destabilizing effect
of sudden structural changes even in very simple linearized
models. We derive a topological condition which prevents
this destabilizing effect; however, this is just a first step
for many further important studies. For example, it may
be of interest to study the stability properties for a more
realistic class of switching signals (e.g. with (average) dwell
time conditions) or for more detailed power grid models
(including e.g. nonlinear effects).

This paper is structured as follows. We will first present
a simple example of a power system which exhibits an
unstable behavior under a specific switching signal. After-
wards we present the general power system DAE model
from Gross et al. (2016) and recall some basic facts from
the theory of switched DAEs. In Section 5 we present
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sufficient conditions in terms of the power grid topology
which guarantees stability under arbitrary switching.

2. UNSTABLE POWER GRID EXAMPLE

We will illustrate the potential destabilizing effect of
structural changes in power grid modes via a simple power
grid with two generators as shown in Figure 1.
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Fig. 1. A simple power grid with two generators. The red
line will be subject to sudden changes in the line
parameter.

This power grid will be modelled with a linear switched
DAE, where each mode is a linear DAE of the form
Eẋ = Ax + Bu; in the next section we will derive this
model for general power grids, the specific parameters are
given in the Appendix. Stability in this context means,
that the difference between two solutions for the same
input remains bounded (and in particular impulse free),
see the formal definition in Section 4.

The structural change occurs in the form of an abrupt
parameter change in the line between busses one and four
(the susceptance of the line is three orders of magnitude
larger in mode two than in mode one).

The simulation shows clearly an unstable behavior, see
Figure 2(a) for a plot of the first component of the state
vector.

We were able to achieve a destabilizing effect with a
periodic switching signal, where the dwell time for each
mode is chosen to be the inverse of the dominant natural
frequency of the systems 1 , i.e. with dwell times τ1 =
11.3 ≈ 1/(0.08838) and τ2 = 9.8 ≈ 1/(0.101633), see
Figure 2(b).

1 We have not investigated so far, whether this choice always leads
to a worst case behavior; this is a possible topic for future research.
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(a) Evolution of x1 in time.
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(b) Destabilizing switching signal.

Fig. 2. Illustration of destabilizing effect of switching.

3. DAE MODEL OF POWER SYSTEMS

As in (Gross et al., 2016), we consider a power grid
consisting of ng ∈ N generators (connected to ng gen-
erator busses) and nb ∈ N additional busses (which are
not directly connected to a generator). The dynamical
behaviour of the i-th generator is modelled as ηi ∈ N
coupled rotating masses (the turbines) given by the linear
differential-equation

α̇i(t) = ωi(t),

M iω̇i(t) = −Diωi(t)−Kiαi(t) + P ig(t)− P ie(t),

where αi = (αi1, . . . , α
i
ηi) and ωi = (ωi1, . . . , ω

i
ηi) are

the angles and the (relative) angular velocities of the
ηi rotating masses, P ig is the vector of generator power

acting on the turbines and P ie = (0, . . . , 0, pie) is the
electrical power acting on the last rotating mass (the
actual generator). The diagonal matrix M i contains the
(positive) moments of inertia of the rotating masses;
the tridiagonal, symmetric, positive definite matrix Di

contains the friction coefficients and Ki is a tridiagonal,
symmetric, positive semidefinite matrix containing the
spring constants of the shafts connecting the rotating
masses (and is zero if ηi = 1), for details see Gross et al.
(2016).

The electrical interconnections of the generators with the
power grid are represented by constant-voltage-behind-
transient-reactance models (see e.g. Kimbark (1948); Kun-
dur (1994); Machowski et al. (2008)); in particular, under
the assumption that the difference αiηi − θi between gen-
erator angle and bus voltage angle is small, the electrical
power pie is approximately given by (cf. Pasqualetti et al.
(2011); Gross et al. (2014))

pie(t) =
1

zi
(αiηi(t)− θi(t)),

where zi > 0 is the transient reactance of the generator.

The transmission lines are described by the Π-model (see
e.g. Elgerd (1982); Kundur (1994)); it is assumed that the
conductance between the busses is negligible and that the
difference of the bus voltage angles is small, then the power
flow equations can be linearized as follows (Gross et al.,
2014), i = 1, . . . , ng + nb,

pi(t) =

ng+nb∑
j=1

bij(θ
i(t)− θj(t))− pie(t)

where pi(t) is the active power infeed (usually negative) at
the i-bus, bij = bji ≥ 0 is the susceptance between bus i
and j and pie = 0 for i > ng. Note that [bij ]i,j=1,...,ng+nb
is the (weighted) adjacency matrix of the coupling graph
of the power grid. Let L ∈ R(ng+nb)×(ng+nb) be the
corresponding (weighted) Laplacian matrix of the graph,
i.e. L = [`ij ] with

`ii =

ng+nb∑
j=1

bij , ∀i,

`ij = −bij , ∀i 6= j.

The overall DAE describing the power grid is now given
by

Eẋ = Ax+Bu, (1)

where, for nη =
∑ng
i=1 ηi, x = (α>, ω>, θ>)> ∈

Rnη+nη+(ng+nb), u = (P>g , P
>)> ∈ Rnη+(n+m) with α,

ω, θ, P g, P being each composed from αi, ωi, θi, P ig, p
i;

E =

[
Inη 0 0
0 M 0
0 0 0

]
, B =

 0 0
Inη 0
0 Ing+nb

 ,
A =

 0 Inη 0
−K −HZ−1H> −D [HZ−1 0 ][

Z−1H>

0

]
0 −L−

[
Z−1 0
0 0

]
 ,

with M , D, K, Z being (block) diagonal matrices com-
posed from M i, Di, Ki, zi and

H =

 H
1

...
Hng

 , Hi =

[
0(ηi−1)×ng

e>i

]
with ei ∈ Rn being the i-th unit vector.

In the context of switching, each of the possible q ∈ N
operation modes is given by a DAE of the form (1) with
matrices (E1, A1, B1), . . . , (Eq, Aq, Bq). Here we restrict
our attention to the case that the switches are induced by
changes in the line parameters, i.e. the changes occur only
in the Laplacian matrix L, i.e.

E1 = . . . = Eq =: E, B1 = . . . = Bq =: B

and, for q = 1, . . . , q,

Aq =

 0 Inη 0
−K −HZ−1H> −D [HZ−1 0 ][

Z−1H>

0

]
0 −Lq −

[
Z−1 0
0 0

]
 ,

where L1, . . . ,Lq are the Laplacian matrices of the differ-
ent couplings.

4. SWITCHED DAES

A switched differential-algebraic equation (DAE) is a time-
varying, linear, implicit differential equation of the form

Eσ(t)ẋ = Aσ(t)x+Bσ(t)u (2)

where σ : R → Σ := {1, 2, . . . , q} is the switching signal
choosing at each time which of the q ∈ N modes is active
and, for q ∈ Σ, Eq, Aq ∈ Rn×n, Bq ∈ Rn×m. We assume
that σ is piecewise constant and right continuous and has



only finitely many jumps in each finite interval (no Zeno-
behavior); the matrix pairs (Eq, Aq) are each assumed to
be regular, i.e. for each q ∈ Σ the polynomial det(sEq−Aq)
is not identically zero. A very important characterization
for regularity which goes back to Weierstraß (1868) is given
by the following well known result:

Lemma 1. A matrix pair (E,A) ∈ Rn×n×Rn×n is regular
if, and only if, there exist invertible matrices S, T ∈ Rn×n
such that (E,A) is equivalent to a quasi-Weierstrass form
(QWF):

(SET, SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
, (3)

where N ∈ RnN×nN is nilpotent and J ∈ RnJ×nJ with
nN + nJ = n. �

Note that we do not consider the Weierstrass canonical
form, because in the QWF the matrices N and J are not
assumed to be in Jordan canonical form. An easy way to
obtain the QWF is via the Wong sequences (Wong, 1974),
for details see Berger et al. (2012). In particular, the limit
V of the first Wong sequence is exactly the subspace of
consistent initial values:

V = { x0 ∈ Rn | ∃ solution of Eẋ = Ax, x(0) = x0 } .

The index of (E,A) (or the corresponding DAE) is defined
to be the nilpotency index of N in the QWF. In case (E,A)
has the special structure (semi-explicit form)

(E,A) =

([
E1 0
0 0

]
,

[
A1 A2

A3 A4

])
, (4)

with E1 being invertible, it is easily seen, that (E,A) is
regular if, and only if, [A3, A4] has full row rank; if this is
the case, then (E,A) is of index one if, and only if, A4 is
invertible. In fact, if A4 is invertible, one obtains the QWF
(3) (with N = 0 and J = E−11 (A1 −A2A

−1
4 A3)) via

S =

[
E−11 −E−11 A2A

−1
4

0 A−14

]
, T =

[
I 0

−A−14 A3 I

]
. (5)

In general, existence and uniqueness of solution of the
switched DAE (2) is guaranteed provided all matrix pairs
(Ep, Ap) are regular; however, solutions have to be con-
sidered in a certain distributional solution framework
(Trenn, 2012). In particular, solutions of (2) will be dis-
continuous and may even contain derivatives of jumps
(Dirac impulses). If the solutions do not contain Dirac
impulses (impulse-freeness), then one can interpret the
distributional solutions again as piecewise-smooth func-
tions (right-continuous) and we will simply write x(t) or
x(t−) for the evaluation of x at time t (or t−, i.e. the
left limit) although, formally, the evaluation of a general
distribution at some specific point in time is not well
defined. Independently of the index, the unique jump in
the solution of (2) with u ≡ 0 is given by

x(t) = Πσ(t)x(t−)

where Πq ∈ Rn×n is the consistency projector of mode q,
given by

Πq = T q
[
I 0
0 0

]
(T q)−1,

where the block sizes correspond to the block sizes in the
QWF of (Eq, Aq) obtained by some invertible matrices
Sq, T q.

We will now introduce the following stability notion for
(2):

Definition 2. The regular switched DAE (2) (for given
switching signal) is called stable iff 1) all solutions are
impulse-free 2 and 2) for all ε > 0 there exists δ > 0 such
that all solutions x1, x2 for the same input u satisfy the
following implication:

‖x1(0−)− x2(0−)‖ ≤ δ =⇒ |x1(t)− x2(t)| ≤ ε.

Due to linearity, it suffices to consider u = 0 and x2 = 0;
furthermore, it is easily seen that stability is equivalent to
boundedness of all solutions. �
In contrast to Liberzon and Trenn (2012) we do not
consider asymptotic stability, because, as was shown in
Gross et al. (2016), the power grid DAE models considered
here are only stable and not asymptotically stable. We will
now give a sufficient condition for stability of the switched
DAE (2) in terms of (multiple) Lyapunov functions:

Theorem 3. Consider the regular switched DAE (2) with
corresponding consistency spaces V q and consistency pro-
jectors Πq, q ∈ Σ. If

I all solutions are impulse-free;
II for each q ∈ Σ, there exist a symmetric P q ∈ Rn×n

such that V q(x) := x>(Eq)>P qEqx is positive def-

inite on the consistency space V q and V̇ q(x) :=
x>
(
(Aq)>P qEq + (Eq)>P qAq

)
x is negative semi-

definite on V q;
III for all p, q ∈ Σ the Lyapunov-functions are not

increasing at switches, i.e.

V q(Πqx) ≤ V p(x) ∀x ∈ V p,

then (2) is stable for any switching signal.

Proof. The proof is a straightforward adaption of the
proof in Liberzon and Trenn (2012), where the stronger
case of asymptotic stability was considered. 2

Remark 4. Existence of a Lyapunov function as in as-
sumption II of Theorem 3 for a regular matrix pair
(E,A) is equivalent with stability of the unswitched DAE
Eẋ = Ax, in fact, stability of the latter is equivalent with
solvability of the generalized Lyapunov equation

A>PE + E>PA = −Q (6)

for some symmetric matrices P,Q ∈ Rn×n being posi-
tive semidefinite on V , c.f. Liberzon and Trenn (2012,
Rem. 2.8). However, in contrast to ODEs, not for all Q
the equation (6) has a solution P . If the regular matrix
pair (E,A) has index one (or two) then stability actually
is equivalent to solvability of

A>PE + E>PA = −E>QE, (7)

for details see Groß (2016, Thm. 5.4.2) (which is a slight
modification of Stykel (2002, Thm. 4.8) to the non-
asymptotic case). �
Remark 5. For a regular, index-one matrix pair (E,A) in
semi-explicit form (4) the consistency projector is given by

Π =

[
I 0

−A−14 A3 0

]
.

Furthermore, for any function V : Rn → R given by
V (x) = x>E>PEx it is easily seen that

V (Πx) = x>1 E
>
1 P1E

>
1 x1 = V (x),

2 but jumps are still allowed



where P =
[
P1 P2

P3 P4

]
and x = (x>1 , x

>
2 )> with partitions

corresponding to the block sizes in (4). Consequently,
for index-one switched systems in semi-explicit form and
parameter changes only in the A-matrix, Theorem 3 yields
that the existence of a common Lyapunov function is
sufficient to ensure stability under arbitrary switching (in
general, a common Lyapunov Function is not sufficient
to guarantee stability under arbitrary switching, see e.g.
Liberzon and Trenn (2009, Ex. 1)). �

5. STABILITY OF SWITCHED POWER SYSTEMS

We have seen that in general switching may result in an
overall unstable behavior; however, under certain restric-
tions on the topology of the power grid as well as on the
allowed topological changes stability may be preserved un-
der switching. A key lemma to formulate such a topological
restriction is the following.

Lemma 6. Consider a matrix pair (E,A) with the follow-
ing structure:

(E,A) =

([
E1 0 0
0 0 0
0 0 0

]
,

[
A1 A2 0
A3 −L1 +A4 −L2

0 −L3 −L4

])
with E1 ∈ Rn1×n1 , n1 ∈ N, invertible, A1 ∈ Rn1×n1 ,
A2, A

>
3 ∈ Rn1×n21 , n21 ∈ N, A4 ∈ Rn21×n21 , and L :=[

L1 L2

L3 L4

]
∈ Rn2×n2 , n2 > n21, is a (weighted) Laplacian

matrix of some (undirected) graph with n2 nodes. Assume
that

(1) (E,A) is regular, stable and index one;
(2) rankL3 = 1.

Then there is a Lyapunov function for Eẋ = Ax which is
also valid for any regularity preserving topological change
in L4. In particular, there is a common Lyapunov function
for the corresponding switched systems where parameter
changes only occur in L4.

Proof. According to Remark 4, stability of (E,A) with
index-one guarantees existence of a Lyapunov function
V (x) = x>E>PEx where P is a symmetric positive
semidefinite solution of (7) for some positive semidefinite
Q. We will now show that the possible choices for P are
independent of the entries in L4, which then proves the
claim of the lemma. For that, we consider a partition of P
according to the partition of E and A, i.e.

P =

[
P11 P12 P13

P21 P22 P23

P31 P32 P33

]
.

Evaluating (7) also blockwise we see that only the follow-
ing two block equations depend on L4:

−L3P21E1 − L4P31E1 = 0,

−E>1 P12L2 − E>1 P13L4 = 0.

Due to symmetry of L and P , both are equivalent and can
be rewritten as (invoking invertibility of E1):

im

[
P21

P31

]
⊆ ker[L3 L4].

Due to regularity, [L3 L3] has full row rank n22 := n2−n21,
hence dim ker[L3 L4] = n2−n22 = n21. For any Laplacian
matrix L we have (1, . . . , 1)> ∈ kerL ⊆ ker[L3 L4] and

since rankL3 = 1 by assumption we additionally have
dim kerL3 = n21 − 1. Altogether this yields

ker[L3 L4] =

(
kerL3

{0}

)
⊕ im

(
1
...
1

)
,

which shows that ker[L3 L4] is independent of the specific
entries in L4 and, therefore, the solution of (7) is indepen-
dent of L4. 2

The result of Lemma 6 can now be utilized to give
a topological condition on a power grid which ensures
stability under arbitrary switching. Therefore, we will
make the following topological assumptions on the power
grid network.

Assumptions
Consider an electrical grid as in Section 3 with a corre-
sponding coupling graph G = (V,E). Assume that

V = Vg ·∪Vc ·∪Vl

such that

(i) Vg are the nodes corresponding to the generator
busses (in particular, |Vg| = ng);

(ii) there are no edges betweens nodes in Vg and nodes
in Vl;

(iii) all nodes in Vg are connected with all nodes in Vc;
(iv) the weights of the edges between Vg and Vc are such

that the corresponding submatrix of the Laplacian
has rank one 3 ;

(v) topological changes (addition/removal of edges or
sudden change of the weight) are allowed in all edges
between nodes in Vc ·∪ Vl as long as the resulting
graph remains connected. �

Note that Assumption (iv) already “implies” Assump-
tion (iii), because assuming that a node in Vc is not
connected to all generators implies (due to the rank-one
assumption) that it cannot be connected to any generator,
hence this node should be in the set Vl.

As an example consider a power grid with underlying
graph as shown in Figure 3.

G G

Vg 1 2

Vc 3 4

Vl 5 6 7

Fig. 3. A simple power grid satisfying Assumptions (i)-(v).

The corresponding Laplacian has the following structure

L =

[
L1 L2

L3 L4

]
=



∗ 0 `13 `14 0 0 0
0 ∗ `23 `23 0 0 0
`13 `23 ∗ 0 `35 `36 0
`14 `24 0 ∗ 0 0 `47
0 0 `35 0 ∗ `56 `57
0 0 `36 0 `56 ∗ `67
0 0 0 `47 `57 `67 ∗


3 In particular, this is the case if either A) for each generator bus
all adjacent edges have the same weight or B) for each node in Vc

all adjacent edges have the same weight.



and Assumptions (i)-(v) are satisfied if, and only if, only
the entries in L4 (highlighted in blue) are subject to

changes and the matrix
[
`13 `23
`14 `24

]
only contains positive

entries and has rank one.

Theorem 7. Consider a switched power grid model sat-
isfying Assumptions (i)-(v). Then it remains stable for
arbitrary switching signals.

Proof. Since each mode by assumption has a connected
coupling graph, Gross et al. (2016, Thms. 3.2,4.3,5.3) have
shown that each mode is regular, index-one and stable.
The topological assumptions ensure that all parameter
changes only occur in L4 and also that L3 has rank one,
hence all requirements of Lemma 6 are satisfied and there
exist a common Lyapunov-Function V . Now Remark 5
concludes the proof. 2

Consider again the example from Section 2. The conditions
from Theorem 7 are not satisfied, because the switches
occur for a power line directly connected to a generator bus
and, furthermore, the susceptances for the lines connected
to the generator buses are not identical (i.e. the rank-
one-assumption from Lemma 6 is not satisfied); therefore,
stability for arbitrary switching cannot be guaranteed and
indeed instability occurs as shown with the simulations in
Section 2.
However setting the susceptance between bus 1 and 4 to
the value 5 and switching the line between bus 3 and 4, the
assumptions of Theorems 7 are satisfied with Vg = {1, 2},
Vc = {3, 4}, Vl = ∅ and for Case B in the footnote
of Assumption (iv). Therefore, stability is guaranteed for
arbitrary switching.

Already for this 8×8 example it is not possible to obtain a
common Lyapunov function via the standard LMI-Toolbox
(Gahinet et al., 1994). However, based on the QWF (3)
obtained via (5) one can easily find Y = Y > > 0, such
that Y J + J>Y ≤ 0, e.g.,

Y ≈

 14225.38 −14225.20 10.67275 4.24986
−14225.20 14225.38 7.75326 14.17615
10.67275 7.75326 17006.95 8477.417
4.24986 14.17615 8477.417 17006.93

 .
It is now possible to construct a Lyapunov function for the
original system with the help of Y via

V (x) :=

[
x1
x2

]>
E>S>

[
Y 0
0 0

]
SE

[
x1
x2

]
> 0 ∀x1 6= 0, (8)

Then the symmetric matrices, i = 1, 2,

Π>
(
E>S>

[
Y 0
0 0

]
SAi + (Ai)>S>

[
Y 0
0 0

]
SE

)
Π (9)

corresponding to the derivates along solutions have nega-
tive or (numerically) zero eigenvalues. In view of Remark 5
we can therefore conclude directly with the help of a
common Lyapunov function that the switched system is
stable under arbitrary switching.

6. CONCLUSION

We have studied the stability property of a simple, lin-
earized model of a power grid which is subject to sudden
structural changes. Surprisingly, the switching itself may
result in an unstable behavior although each configuration
exhibits stable dynamics. At the moment this is just a

theoretical observation and it remains a topic for future re-
search whether this phenomena really plays an important
role in real world power grids. In particular, unbounded
trajectories in response to switching indicates that our
model introduces energy into the system when a topologi-
cal change occurs; whether this is physically justified needs
to be clarified in the future.

We provide topological assumptions on the power grid
which prevents instability due to switching. These assump-
tions in particular require that certain line parameters
satisfy a rank-one assumption; an intuitive interpretation
of this rank-one assumption in terms of the physical prop-
erties of the power grid is still an open question.

Appendix A. PARAMETERS OF SIMPLE POWER
GRID EXAMPLE

For the simulation of the example in Section 2 we used
DAE descriptions given by the matrix pairs (E,A1),
(E,A2) ∈ R8×8 × R8×8 as in Section 3 with the following
parameters

( η1η2 ) = ( 1
1 ) , M = [ 1 0

0 1 ] , Z = [ 0.1 0
0 0.1 ] , D = [ 0.01 0

0 0.01 ] ,

and, for mode 1,

L1 =


−0.01 0 0.005 0.005

0 −5.005 0.005 5
0.005 0.005 −0.02 0.01

0.005 5 0.01 −5.015

 (A.1)

and, for mode 2,

L2 =


−2.005 0 0.005 2

0 −5.005 0.005 5
0.005 0.005 −0.02 0.01

2 5 0.01 −7.01

 . (A.2)

The dashed boxes in (A.1) and (A.2) highlight the changes
in the system matrices induced by the susceptance change
in the line between bus one and four. As (consistent) initial
value we choose

x0 := [0 1 0 0 0 0 0 0]
>
.

For the illustration of the destabilizing effect of switching
it suffices (due to linearity) to consider the system with
zero input.

REFERENCES

Berger, T., Ilchmann, A., and Trenn, S. (2012). The
quasi-Weierstraß form for regular matrix pencils. Linear
Algebra Appl., 436(10), 4052–4069. doi:10.1016/j.laa.
2009.12.036.

Elgerd, O.I. (1982). Electric Energy Systems Theory: An
Introduction. McGraw-Hill, New York.

Gahinet, P., Nemirovskii, A., Laub, A.J., and Chilali, M.
(1994). The LMI control toolbox. In Proc. 33rd IEEE
Conf. Decis. Control, volume 3, 2038–2041. doi:10.1109/
CDC.1994.411440.

Groß, T.B. (2016). DAE-Modellierung und mathema-
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