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Abstract— The dilemma between transient behavior and
accuracy in tracking control arises in both theoretical research
and engineering practice and funnel control has shown great
potential in solving that problem. Apart from the controlled
system, the performance of funnel control strongly depends
on the reference signal and the choice of prescribed funnel
boundary. In this paper, we will present a new form of funnel
controller for systems with control saturation. Compared to
former research, the new controller is more reliable, and
the closed-loop system can even achieve asymptotic tracking.
Besides that, a new concept called constrained funnel bound-
ary is introduced. Together with the new controller and the
constrained funnel boundary, the application range of funnel
control is extended significantly.

I. INTRODUCTION

The study of adaptive control which do not require ac-
curate identification goes back to the early 1980s [1], [2].
For the stabilization of the output y of a nonlinear system a
classical adaptive control strategy takes the form

u(t) = −k(t)y(t),

with a time-varying gain given by k̇(t) = y(t)2, k(0) = k0 >
0. In the context of tracking of a given reference signal r,
the adaptive controller above can be modified into

u(t) = −k(t)e(t), (1)
where e(t) = y(t)−r(t) denotes the tracking error. Similarly,
the adaptive gain in tracking control can be written as
k̇(t) = e(t)2. The study of these control strategies (and
their variants) can be found in [3]–[5], and a good survey
of this field is shown in [6]. Nevertheless, the application of
this control strategy is still limited: the adaptive gain k(t) is
non-decreasing; and the transient behavior of the closed-loop
system is not addressed.

These above limitations are resolved with the so-called
funnel controller which was proposed by Ilchmann et al. [7].
The principle of funnel control is: with a high-gain property
of the nonlinear system, a large value of the time-varying
k(t) in the control law (1) is able to drive the tracking error
e(t) towards zero arbitrarily fast, and furthermore k(t) is
only large if needed, resulting in a non-monotonic gain. In
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fact, the time-varying gain in funnel control is

k(t) = K
(
e(t), t

)
=

1

ψ(t)− |e(t)|
, (2)

where ψ(t) denotes the funnel boundary, which can be
interpreted as a strict time-varying error bound. Under certain
feasibility assumptions the funnel controller (1)+(2) ensures
that the error evolves within the funnel, i.e.

|e(t)| < ψ(t) ∀t ≥ 0.

The study of funnel controller has been flourishing over
the last two decades. Funnel controller was successfully
extended to work for system with relative degree two [8] and
for system with known strict relative degree [9]. A bang-bang
funnel controller for nonlinear system with arbitrary relative
degree was proposed in [10]. Related to adaptive high-gain
observer, a funnel pre-compensator was designed in [11].
Some applications of funnel control can be found in [8],
[12], [13].

An important limitation in many practical stabilization and
tracking problems are input saturations as shown in Figure 1.
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Fig. 1. Closed loop with input saturations u < 0 < u.

Funnel control with input saturation was first studied in
[14] for chemcial reactor models and more general in [15] for
single-input single-output (SISO) nonlinear system with rela-
tive degree one and in [16] for linear multiple-input multiple-
output (MIMO) systems. For synchronous machines, PI-
funnel controller with input saturation is considered in [17].
For unknown input saturation some results are obtained in
[18].

To our best knowledge, all current funnel controllers for
input saturation system contain control scheme (2) as the
adaptive component. Or even one can say that most funnel
controllers contain equation (2) in their controller structures
[7]–[9], [19]. But when the control input is saturated, one
need to make strict assumptions for the saturation value to
guarantee |e(t)| < ψ(t). Otherwise the entire closed-loop
system collapses.



Compared to the above pioneering contributions, and
partly inspired by [20], we will introduce a new funnel
control approach for relative degree one systems with control
input saturation. The main contributions of this paper are:
1) a novel ratio based funnel controller design, and 2) the
introduction of a new concept named constrained funnel
boundary. With these two tools, the application range of
funnel control can be extended significantly. Not only can the
new funnel control approach increase the robustness property
of closed-loop system, but we can also show that funnel
control can achieve asymptotic tracking in the presence of
input saturations.

After the initial submission of this manuscript we became
aware of [21] which also considers input saturation and an
“outer funnel”, however, the control law is rather different
and a detailed comparison is a topic of future research.

II. PROBLEM SETTING

A. System class

Consider the following nonlinear system
ẏ=f

(
pf , y, z

)
+g
(
pg, y, z

)
·sat[u,u](u), y(0)=y0, (3a)

ż=h
(
ph, y, z

)
, z(0)=z0, (3b)

where y : R≥0 → R denotes the system’s output, u :
R≥0 → R is the control input and z : R≥0 → Rn−1
is the internal state of order n − 1 ∈ N. The functions
f, g: Rd × R × Rn−1 → R and h: Rd × R × Rn−1 →
Rn−1 are assumed to be locally Lipschitz continuous and
pf , pg, ph : R≥0 → Rd are locally integrable perturbations
(and/or unknown d-dimensional, time-varying paramters).
The following additional assumptions are made for (3):

A1 g(pg, y, z) > 0 for all pg , y and z.
A2 BIBO-stability of zero-dynamics: for all bounded and

continuous ph, y the solutions of (3b) satisfy
‖z(t)‖ ≤ bz

(
‖ph[0,t)‖∞, ‖y[0,t)‖∞, ‖z(0)‖

)
,

for some continuous function bz . Furthermore, assume
z0 ∈ Z0 for some bounded Z0 ⊂ Rn−1.

A3 The perturbations pf , pg and ph are bounded by pmax
f ,

pmax
g , pmax

h , respectively.

The main idea of funnel control is to establish an output
feedback control rule such that the tracking error e(t) =
y(t) − r(t) evolves within prescribed funnel boundaries
ψ−(t) and ψ+(t), see Figure 2. Correspondingly, the time-
varying region for tracking error is given by
Fψ−,ψ+ :=

{
(t, e) ∈ R≥0 × R

∣∣ ψ−(t) ≤ e ≤ ψ+(t)
}

(4)

The following assumptions are made for the funnel bound-
aries and the reference signal.

A4 ψ+ : R≥0 → R>0, ψ− : R≥0 → R<0 are continuously
differentiable, bounded and with bounded derivative.

A5 Reference signal r : R≥0 → R is continuously
differentiable, bounded with bounded derivative.

A6 Initial error: e(0) := y0 − r(0) ∈ (ψ−(0), ψ+(0)).

t

ψ−(t)

ψ+(t)

e(t)

Fig. 2. Prescribed funnel boundary

B. Traditional funnel control

Classical funnel controllers [7]–[9], [11], [12], [15]–[19]
have the form

u(t) = −K
(
e(t), t

)
· e(t),

in which K is a positive adaptive gain which ensures that
the tracking error e(t) evolves within the prescribed bound-
aries. A typical choice of adaptive rule K is shown in (2).
Inevitably, this control strategy raises two kinds of issue

i) The closed-loop system can not achieve asymptotic
tracking: ψ(t) → 0 as t → ∞ leads to K → ∞,
which is undesirable.

ii) The structure of controller (2) is quite fragile: once the
needed input value exceeds the saturation bounds and
the error leaves the funnel then the gain (2) has the
wrong sign and further destabilizes the closed loop.

III. CONTROLLER DESIGN

Partly inspired by [20], we design a new funnel control
approach for control input saturated system. This control
approach includes two parts: a ratio based funnel controller
and constrained funnel boundary. Funnel controllers for
different kinds of system will be discussed in this section.

A. Controller design for SISO system

The new funnel controller for system (3) is defined in
terms of the ratios η±(t) := e(t)/ψ±(t) and is given by

u(t) =

{
α
(
η+(t)

)
· u 0 ≤ e(t) ≤ ψ+(t)

α
(
η−(t)

)
· u ψ−(t) ≤ e(t) ≤ 0,

(5)

where
A7 α : [0, 1]→ [0, 1] is continuous, α(0) = 0, α(1) = 1.
The above mentioned shortcomings in classical funnel

control used in combination with saturated inputs can be
overcome by (5); indeed, ψ±(t) → 0 as t → ∞ doesn’t
automatically lead to infinite signals and if the saturation
is too restrictive to keep the error in the funnel, then the
definition of α according to A7 can easily be extended for
arguments larger than one with value equal to one, i.e. the
input just continues to use the maximal effort to get the
error back into the funnel (without any crossing of poles),
see Section IV for details.



In order to check the forthcoming feasibility condition,
knowledge of the following constants is required.

A8 There exists constants Ymax, Ymin, Zmax, Gmin, Fmax,
Fmin ∈ R such that

Ymax ≥ sup
t≥0

(r(t) + ψ+(t)), Ymin ≤ inf
t≥0

(r(t) + ψ−(t)),

Zmax ≥ max
‖ph‖≤pmax

h ,y∈[Ymin,Ymax],z0∈Z0

bz(‖ph‖, |y|, ‖z0‖),

0 < Gmin ≤ min
‖pg‖≤pmax

g ,y∈[Ymin,Ymax],|z|≤Zmax

g
(
pg, y, z

)
,

Fmax ≥ max
‖pf‖≤pmax

f ,y∈[Ymin,Ymax],|z|≤Zmax

f
(
pf , y, z

)
.

Fmin ≤ min
‖pf‖≤pmax

f ,y∈[Ymin,Ymax],|z|≤Zmax

f
(
pf , y, z

)
.

Theorem 1: Consider the nonlinear SISO system (3) satis-
fying assumptions A1-A3 with prescribed funnel boundaries
ψ+, ψ− and reference signal r satisfying A4-A6. The output
feedback controller (5) that satisfies A7 ensures that

ψ−(t) < e(t) < ψ+(t) ∀t ≥ 0 (6)
if the control input saturation values satisfy

u <
mint≥0

(
ψ̇+(t) + ṙ(t)

)
− Fmax

Gmin
and

u >
maxt≥0(ψ̇−(t) + ṙ(t))− Fmin

Gmin
,

(7)

where Fmax, Fmin, Gmin satisfy A8.
Proof: By continuing the definition u(t) continuously

also outside the funnel by u(t) := u and u(t) = u, resp.,
standard arguments from ODE theory, ensure that the closed-
loop system has a unique maximal solution (y, z) : [0, ω)→
R×Rn−1 for some ω > 0. Seeking a contradiction, assume
now that there is a minimal ω ∈ (0, ω) such that e(ω) =
ψ+(ω) or e(ω) = ψ−(ω).

The tracking error satisfies
ė =ẏ − ṙ

=f(pf , y, z) + g(pg, y, z) sat[u,u](u)− ṙ
(8)

By assumption e is contained within [ψ−, ψ+] and r
is bounded on [0, ω], hence y = e + r ∈ [Ymin, Ymax]
and therefore by A2 together with A8 we can conclude
that |z(t)| ≤ Zmax for all t ∈ [0, ω]. Furthermore, from
u(ω) = α(1)u = u or u(ω) = α(1)u = u together with A8
it follows from (8) that either

ė(ω) ≤ Fmax − ṙ(ω) +Gminu or
ė(ω) ≥ Fmin − ṙ(ω) +Gminu.

(9)

Plugging (7) into (9) we obtain either
ė(ω) < ψ̇+(ω) or ė(ω) > ψ̇−(ω).

This is in contradiction that the error reaches the funnel
boundary from the interior. In particular, this shows that the
funnel Fψ+,ψ− is positively invariant and finite escape time
cannot occur, i.e. ω =∞, which concludes the proof.

B. Controller design for MIMO system
Consider the following relative degree one MIMO nonlin-

ear system
ẏ(t) = F

(
pF (t), y(t), z(t), u(t)

)
, y(0) = y0, (10a)

ż(t) = H
(
ph(t), y(t), z(t)

)
, z(0) = z0, (10b)

where y : R≥0 → Rm and u : R≥0 → Rm are input and
output signals resp, for some m > 1. The control input is
assumed saturated in energy sense: ‖u‖2 ≤ û, for some û >
0. F : Rd ×Rm ×Rn−m ×Rm → Rm and H : Rd ×Rm ×
Rn−m → Rn−m are locally Lipschitz continuous functions
and pF , ph : R → Rd are locally integrable perturbations.
We make the following assumptions for (10).

B1 F is differentiable with respect to u. There exist a
continuous function γ : Rd × Rm × Rn−m → R and
α ∈ (0, 1) such that the following implication holds for
all η, η̃ ∈ Rm, µ ∈ Rd, ν ∈ Rm, ξ ∈ Rn−m, ζ ∈ Rm:
‖η‖2 ≤ 1 ∧ ‖η̃‖2 ≤ 1 ∧ η>η̃ ≥ α‖η‖22

=⇒ η>
[ ∂
∂u
F (µ, ν, ξ, ζ)

]
η̃ ≥ γ(µ, ν, ξ)‖η‖22 > 0.

B2 BIBO zero dynamics: all solutions of ż = H(ph, y, z)
satisfy the following inequality

‖z(t)‖ ≤ Bz(‖ph[0,t)‖∞, ‖y[0,t)‖∞, ‖z(0)‖)
for some continuous and bounded function Bz . Fur-
thermore, assume z0 ∈ Z0 for some bounded Z0 ∈
Rn−m.

B3 The perturbations pF , ph are bounded by pmax
F , pmax

h ,
respectively.

B4 Reference signal r : R → Rm is continuous
differentable, bounded and with bounded derivative.
There exists Cṙ > 0, such that ‖ṙ‖2 ≤ Cṙ.

The control object is to keep ‖e(t)‖2 within the funnel for
all t ≥ 0, i.e.

Fψ := { (t, e) ∈ R≥0 × Rm | ‖e‖2 ≤ ψ(t) }
Following assumptions are made for funnel boundary and

initial value.
B5 ψ: R≥0 → R>0 is bounded and Lipschitz continuous,

with Lipschitz constant Λ.
B6 Initial error e(0) := y0−r(0), and ‖e(0)‖2 ∈ [0, ψ(0)].
Let Bm≤1 := { η ∈ Rm | ‖η‖2 < 1 }, then the to SISO-

controller (5) is adjusted as follows for the MIMO case:

u(t) = −α
( e(t)
ψ(t)

)
û, ‖e(t)‖2 < ψ(t). (11)

B7 α : Bm≤1 → Bm≤1 is continuous and satisfies

η>α(η) ≥ α‖η‖22
with α ∈ (0, 1) given by B1.

Similar to the SISO case, knowledge of the following con-
stants is required to check the upcoming feasibility condition.

B8 There exists constants Ymax, Zmax, CF , Cγ > 0 such
that
Ymax ≥ sup

t≥0
‖r(t) + ψ+(t)‖,

Zmax ≥ max
‖ph‖≤pmax

h ,‖y‖≤Ymax,z0∈Z0

bz(‖ph‖, ‖y‖, ‖z0‖),

CF ≥ max
‖pF ‖≤pmax

F ,‖y‖≤Ymax,‖z‖≤Zmax

‖F (pF , y, z, 0)‖

0 < Cγ ≤ min
‖pF ‖≤pmax

F ,‖y‖≤Ymax,‖z‖≤Zmax

γ(pF , y, z)

Theorem 2: Consider the nonlinear MIMO system (10)
satisfying assumptions B1–B3 with reference signal r and
ψ satisfying B4–B6. The closed-loop system with funnel



controller (11) satisfying B7 ensures that the error evolves
within the funnel for all times, i.e. ‖e(t)‖2 < ψ(t) for all
t ≥ 0 if the saturation value satisfies

û ≥ CF + Cṙ + Λ

Cγ
. (12)

Proof: Analogously as in the proof of Theorem 1, there
exists a maximal solution (y, z) : [0, ω) → Rm × Rn−m of
the closed loop. Seeking a contradiction, assume there is
ω ∈ (0, ω) such that ‖e(ω)‖2 = ψ(ω). Then, with η := e/ψ

d
dt

(
‖e‖22

)
= 2e>ė = 2ψη>F (pF , y, z, u)− 2ψη>ṙ.

According to the Mean Value Theorem (applied to the
scalar map λ 7→ F (pF , y, z, λu)), for each, pF , y, z, u,
there exists λ ∈ (0, 1) such that

F (pF , y, z, u) = F (pF , y, z, 0) +
∂

∂u
F (pF , y, z, λu) · u.

From B7, B1 and ‖η(ω)‖2 = 1 it follows that

η(ω)>
∂

∂u
F
(
pF (ω), y(ω), z(ω), λu(ω)

)
· u(ω)

= −η(ω)>
∂

∂u
F
(
pF (ω), y(ω), z(ω), λu(ω)

)
· α(η(ω))û

≤ −γ
(
pF (ω), y(ω), z(ω)

)
· û.

Hence using the Cauchy-Schwartz-Inequality together with
B8, we obtain

d
dt (‖e(ω)‖22) ≤2ψ(ω)(CF + Cṙ − Cγ · û) (13)

From (12) it now follows that
d
dt

(
‖e(ω)‖22

)
≤ 2ψ(ω)ψ̇(tε) = d

dt (ψ(ω)2),

which implies that at (and around) t = ω the function ‖e(·)‖2
decreases faster than the funnel boundary ψ(·); this contra-
dicts the assumption that up to t = ω the error approached
the funnel boundary from the interior. In particular, this
shows that the funnel Fψ is positively invariant and hence
ω =∞ which concludes the proof.

IV. CONSTRAINED FUNNEL BOUNDARY DESIGN

Ideally, we prefer that the tracking error e(t) evolves
strictly within the prescribed funnel. However, if the satu-
ration bounds of the control input are not sufficiently large
to follow a fastly changing reference trajectory or quickly
react to a rapidly shrinking funnel then we want at least that
the error returns to the interior of the desired funnel region
as quickly as possible. Furthermore, we want to be able to
provide some outer safety region for which we can guarantee
that the error evolves within even if the desired funnel region
is left.

In the following we will focus on the SISO-case; similar
ideas will also be applicable to the MIMO case. Our ap-
proach has two main ingredients: 1) Extending the domain
of the controller definition (5) also for e /∈ [ψ−, ψ+] by
simply setting α(η) = 1 for all η > 1; 2) by defining a
constraint funnel
Fout :=

{
(t, e) ∈ R≥0 × R

∣∣ ψ−out(t) ≤ e ≤ ψ+
out(t)

}
which contains the original funnel and is the “smallest”
region which is feasible with respect to the input constraints,

see Figure 3.

t

ψ−(t)

ψ+(t)

ψ−out(t)

ψ+
out(t)

e(t)

Fig. 3. Constrained funnel boundary.

In the following we will make assumptions as before,
however, we consider a slight variation of A8 as follows

A8 There exists constants Ψmax, Ψmin, Y max, Y min,
Zmax, Gmin, Fmax, Fmin ∈ R such that
Ψmax ≥ sup

t≥0
ψ+(t), Ψmin ≤ inf

t≥0
ψ−(t),

Y max ≥ Ψmax + sup
t≥0

r(t), Y min ≤ Ψmin + inf
t≥0

r(t),

and Zmax, Gmin, Fmax, Fmin satisfy the cor-
responding inequalities from A8 where the inter-
val [Ymin, Ymax] is replaced by the larger interval
[Y min, Y max].

In order that tracking control makes sense at all under
input constraints, it is intuitively clear that the following
implications need to hold:

u(t) = u =⇒ ė(t) > 0,

u(t) = u =⇒ ė(t) < 0,

i.e. if we apply the maximal available input the output is
moving at least a little bit into the direction of the reference
signal. If only the above system constants are known it is
easily seen that this intuitive condition is satisfied if

d := Fmin +Gminu− sup
t≥0

ṙ > 0,

d := Fmax +Gminu− inf
t≥0

ṙ < 0.
(14)

In fact, it then follows that the interval [Ψmin,Ψmax] is
controlled invariant for the error signal.

Given the actual desired funnels ψ± and the feasibility
constants d < 0 < d we can now construct the constrained
funnel as follows:
ψ+

out(t) :=min
{
s ≥ ψ+(τ) + d(t− τ)

∣∣ τ ∈ [0, t]
}

ψ−out(t) :=max
{
s ≤ ψ−(τ) + d(t− τ)

∣∣ τ ∈ [0, t]
} (15)

The intuition behind this definition is, that the constrained
funnels tries to follow the desired funnel as long as possible,
but whenever the desired funnels slope is too steep, the
constrained funnel only shrinks with a rate d or d, see
Figure 4.

With very similar arguments as in the proof of Theorem 1
it can now be shown that the constrained funnel is positively



ψ+(τ) + d(t− τ)

ψ+
out

ψ+

ψ+(τ)

τ

smin = ψ+
out(t)

t

1
d

Fig. 4. Illustration of the design of ψ+
out.

invariant under the extended funnel rule (5). These observa-
tion are summarized in the following theorem.

Theorem 3: Consider nonlinear SISO system (3) with
controller (5) (defined in terms of the desired funnel bound-
aries ψ±) satisfying A1-A7 and A8 with d < 0 < d given
by (14). Then

e(t) ∈ [ψ−out, ψ
+
out],

where ψ±out are given by (15).
Remark 1: Since d < 0, d > 0, A4 indicates that

e(t) always returns the to desired funnel in finite time. In
particular, for ψ(t) → 0 as t → ∞, asymptotic tracking
remains feasible even if the error leaves the funnel.

V. SIMULATIONS

Taking the controlled system from previous research [15]
as

ẏ(t) =pf (t) + |y(t)|y(t) + z(t) + sat[−û,û]
(
u(t)

)
,

ż(t) =− z(t)− z3(t) + [1 + z2(t)]y(t),

y0 =3.4, z0 = 1,

with reference signal r(t) = ξ1(t) and perturbation pf (t) =
−ξ2(t) from the Lorenz system

ξ̇1(t) =ξ2(t)− ξ1(t),

ξ̇2(t) =
(28ξ1(t)

10

)
−
(ξ2(t)

10

)
− ξ1(t)ξ3(t),

ξ̇3(t) =ξ1(t)ξ2(t)−
(8ξ3(t)

30

)
,

ξ1(0) =1, ξ2(0) = 0, ξ3(0) = 3.

In particular, the reference signal and perturbation satisfy
‖r‖∞ ≤ 2, ‖ṙ‖∞ ≤ 1 and ‖pf‖∞ ≤ 2.4.

The saturation values for the control input are −u = u =
34. The prescribed funnel boundaries are chosen as ψ+(t) =
2.5e−20t, and ψ−(t) = −ψ+(t). The closed-loop system
adopts controller (5) with α(η) = η. To obtain a bound for
the zero-dynamics, define V (t) := z2(t)/2 for all t ∈ [0, ω),
then

V̇ (t) =− 2V (t)− z2(t) + z(t)y(t) + z3(t)y(t)

≤− 2V (t) +
y2(t)

2
+
y4(t)

4
, ∀t ∈ [0, ω).

Utilizing Gronwall’s lemma [22] it follows that

V (t) ≤ e−2tV (0) +
1

4

∫ 4

0

(
2y2(s) + y4(s)

)
e−2(t−s)ds

and hence for all t ≥ 0

|z(t)| ≤ e−t|z0|+ 1

2
√

2
ess-sups∈[0,t]

(
|y(s)|

√
2 + |y(s)|2

)
.

Consequently Fmax = 31.2 satisfies
Fmax ≥‖pf‖∞ + (‖ψ+‖∞ + ‖r‖∞)2 + ‖z0‖

+
1

2
√

2
(‖ψ+‖∞ + ‖r‖∞)

√
2 + (‖ψ+‖∞ + ‖r‖∞)2

e(0) = y0 − r(0) = 2.4. Meanwhile, F+
max + ‖ṙ‖∞ ≤

32.2 < 34 = −u. Based on (14), d = 32.2 − 34 = −1.8.
Simulations are shown in Figure 5, Figure 6 and Figure 7.
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Fig. 5. Prescribed funnel boundary and tracking error.
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Fig. 6. Control input under the saturation.
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As shown in Figure 5, tracking error is allowed to leave
the prescribed funnel boundary and the closed-loop system
achieve asymptotic tracking under the controller (5). The
tracking error returns to ψ+ at 0.06s. The chattering visible
in the control input in Figure 6 is a numerical artifact
due to the small funnel values and could be resolved by
smaller time-steps (i.e. higher sampling in applications) or
by adjusting the control law (which is ongoing research).

Then the constrained funnel boundary is given by
ψ+

out(t) = max{(e(0) + d · t), ψ+(t)}, see Figure 8.

0 0.05 0.1 0.15 0.2 0.25 0.3

Time t

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

C
on

st
ra

in
ed

 fu
nn

el
 b

ou
nd

ar
y 

an
d 

tr
ac

ki
ng

 e
rr

or

Fig. 8. Constrained funnel boundary and tracking error.

Figure 8 depicts that, even though the control input can
keep the tracking error within the prescribed funnel boundary
due to input saturation, the closed-loop system quickly
returns to the interior of the funnel and asymptotic tracking
is achieved while all closed-loop signals remain bounded.

VI. CONCLUSIONS

Compared to traditional funnel control, a new control
approach for nonlinear system with input saturation is estab-
lished in this paper. The new funnel controller adopts a ratio
form, and it appears more reliable in engineering practice by
avoiding poles when e(t) crosses ψ(t).

Furthermore, a new concept called constrained funnel
boundary is introduced and we provide a constructive method
to describe this constrained funnel in terms of the original
funnel and some system bounds. Based on this construction,
it follows that even when the error leaves the desired funnel,
the error remains in the constrained funnel and eventually
returns to the desired funnel.
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