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Abstract: Asymptotic stability of continuous-time piecewise affine systems defined over a poly-
hedral partition of the state space, with possible discontinuous vector field on the boundaries,
is considered. We first introduce the feasible Filippov solution concept by characterizing single-
mode Caratheodory, sliding mode and forward Zeno behaviors. Then, a global asymptotic
stability result through a (possibly discontinuous) piecewise Lyapunov function is presented.
The sufficient conditions are based on pointwise classifications of the trajectories which allow
the identification of crossing, unreachable and Caratheodory boundaries. It is highlighted that
the sign and jump conditions of the stability theorem can be expressed in terms of linear matrix
inequalities by particularizing to piecewise quadratic Lyapunov functions and using the cone-
copositivity approach.
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1. INTRODUCTION

Lyapunov theory has been widely used for the asymp-
totic stability analysis of continuous-time piecewise affine
(PWA) systems defined over a polyhedral partition of
the state space (Johansson, 2003; Christophersen, 2007).
When the vector fields are not continuous on the bound-
aries, which is the case considered in this paper, the stabil-
ity problem becomes more challenging due to the possible
occurrence of sliding mode and Zeno behaviors (Filippov,
1988; Imura and der Schaft, 2000). For this class of dis-
continuous systems, to find a globally quadratic Lyapunov
function is a nontrivial issue (Rodrigues and Boyd, 2005;
Sakurama and Sugie, 2005) and the existence of such a
function is not ensured either (Pavlov et al., 2007; Lin and
Antsaklis, 2009).

A possible direction for overcoming limitations of global
quadratic functions, consists of considering continuous
piecewise Lyapunov functions (Leth and Wisniewski,
2012). In particular, piecewise quadratic (PWQ) Lyapunov
functions and the S-procedure lead to stability conditions
for classical solutions which can be expressed in terms
of linear matrix inequalities (LMIs), see Waitman et al.
(2016); Iervolino et al. (2017a, 2015). In general, to have
a continuous PWQ function which is positive definite and
decreasing in time in each region it is not sufficient for
concluding the asymptotic stability of Filippov solutions
of a discontinuous PWA system. Indeed, further condi-
tions for dealing with sliding modes must be added (Jo-
hansson, 2003; Hajiahmadi et al., 2016). Other classes
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of continuous piecewise Lyapunov functions have been
considered (Samadi and Rodrigues, 2011). For instance,
a backstepping procedure for the construction of a contin-
uous Lyapunov function in the form of sum of squares for
piecewise polynomial systems with discontinuous vector
field is proposed in Samadi and Rodrigues (2014). In Dezuo
et al. (2014) continuous functions given by convex combi-
nations of quadratic forms allow to conclude the stability
of some discontinuous PWA systems with sliding modes.
The more general class of piecewise smooth Lyapunov
functions is considered in Heemels and Weiland (2008) but
the continuity on the boundaries is assumed therein too.

In this extended abstract we consider the more general
case of possibly discontinuous piecewise Lyapunov func-
tions for discontinuous PWA systems. Discontinuous PWQ
Lyapunov functions have been considered in Eghbal et al.
(2013); Cheraghi-Shami et al. (2019) for the asymptotic
stability of planar PWA systems, but the analysis was
restricted to the case of continuous vector fields. The
stability conditions proposed in Pettersson and Lennartson
(2002) allows discontinuities but the apriori knowledge of
the sequence of modes is required. In Bisoffi et al. (2018)
a discontinuous Lyapunov function designed by looking
at the system structure has been proposed for a point
mass subject to Coulomb friction in feedback with a PID
controller.

The analysis proposed here originates from the preliminary
arguments presented in Iervolino et al. (2017b) where more
restrictive classes of PWA systems and PWQ Lyapunov
functions were considered. Herein the possibly discon-
tinuous Lyapunov function does not require to have a



PWQ form, although can be particularized to that class
thus allowing the formulation of the stability conditions
in terms of LMIs through the copositive programming
approach (Sponsel et al., 2012).

This extended abstract will only contain the main ideas of
our approach without proofs and detailed discussion, the
interested reader is referred to the upcoming full version
presented in Iervolino et al. (2020).

2. PWA SYSTEM AND SOLUTION CONCEPT

We consider the PWA system

ẋ = Asx+ bs, x ∈ Xs, s ∈ Σ (1)

where As ∈ Rn×n, bs ∈ Rn and {Xs}Ss=1 is a polyhedral
partition of Rn with S ∈ N being the finite size of the
partition; let Σ := {1, . . . , S}. In particular, every Xs is a
closed convex set with positive measure resulting from the
finite intersection of (closed) half-spaces. Furthermore, we
assume that the intersection Xi∩Xj is empty or a common
face of the polyhedra Xi and Xj for all i, j ∈ Σ. Since
each Xs is a closed set, neighbouring polyhedra have a
nonempty intersection and there is some ambiguity in the
system definition on these intersections. This ambiguity
needs to be handled carefully when defining solutions and
also is crucial in the forthcoming stability analysis.

The (dynamic-independent) index set of current modes at
x ∈ Rn is defined as Σx := { s ∈ Σ | x ∈ Xs }. Note
that for those x ∈ Rn which are not on a boundary,
Σx just contains one index. For those x which are on
the boundaries, Σx contains the indices of all polyhedra
which share that point. Rewriting (2) now as a differential
inclusion in the form

ẋ ∈ { Asx+ bs | s ∈ Σx } , (2)

we introduce the following solution concept for (1).

Definition 1. (Caratheodory solution). Consider the PWA
system (1). We call ξ : [t0, T )→ Rn, t0, T ∈ R∪{∞} with
t0 < T , a Caratheodory solution of the system iff

(i) ξ is absolutely continuous and
(ii) for almost all t ∈ [t0, T ):

ξ̇(t) ∈
{
Asξ(t) + bs

∣∣∣ s ∈ Σξ(t)
}
. (3)

The set of maximal Caratheodory solutions with intitial
condition x(0) = x0 ∈ Rn is denoted by CS(x0).

There are PWA systems for which no Caratheodory solu-
tion exists (or where solution stop to exist in finite time)
for some initial value. In the context of stability analysis
this is undesirable and this problem can be circumvented
by “convexifying” the problem and consider Filippov so-
lutions:

Definition 2. (Filippov solution). We call ξ : [t0, T ) →
Rn, t0, T ∈ R ∪ {∞} with t0 < T , a Filippov solution
of the PWA system (2) iff

(i) ξ is absolutely continuous and
(ii) for almost all t ∈ [t0, T ):

ξ̇(t) ∈ conv
{
Asξ(t) + bs

∣∣∣ s ∈ Σξ(t)
}
. (4)

The set of maximal Filippov solutions with intitial condi-
tion x(0) = x0 ∈ Rn is denoted by FS(x0).

Definition 3. (Sliding solution). A Filippov solution ξ :
[t0, T ) → Rn is called sliding solution iff it is not a
Caratheodory solution on any subinterval of [t0, T ) and

there exists an index set Σ
ξ(·)
slide ⊆ Σ such that Σ

ξ(·)
slide = Σξ(t)

for all t ∈ (t0, T ), ξ̇(t) ∈ conv
{
Asξ(t) + bs

∣∣∣ s ∈ Σ
ξ(·)
slide

}
for almost all t ∈ [t0, T ).

Clearly, a Caratheodory solution is a Filippov solution,
but a sliding solution is not a Caratheodory solution.

The more general class of Filippov solutions allows
FS(x0) 6= ∅ for all initial values x0 ∈ Rn and it can also
be shown that all Filippov solutions of (2) exists glob-
ally. However, the convexification of the vector fields even
on boundaries where already Caratheodory solution ex-
ists may introduce “unnecessary” sliding solutions. These
unnecessary sliding solutions are usually not physically
feasible, because they cannot be obtained as a limit of
a chattering solution (obtained by introducing a small
dwell time) and they also lead to conservative stability
conditions. Therefore, we want to restrict our attention to
feasible Filippov solutions defined as follows.

Definition 4. (Feasible Filippov solutions). A sliding solu-
tion ξ : [t0, T ) → Rn of (2) is said to exhibit unnecessary
sliding iff CS(ξ(t)) 6= ∅ for some t ∈ (t0, T ), i.e. iff some-
where along the trajectory it is possible to continue the tra-
jectory with a Caratheodory solution instead of a sliding
solution. We now call a Filippov solution ξ : [t0, T )→ Rn
feasible iff there is no subinterval on which ξ is unnecessar-
ily sliding. Or, in other words, a Filippov solution is called
infeasible iff it contains unnecessary sliding.

Let the set of all (maximal) feasible solutions starting in
x0 ∈ Rn be denoted by:

FSf (x0) := { ξ ∈ FS(x0) | ξ is feasible } .

We will now make certain assumptions on the (Filippov)
solution behavior of the PWA system (2). We believe that
all PWA systems of the form (2) satisfy these assumptions,
however, as of now, we are not able to formally prove these
properties.

Assumptions.

(A1) The PWA system (2) has for all initial values global
feasible Filippov solutions.

(A2) Let ξ : [0,∞) → Rn be any Filippov solution of the
PWA system (2). Then for all t ≥ 0 there is an ε > 0
such that exactly one of the three cases holds:
1) ξ

∣∣
[t,t+ε)

is a single-mode Caratheodory solution.

2) ξ
∣∣
[t,t+ε)

is a sliding solution.

3) ξ
∣∣
[t,t+ε)

is a forward Zeno solution, i.e. it is

neither a single-mode Caratheodory nor a sliding
solution and there exists a sequence of positive
and strictly decreasing numbers (εk)k∈N with
ε0 = ε, εk → 0 as k → ∞ and for each k ∈ N
the piece ξ|[t+εk+1,t+εk) is either a single-mode
Caratheodory or sliding solution.

3. POINTWISE MODE CLASSIFICATIONS

In addition to the current modes Σx of a point x ∈ Rn it is
useful for the forthcoming stability analysis to introduce



also backward and forward modes. Towards this end we
first introduce the set of forward and backward feasible
Filippov solutions as follows:

FSf+(x0) :=

{
ξ : [0,∞)→ Rn

∣∣∣∣∣ ξ is a feasible
Filippov sol. of (2)
with ξ(0) = x0

}
,

FSf−(x0) :=

ξ : [−ω, 0)→Rn

∣∣∣∣∣∣∣
ξ is a feasible
Filippov sol. of (2)
with ξ(0−) = x0
and maximal ω > 0

 .

Definition 5. (Forward and strict forward mode). We call
s ∈ Σ a forward mode for x with respect to the PWA

system (2) if there exists a solution ξ ∈ FSf+(x) such
that ξ(t) ∈ Xs for infinitely many small t > 0, or, more
formally, the set of all forward modes for x is

Σx+ :=
⋃

ξ∈FSf
+
(x)

⋂
ε>0

⋃
τ∈(0,ε)

Σξ(τ).

We call s ∈ Σ a strict forward mode for x ∈ Rn if there
exists a single-mode Caratheodory solution ξ : [0, ε)→ Rn,
ε > 0, such that ξ(t) ∈ intXs for all t ∈ (0, ε); the set of
all strict forward modes for x is denoted by Σx++.

Definition 6. (Backward and strict backward mode). We
call s ∈ Σ a backward mode of x with respect to the PWA

system (2) if there exists a solution ξ ∈ FSf−(x) such
that ξ(−t) ∈ Xs for infinitely many small t > 0, or, more
formally, the set of all backwards modes for x is

Σx− :=
⋃

ξ∈FSf
−(x)

⋂
ε>0

⋃
τ∈(0,ε)

Σξ(−τ).

A mode s ∈ Σ is a strict backward mode for x if it is
a strict forward mode for the time-reversed PWA system
(2), i.e. if there exists a single-mode Caratheodory solution
ξ : (−ε, 0] → Rn, ε > 0 with ξ(t) ∈ intXs for all
t ∈ (−ε, 0); the set of all strict backward modes for x
is denoted by Σx−−.

Definition 7. (Sliding mode). We call s ∈ Σ a sliding
mode for x ∈ Rn with respect to the PWA system (2) if
there is a (feasible) sliding solution ξ : [t0, T ) → Rn with

ξ(t0) = x and s ∈ Σ
ξ(·)
slide, with Σ

ξ(·)
slide as in Definition 3.

It is clear, that strict forward/backward modes are always
forward/backward modes, i.e. Σx++ ⊆ Σx+ and Σx−− ⊆ Σx−.
Furthermore, if some point x ∈ Rn is not reachable via a

feasible Filippov solution (i.e. FSf−(x) = ∅) then there are
no backwards mode for x, i.e. Σx− = ∅.

4. STABILITY AND PIECEWISE LYAPUNOV
FUNCTIONS

We will now study stability of the PWA system (2) with
(feasible) Filippov solutions.

Definition 8. The PWA (2) is called stable iff

(S1) FSf+(x0) 6= ∅ for all x0 ∈ Rn and all (feasible
Filippov) solutions are defined on [0,∞).

(S2) The origin is stable, i.e. for all ε > 0 there exists δ > 0

such that for all solutions ξ ∈ FSf+(x0) the following
implication holds:

‖ξ(0)‖ < δ =⇒ ‖ξ(t)‖ < ε ∀t ≥ 0.

It is called globally asymptotically stable if additionally the
origin is globally attractive, i.e.

(S3) ξ(t) → 0 as t → ∞ for all ξ ∈ FSf+(x0) and all
x0 ∈ Rn.

Our goal is to prove stability of the PWA system (2) via
a piecewisely defined Lyapunov function. For this we first
define “local” Lyaypunov functions.

Definition 9. (Local Lyapunov function). Consider the sys-
tem (2). We call Vs : Rn → R a local Lyapunov function
for mode s ∈ Σ iff

(L1) Vs is continuous on Rn and continuously differentiable
on Xs.

(L2) Vs is positive definite on Xs, i.e. Vs(x) > 0 for all
x ∈ Xs \ {0} and if 0 ∈ Xs then Vs(0) = 0.

(L3) Vs is radially unbounded in the following sense:

∀v ∈ Vs(Xs) ⊆ Rn : V −1s ([0, v]) ∩Xs is compact,

(L4) Vs is decreasing along “classical” solutions within Xs

in the following sense

∇Vs(x)(Asx+ bs) < 0 ∀x ∈ Xs \ {0},

The challenge is to formulate suitable compatibility con-
ditions for this Lyapunov function on the boundaries.
The simplest case (but also most restrictive case) is the
assumption that there is a common Lyapunov function for
all modes, then stability is obviously guaranteed. It is com-
mon to assume continuity of the local Lyapunov functions
across the boundaries, then asymptotic stability is guar-
anteed if no sliding and no Zeno-behavior occur. However,
requiring continuity is neither necessary nor sufficient for
proving stability; for the latter see e.g. Example 4.9 in
Johansson (2003).

Our main result will not impose continuity of the local
Lyapunov functions across the boundaries, but we will now
present weaker suitable compatibility conditions which, if
satisfied, ensure stability of the PWA system (2) with
feasible Filippov solutions; including sliding and Zeno
behaviors as well as non-unique solutions.

Theorem 10. Consider the PWA system (2) satisfying
Assumptions (A1) and (A2). Assume that for each mode
s ∈ Σ there is a local Lyapunov-function Vs : Rn → R
as in Definition 9. Furthermore, assume that the different
Lyapunov functions are compatible in the following sense:

(B1) ∀x ∈ Rn ∀(i, j) ∈ Σx− × Σx+ : Vi(x) ≥ Vj(x).
(B2) ∃µ > 0 ∀x ∈ Rn with Σxslide 6= ∅ ∃ix ∈ Σxslide :

∇Vix(x)(Ajx+ bj) ≤ −µ‖x‖ ∀j ∈ Σxslide. (5)

Then (2) is globally asymptotically stable.

Remarks 11. (i) Conditions (B1) and (B2) are trivially
satisfied for all x in the interior of some Xs, hence it
needs only to be checked for points x on the bound-
aries. Furthermore, (B1) is also trivially satisfied for
those x with Σx− = ∅.

(ii) We do not explicitly require equality of the Lyapunov
function values at sliding points. However, for a
sliding solution ξ : [0, ω) → Rn it turns out that for

almost all t ∈ [0, ω) the equality Σ
ξ(t)
− = Σ

ξ(t)
+ holds;

consequently, (B1) implicitly implies equality of the
Lyapunov function values.



(iii) Condition (B2) is satisfied if the in general stronger
conditions ∇Vi(x) = ∇Vj(x) for all i, j ∈ Σxslide holds.
Note that, similar as in Johansson (2003), we are not
requiring (5) to hold for all pairs (i, j) ∈ Σxslide×Σxslide,
this is in contrast to other recent approaches, see
e.g. Hajiahmadi et al. (2016).

(iv) It is straightforward to extend Definition 8 to PWA
systems (2) with general Filippov solutions (i.e. not
restricting the solution space to feasible Filippov
solutions). Then Assumption (A1) can be dropped in
the formulation of Theorem 10. However, in that case
Σx− will never be empty, so that jump condition (B1)
have to be satisfied on all boundaries; in particular,
for “splitting” boundaries an “unnecessary” sliding
can occur, which in turn enforces an “unnecessary”
continuity requirement of the Lyapunov function on
that boundary. N

5. PIECEWISE-QUADRATIC LYAPUNOV
FUNCTIONS AND LMIS

We now assume that the sets Σx+, Σx− and Σxslide are
constant on (the relative interior of) each boundary XB :=⋂
s∈BXs, B ⊆ Σ and that the local Lyapunov functions

have the form

Vs(x) = x>Psx+ 2ν>s x+ ωs (6)

with Ps ∈ Rn×n symmetric matrix, νs ∈ Rn, ωs ∈ R.
It is then possible to utilize the cone-copositive approach
(Sponsel et al., 2012) to express the conditions in Defini-
tion 9 and Theorem 10 in terms of LMIs, which are less
conservative than the ones obtained for other approaches.
A solution of this set of LMIs will then provide a, in general
discontinuous, PWQ Lyapynov function which guarantees
asymptotic stability of the PWA system (2) in the presence
of (feasible) sliding and Zeno solutions. For details we refer
to the full paper Iervolino et al. (2020).

The number of LMIs is governed by the number of regions
(two sets of LMIs for each local Lyapunov equation)
together with the number of nonempty boundaries XB
(one LMI for each such boundary). Note that in our
approach also boundaries of dimension smaller than n− 1
have to be considered, so that in high dimensional spaces
one can easily run into a combinatorical explosion for
the number of boundaries and the standard LMIs-solvers
(like e.g. Matlab) will not be usuable anymore due to the
large number of LMIs. Nevertheless for moderately sized
examples (n = 2 and S = 5) we had no trouble finding a
solution.
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