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Abstract— We study switched singular systems in discrete
time and first highlight that in contrast to continuous time
regularity of the corresponding matrix pairs is not sufficient
to ensure a solution behavior which is causal with respect to
the switching signal. With a suitable index-1 assumption for
the whole switched system, we are able to define a one-step-
map which can be used to provide explicit solution formulas
for general switching signals.

I. INTRODUCTION

We consider switched singular systems (SwSS) in discrete
time of the form

Eσ(k)x(k + 1) = Aσ(k)x(k) +Bσ(k)u(k), k ∈ N, (1)

where σ : N → {1, 2, . . . , n} is the switching signal
determining at each time k ∈ N which of the n ∈ N
system modes is active, x(k) ∈ Rn, n ∈ N, is the state
and u(k) ∈ Rm, m ∈ N, is the input at time k. The
different modes of the switched systems are described by
the matrices E1, E2, . . . , En, A1, A2, . . . , An ∈ Rn×n and
B1, B2, . . . , Bn ∈ Rn×m. SwSS of the form (1) are a special
case of time-varying singular systems where only finitely
many different matrix triples (Ek, Ak, Bk) describe the dy-
namics. The introduction of a switching signal is motivated
by the situation that mode changes are induced by relatively
rare events, e.g. faults or event triggered control actions.
In case all matrices Ek are invertible, then premultiplying
(1) from the left with E−1

σ(k) leads to an equivalent switched
system of the form

x(k + 1) = Aσ(k)x(k) +Bσ(k)u(k)

for which existence and uniqueness of solutions is well
established. Singular coefficients Ek naturally occur when
modeling dynamical processes subject to algebraic con-
straints, see e.g. [15].

For continuous time systems the solution theory of
switched singular systems is well established [23], in par-
ticular, if considered in an appropriate distributional solution
space, existence and uniqueness of solutions for all switching
signals is guaranteed if, and only if, all matrix pairs (Ek, Ak)
are regular (see the forthcoming Definition 2.1). Two impor-
tant properties in the continuous time case are: 1) causality of
the solutions with respect to the switching signal, i.e. a future
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change in the switching signal will not change the solution
at the current time and 2) uniqueness of solutions for given
switching signal and given initial value. The following ex-
ample shows that this is not the case anymore in the discrete
time, which indicates that a straightforward generalization
from the continuous time case to the discrete time case is
not possible (note that this non-causality and non-uniqueness
even occurs for “well-behaved” matrix pairs; indeed, the
matrix pairs in the following example are regular and not
of higher index, see Section II for a formal definition).

Example 1.1: Consider the SwSS (1) with n = 2 modes
and

E1 =

[
1 0
0 0

]
, E2 =

[
0 0
0 1

]
,

A1 = A2 =

[
1 0
0 1

]
, B1 = B2 = 0.

For the constant switching signals σ1 ≡ 1 and σ2 ≡ 2 the
solutions are then given by x(k) =

(
x1
0

0

)
and x(k) =

(
0
x2
0

)
,

respectively, for all k ∈ N and some x1
0, x

2
0 ∈ R; in particular,

the initial value uniquely determines the solutions. We now
consider the switched system (1) with a switching signal with
one switch at time ks > 0, e.g. σ = σ12, where

σ12(k) =

{
1, k < ks

2, k ≥ ks.

The corresponding SwSS (1) reads as

k < ks : k ≥ ks :

x1(k + 1) = x1(k) 0 = x1(k)

0 = x2(k), x2(k + 1) = x2(k).

We first observe that the value x1(ks) is constraint by both
modes: For k = ks− 1 we have from mode 1 that x1(ks) =
x1(ks − 1) and for k = ks we have from mode 2 that 0 =
x1(ks). As a consequence, 0 = x1(ks) = x1(ks−1) = . . . =
x1(0), hence x(k) = 0 for all k < ks, i.e. the presence of
the switch at time ks > 0 invalidates all non-zero solutions
from the past (loss of causality). The second observation is
that x2(ks) is neither constraint by the first mode (it does not
appear in the equations of the first mode for k < ks)), nor
is it constraint by the second mode (where it simply plays
the role of a free initial value), i.e. the presence of a switch
results in the loss of unique solvability. //

The loss of causality and uniqueness due to switching
is usually an undesired property and our goal is to give
conditions for well-posedness of the switched system (1)
in the sense that a family of one-step-maps Φi,j ∈ Rn×n,
i, j ∈ {1, 2, . . . , n} exists, such that for any switching signal



we have that x(·) is a solution of (1) with u = 0 if, and only
if,

x(k + 1) = Φσ(k+1),σ(k)x(k).

Although some authors have already studied discrete-time
singular switched (or time-varying) systems (e.g. [15], [2],
[16], [3], [26], [29], [31], [28], [6], [7], [27], [1]) it seems
that the existence of a one-step-map was not investigated so
far and we want to close this gap with this contribution.

This note is structured as follows. After some preliminaries
on non-switched singular systems, we investigate first the
homogeneous case in Section III, where Theorem 3.5 is
our main result about the existence of a one-step-map for
general switched singular systems. In Section IV we present
a constructive way to calculate the one-step-map, some
technical results of the section will also play an important
role in Section V, where we generalize the notion of the
one-step-map to the inhomogeneous case.

II. PRELIMINARIES

We first recall some important notation and properties of
non-switched homogeneous singular systems of the form

Ex(k + 1) = Ax(k), (2)

where E,A ∈ Rn×n are given.

Definition 2.1: A matrix pair (E,A) ∈ Rn×n × Rn×n is
called regular if, and only if, the polynomial det(sE − A)
is not identically zero. //

Lemma 2.2 ([34], [12]): A matrix pair (E,A) ∈ Rn×n×
Rn×n is regular if, and only if, there exist invertible matrices
S, T ∈ Rn×n such that

(SET, SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
(3)

where N ∈ RnN×nN is nilpotent and J ∈ RnJ×nJ with
nN + nJ = n. �

In view of [4] we call (3) a quasi Weierstrass form
(QWF) of (E,A). The QWF is unique up to similarity of
the matrices J and N ; in particular, the nilpotency index
of N (the smallest number ν ∈ N such that Nν = 0) is
independent of the choices for S and T and we will define the
index of a regular matrix pair (E,A) as the nilpotency index
of N in the QWF. In the index-1 case it is actually easy to see
that T = [T1, T2] and S = [ET1, AT2]−1 transform (E,A)
into QWF if, and only if, the full column rank matrices T1,
T2 are chosen so that

imT1 = S := A−1(imE) := {ξ ∈ Rn : Aξ ∈ imE} ,

imT2 = kerE;

Note that then S ∩ kerE = {0}. In fact, the following
stronger results holds.

Lemma 2.3 ([9, Appendix A, Thm. 13], cf. [5, Prop. 9]):
The matrix pair (E,A) ∈ Rn×n × Rn×n is regular and of
index-1 if, and only if,

S ⊕ kerE = Rn. (4)

Remark 2.4: From the dimension formula for the Wong-
sequences given in [4, Lem. 2.3], it follows that for regular
matrix pairs (E,A) the index-1 condition (4) is in fact
equivalent to

S ∩ kerE = {0}. (5)
The main relevance of regularity and index-1 is the follow-

ing statement about existence and uniqueness of solutions of
the non-switched singular system (2).

Lemma 2.5: Assume (E,A) is regular and of index-1, i.e.
it satisfies (5), then (2) with initial condition x(0) = x0 ∈ Rn
has a unique solution if, and only if x0 ∈ S and the solution
is then given by

x(k) = Φk(E,A)x0, with Φ(E,A) := T

[
J 0
0 0

]
T−1,

where T and J are given by the QWF (3) and Φ(E,A) is
independent from the specific choice of T .

Proof: The proof is straight forward and omitted due
to space limitations.

Remark 2.6: The matrix Φ(E,A) corresponds to the matrix
Adiff in continuous time, see e.g. [25] and can be interpreted
as the one-step map for (2), i.e. every solution of (2) satisfies

x(k + 1) = Φ(E,A)x(k), k ∈ N. (6)

However, it is important to note that this interpretation is
only valid if we assume that (2) holds for at least two time
steps. In fact, from

Ex(1) = Ax(0)

we can only conclude that

x(1) ∈ {Φ(E,A)x(0)}+ kerE.

In order to conclude that x(1) = Φ(E,A)x(0) we additionally
have to take into account

Ex(2) = Ax(1) (which implies x(1) ∈ S)

together with the index-1 assumption (5). If the matrix pair
(E,A) is not index-1, i.e. (5) is not valid, then one has to
consider also the equation

Ex(3) = Ax(2)

which implies that x(2) ∈ S and therefore x(1) ∈ A−1(ES).
For index-2 systems A−1(ES)∩kerE = {0} which now can
be used to conclude uniqueness of x(1). In general, for index
ν, the one-step-map (6) from x(k) to x(k+ 1) is only valid
if the difference equation (2) is assumed to also hold for the
future times k + 2, k + 3, . . . , k + ν. //

Our goal will be to define a suitable one-step-map also
for the switched case and to be able to define a state-
transition map. Therefore, we conclude this section by recall-
ing the definition of the state-transition map for non-singular
(switched) systems.

Definition 2.7: Consider a switched (non-singular) linear
system

x(k + 1) = Aσ(k)x(k), k ∈ N, (7)



where σ : N → {1, 2, .., n}, n ∈ N, A1, . . . , An ∈ Rn×n,
n ∈ N, x(k) ∈ Rn. The state transition matrix Φσ(k, h) for
system (7) is defined as

Φσ(k, h) = Aσ(k−1)Aσ(k−2)...Aσ(h).

for k > h and Φσ(h, h) = I . //
It is easily seen that all solutions of (7) satisfy

x(k) = Φσ(k, h)x(h), ∀k, h ∈ N with k ≥ h,

in particular, the initial value problem (7), x(0) = x0 ∈ Rn,
has the unique solution

x(k) = Φσ(k, 0)x0, k ∈ N.

Note that, in contrast to the continuous time, the transition
matrix can in general not be defined backwards in time, i.e.
for k < h, because the matrices Ai can be singular.

III. HOMOGENEOUS SWITCHED SINGULAR SYSTEMS

In this section we consider the homogeneous case of (1),
i.e. the following SwSS:

Eσ(k)x(k + 1) = Aσ(k)x(k) (8)

and first define a desired solvability property:
Definition 3.1: SwSS (8) is called causal (with respect to

the switching signal) iff for all switching signals σ and all
corresponding solutions x the following implication holds
for any switching signal σ̃ and any k̃ ∈ N

σ(k) = σ̃(k) ∀k ≤ k̃
=⇒ ∃ sol. x̃ of (8) with σ̃ : x̃(k) = x(k) ∀k ≤ k̃.

In other words, (8) is called causal if changing the switching
signal in the future, does not make it necessary to change
the solution in the past. //

Note that for the definition of causality it is not required
that the switched system (8) has unique solutions.

Example 1.1 already showed that regularity and index-1 of
the individual matrix pairs will not be enough to guarantee
causality (in contrast to the continuous time case).

We now propose a generalization of the index-1 property
from individual matrix pairs to the a whole family of matrix
pairs as follows:

Definition 3.2 (cf. [2], [3], [14]): A family of matrix
pairs {(E1, A1), . . . , (En, An)} or the corresponding SwSS
(8) is called index-1 iff it satisfies the following conditions

(i) Each matrix pair (Ei, Ai), i = 1, . . . , n, is regular,
(ii) Si ∩ kerEj = {0}, ∀i, j ∈ {1, 2, .., n}, where Si :=

A−1
i (imEi). //

In view of Lemma 2.3 Condition (ii) is indeed a general-
ization of the index-1 property (5) for a single matrix pair;
in particular, it implies that each (regular) pair of the family
is index-1. Observe that Definition 3.2 does in general not
guarantee the regularity and index-1 property of the “mixed”
matrix pairs (Ei, Aj) for i 6= j.

Revisiting Example 1.1, it is easily seen that

S1 = im [ 1
0 ] , kerE1 = im [ 0

1 ] ,

S2 = im [ 0
1 ] , kerE2 = im [ 1

0 ] ,

and Condition (ii) is clearly not satisfied for i = 1, j = 2 as
well as for i = 2, j = 1.

Before providing the main result concerning the solvability
of (8), we first highlight an important consequence from the
index-1 property.

Lemma 3.3: Let the SwSS (8) be of index-1. Then the
following statements hold:
1. rankEi = const =: r.
2. Condition (ii) is equivalent to the relation

Si ⊕ kerEj = Rn (9)

for all i, j ∈ {1, 2, .., n}.

Proof: 1. Suppose that condition (ii) holds. Due to
Remark 2.4 each regular matrix pair (Ei, Ai) is therefore
of index-1, in particular (9) holds for i = j. Thus, we get
dimSi = n− dim(kerEi) for all i = 1, 2, .., n.
On the other hand, condition (ii) implies that dimSi ≤
n− dim kerEj , which gives

dimSi = n− dim kerEi ≤ n− dim kerEj
⇔ dim kerEi ≥ dim kerEj .

Since the last relation holds for all i, j = 1, 2, .., n, it follows
dim kerEi = const for all i = 1, 2, .., n, or rankEi =
const =: r, i = 1, 2, .., n.
2. Obviously, condition (9) implies (ii). As shown above, the
index-1 property implies dimSi = n − dim kerEi = r for
each mode i. This gives dimSi + dim kerEj = n for all
i, j ∈ {1, . . . , n}, hence, condition (ii) implies (9).
Note that the case r = n is not excluded; however, then (ii)
is trivially satisfied and the switched system is equivalent
to a switched nonsingular system (7) for which a solution
theory is already established, hence in the following we will
only consider the case r < n.
The following lemma (without proof) highlights a simple
geometric property of subspaces and will be crucial for
deriving the upcoming explicit solution formula for (8).

Lemma 3.4: Consider two subspaces V,W ⊆ Rn such
that

V ⊕W = Rn

and let ΠWV be the unique projector onto V along W (i.e.
im ΠWV = V and ker ΠWV = W). Then for any x ∈ Rn the
following holds:

V ∩ ({x}+W) = {ΠWV x},

in other words, for any x ∈ Rn there exists a unique vector
y ∈ V for which there exists w ∈ W with y = x + w and
this vector is given by y = ΠWV x. �

We are now ready to present our main result.
Theorem 3.5: The SwSS (8) of index-1 in the sense of

Definition 3.2 has for every switching signal σ a solution
with x(0) = x0 ∈ Rn if, and only if, x0 ∈ Sσ(0), where
S` := A−1

` (imE`), ` ∈ {1, 2, . . . , n}. This solution is unique
and satisfies

x(k + 1) = Φσ(k+1),σ(k)x(k) ∀k ∈ N (10)



where Φi,j is the one-step map from mode j to mode i given
by

Φi,j := Π
kerEj
Si Φ(Ej ,Aj)

with Π
kerEj
Si being the unique projector onto Si along kerEj

and Φ(Ej ,Aj) being the one-step map corresponding to mode
j as in Lemma 2.5.

Proof: Clearly, x0 ∈ Sσ(0) is necessary for existence
of a solution. We show sufficiency by induction: Assume
that x(`) already satisfies (8) for ` = 0, 1, . . . , k and that
x(k) ∈ Sσ(k). In order to extend this solution to k + 1 it
suffices to find x(k + 1) such that

Eσ(k)x(k + 1) = Aσ(k)x(k)

and

Eσ(k+1)ξ = Aσ(k+1)x(k + 1) for some ξ ∈ Rn.

In view of Remark 2.6 the first condition is equivalent to

x(k + 1) ∈ {Φ(Eσ(k),Aσ(k))x(k)}+ kerEσ(k)

and the second condition is equivalent to

x(k + 1) ∈ A−1
σ(k+1)(imEσ(k+1)) = Sσ(k+1).

By assumption kerEσ(k)∩Sσ(k+1) = {0}, hence Lemma 3.3
together with Lemma 3.4 yields that x(k + 1) is uniquely
given by (10).

Remark 3.6: In contrast to the nonsingular case (7), the
one-step-map (10) from x(k) to x(k+1) depends not only
on the mode at time k but also on the mode at time k+1. //

The existence of a one-step-map now allows us to define a
state-transition map in a similar way as for the non-singular
case (cf. Definition 2.7).

Definition 3.7: Consider a family of matrix pairs
{(Ei, Ai) | i = 1, 2, . . . , n} of index-1 and the corresponding
SwSS (8). The transition matrix for (8) is given by

Φσ(k, h) = Φσ(k),σ(k-1)Φσ(k-1),σ(k-2) · · ·Φσ(h+1),σ(h)

for k > h and Φσ(h, h) = Π
kerEσ(h)
Sσ(h) . //

With this definition we arrive at the following corollary of
Theorem 3.5.

Corollary 3.8: Consider an index-1 SwSS (1) with corre-
sponding transition matrix Φσ as in Definition 3.7. Then all
solutions are given by

x(k) = Φσ(k, 0)x0, x0 ∈ Rn. (11)

In particular,
x(0) = Π

kerEσ(0)
Sσ(0) x0

and x(0) = x0 if, and only if, x0 ∈ Sσ(0).
Remark 3.9: One may wonder how necessary the index-1

assumption from Definition 3.2 really is for existence and
uniqueness of solutions of the SwSS (1). It is not difficult to
see that in the non-switched case only regularity is necessary
to ensure existence and uniqueness of solutions. However,
in view of Remark 2.6 for higher index systems it is not
possible to conclude existence of the one-step-map by just

looking at the current and the next mode. In particular, the
switched system would then not be causal w.r.t. the switching
signal (Definition 3.1). Furthermore, assuming a one-step-
map Φi,j exists, then x(0) = 0 should imply x(1) = 0 for
any switching signal σ with σ(0) = j and σ(1) = i (in
particular, independently from the values σ(k) for k > 1).
However Ejx(1) = Ajx(0) = 0 and Eiξ = Aix(1) for
some ξ ∈ Rn is satisfied if, and only if, x(1) ∈ kerEj ∩
S1 ) {0}, hence x(1) = 0 is not the only possible solution
of (1) considered for k = 0, 1, therefore, a one step map
cannot exist. Altogether, the index-1 assumption for (1) is
necessary for causality of the switched system as well as for
the existence of a one-step-map (which only depends on the
current and past mode). //

IV. A CONSTRUCTIVE FORUMULA FOR THE
ONE-STEP-MAP

In what follows we give a constructive formula for the
matrix Φi,j as well as for the unique solution of SwSS (8).

Although the following results are partially obtained by
similar arguments as in [2], [3], [14], we will give their
proofs here to make our presentation self-contained. Fur-
thermore, these properties also play a crucial rule for the
treatment of the inhomogeneous case later.

Lemma 4.1: Consider the SwSS (8) and assume that
it is of index-1. For i = 1, . . . , n, let Vi :=
[s1
i , . . . , s

r
i , h

r+1
i , . . . , hni ] be such that it columns form bases

of Si and kerEi, respectively. Let P :=
[
Ir 0
0 0

]
∈ Rn×n,

where Ir is an r× r, identity matrix, Q := In − P . Finally,
let Pi := ViPV

−1
i = ΠkerEi

Si , Qi := I − Pi = ΠSikerEi
and

Qi,j := VjQV
−1
i for i, j = 1, . . . , n. Then the following

properties hold
(i) Gi,j := Ei + AiQi,j is nonsingular for all i, j ∈
{1, 2, . . . , n},

(ii) Π
kerEj
Si = I −Qi,jG−1

i,jAi,
(iii) Φ(Ei,Ai) = PiG

−1
ii Ai,

(iv) Φi,j = (I −Qi,jG−1
i,jAi)PjG

−1
jj Aj .

Proof: (i) Assume that x ∈ kerGi,j , then AiQi,jx =
−Eix ∈ imEi, hence Qi,jx ∈ Si. Further, Qi,jx =
VjQV

−1
i x ∈ imVjQ = kerEj . Since Si ∩ kerEj = {0},

we get Qi,jx = 0, hence, Eix = −AiQi,jx = 0, therefore
x ∈ kerEi = imQi. Since Qi is a projector, we have
x = Qix. On the other hand Qix = ViV

−1
j Qi,jx = 0,

thus x = Qix = 0. This shows that kerGi,j = {0}, i.e., the
square matrix Gi,j is nonsingular.

(ii) We will show that Qi,jG
−1
i,jAi is the projec-

tion along Si onto kerEj , it then follows that I −
Qi,jG

−1
i,jAi = Π

kerEj
Si . First observe that Gi,jViQ = (Ei +

AiQi,j)ViQ = AiVjQ because EiViQ = 0 by defini-
tion, hence (Qi,jG

−1
i,jAi)

2 = Qi,jG
−1
i,jAiVjQV

−1
i G−1

i,jAi =

Qi,jG
−1
i,jGi,jViQV

−1
i G−1

i,jAi = Qi,jG
−1
i,jAi, i.e. Qi,jG−1

i,jAi
is idempotent and therefore a projector.

It remains to be shown that imQi,jG
−1
i,jAi = kerEj and

kerQi,jGi,jAi = Si. From EjVjQ = 0 it follows that
immediately that imQi,jG

−1
i,jAi ⊆ kerEj . For x ∈ kerEj ⊆

imQj we have x = Qjx and therefore imQi,jG
−1
i,jAi 3



Qi,jG
−1
i,jAix = Qi,jG

−1
i,jAiVjQV

−1
j x = Qi,jG

−1
i,jAix =

Qi,jG
−1
i,jGi,jViQV

−1
j x = VjQV

−1
j x = x, which shows

that also kerEj ⊆ imQi,jG
−1
i,jAi. Finally, the following

equivalences hold:

x ∈ Si ⇐⇒ Aix = Eiξ for some ξ

⇐⇒ G−1
i,jAix = G−1

i,j Eiξ = Piξ

⇐⇒ V −1
i G−1

i,jAix = PV −1
i ξ

⇐⇒ QV −1
i G−1

i,jAix = 0

⇐⇒ Qi,jG
−1
i,jAix = 0.

This shows imSi = kerQi,jG
−1
i,jAi.

(iii) In view of Lemma 2.2 and the discussing thereafter,
it holds that

(EiViP +AiViQ)−1AiVi =
[
Ji 0
0 I

]
for some Ji ∈ Rr×r. Hence,

Φ(Ei,Ai) = ViP (EiViP +AiViQ)−1Ai.

On the other hand

PiG
−1
ii Ai = ViP (EiVi +AiViQ)−1Ai

and since EiViP = EiVi the claim is shown.
(iv) This is a direct consequence from (ii),(iii) and Theo-

rem 3.5.
We illustrate the usefulness of the derived formulas via

the following example.
Example 4.2: Let

(E1, A1) =
([

2 2 0
0 0 −2
0 0 2

]
,
[−3 1 5

3 3 −1
−5 −1 7

])
,

(E2, A2) =
([

0 2 2
−2 0 0
0 2 2

]
,
[

1 −1 −1
1 3 −1
−5 −3 1

])
,

(E3, A3) =
([

0 2 0
0 2 0
−2 0 2

]
,
[−1 1 1

1 −1 3
−1 5 1

])
A simple computation shows that

kerE1 = span{(−1, 1, 0)>},
kerE2 = span{(0,−1, 1)>},
kerE3 = span{(1, 0, 1)>},
S1 = span{(−2, 1,−1)>, (−1,−1, 0)>},
S2 = span{(0, 1, 1)>, (1,−1, 2)>},
S3 = span{(0, 1, 1)>, (−1,−1, 0)>},

hence Si ∩ kerEj = {0}, i, j = 1, 2,. It means that system
(8) with the above data is of index-1. Furthermore, we can
chose V1, V2, V3 such that it columns form bases of Si and
kerEi, respectively, then we can calculate Gi,j and obtain

Φ1,1 =

[
− 5

2 −
5
2

1
2

2 2 −1
− 3

2 −
3
2

1
2

]
, Φ1,2 =

[
5
2 −

1
2 −

1
2

− 1
2 −

1
2 −

1
2

1 0 0

]
,

Φ1,3 =

[
1 −4 −1
− 1

2
1
2

1
2

1
2 −

3
2 −

1
2

]
, Φ2,1 =

[
− 1

2 −
1
2

1
2

0 0 −1
− 3

2 −
3
2

1
2

]
,

Φ2,2 =

[ 5
2 −

1
2 −

1
2

− 7
2

1
2

1
2

4 −1 −1

]
, Φ2,3 =

[
0 1 0
− 1

2
1
2

1
2

− 1
2

7
2

1
2

]
,

Φ3,1 =

[ 1
2

1
2 −

1
2

−1 −1 0
− 3

2 −
3
2

1
2

]
, Φ3,2 =

[ 5
2 −

1
2 −

1
2

3
2 −

1
2 −

1
2

−1 0 0

]
,

Φ3,3 =

[
0 −1 0
− 1

2
1
2

1
2

− 1
2

3
2

1
2

]
.

Choosing σ(k) = (k mod 3) + 1, we can compute the
corresponding solution as follows

x(3k) = (Φ1,3Φ3,2Φ2,1)
k
x0

x(3k + 1) = Φ2,1 (Φ1,3Φ3,2Φ2,1)
k
x0

x(3k + 2) = Φ3,2Φ2,1 (Φ1,3Φ3,2Φ2,1)
k
x0.

V. INHOMOGENEOUS SWSS

We return our attention to the inhomogeneous SwSS (1).
Theorem 5.1: Suppose that the family of matrix pairs

{(Ei, Ai)}Ni=1 of SwSS (1) is of index-1. Then there exists
matrices Φi,j,` ∈ Rn×n and Ψi,j,`, Ψ̃i,j ∈ Rn×m such that
all solutions of (1) satisfy for all k ∈ N

x(k + 1) = Φσ(k+1),σ(k),σ(k−1)x(k)

Ψσ(k+1),σ(k),σ(k−1)u(k) + Ψ̃σ(k+1),σ(k)u(k + 1), (12)

where σ(−1) := σ(0).
In fact, with Vi and Gi,j as defined in Lemma 4.1 let

V −1
i G−1

i,jAiVj =

[
Ā1
i,j 0

Ā2
i,j In−r

]
, (13)

where Ā1
i,j ∈ Rr×r, Ā2

i,j ∈ R(n−r)×r and B̄i,j =

V −1
i G−1

i,jBi =
[
B̄1
i,j

B̄2
i,j

]
, where B̄1

i,j ∈ Rr×m and B̄2
i,j ∈

R(n−r)×m. Then

Φi,j,` = Vj

[
Ā1
j,` 0

−Ā2
i,jĀ

1
j,` 0

]
V −1
` ,

Ψi,j,` = Vj

[
B̄1
j,`

−Ā2
i,jB̄

1
j,`

]
,

Ψ̃i,j = Vj

[
0
−B̄2

i,j

]
.

Furthermore, there exists a solution of (1) with x(0) = x0

if, and only if,

x0 ∈ imVσ(−1)

[
I 0

−Ā2
σ(0),σ(−1) B̄2

σ(0),σ(−1)

]
.

Proof: Observe that Gi,jPi = (Ei +
AiVjQV

−1
i )ViPV

−1
i = EiPi + AiVjQPV

−1
i = EiPi.

Further, since Qi is the projection onto kerEi along Si, it
follows EiQi = 0, therefore, EiPi = Ei(Pi + Qi) = Ei.
Thus, Gi,jPi = Ei, hence Pi = G−1

i,j Ei.
According to the proof of item (ii) of Lemma 4.1,
Gi,jViQ = AiVjQ, hence, V −1

i G−1
i,jAiVjQ = Q.

Therefore, we obtain

Āi,j := V −1
i G−1

i,jAiVj =

[
Ā1
i,j O

Ā2
i,j In−r

]
,

Ēi,j := V −1
i G−1

i,j EiVi =

[
Ir O
O On−r

]
.

Multiplying both sides of system (1) by V −1
σ(k)G

−1
σ(k),σ(k−1),

and using the transformation x̄(k) = V −1
σ(k−1)x(k), we get

Ēσ(k),σ(k−1)x̄(k+1)=Āσ(k),σ(k−1)x̄(k) + B̄σ(k),σ(k−1)u(k).
(14)



Putting x̄(k) := (v(k)>, w(k)>)>, where v(k) ∈ Rr,
w(k) ∈ Rn−r, we can reduce system (14) to system

v(k + 1) = Ā1
σ(k),σ(k−1)v(k) + B̄1

σ(k),σ(k−1)u(k)

together with the constraint

w(k) = −Ā2
σ(k),σ(k−1)v(k)− B̄2

σ(k),σ(k−1)u(k),

which is equivalent to

w(k + 1) = −Ā2
σ(k+1),σ(k)v(k+1)− B̄2

σ(k+1),σ(k)u(k+1)

= −Ā2
σ(k+1),σ(k)Ā

1
σ(k),σ(k−1)v(k)

− Ā2
σ(k+1),σ(k)B̄

1
σ(k),σ(k−1)u(k)

− B̄2
σ(k+1),σ(k)u(k + 1).

By transforming back to the original coordinates via
x(k+1) = Vσ(k)

[
v(k+1)
w(k+1)

]
and

[
v(k)
w(k)

]
= V −1

σ(k−1)x(k) we
arrive at (12). Finally, existence of a solution is guaranteed,
if and only if, x(0) is consistent with (1), or in the (v, w)-
coordinates, if and only if there exists u(0) ∈ Rm such that

w(0) = −Ā2
σ(0),σ(−1)v(0)− B̄2

σ(0),σ(−1)u(0)

where v(0) ∈ Rr is arbitrary. In other words,[
v(0)
w(0)

]
∈ im

[
I 0

−Ā2
σ(0),σ(−1) B̄2

σ(0),σ(−1)

]
,

which yields the claimed condition by applying the coordi-
nate transformation Vσ(−1).

Remark 5.2: In contrast to the homogeneous case the one-
step-map from x(k) to x(k+ 1) in the inhomogeneous case
not only depends on the modes at time k+1 and k but also on
the mode k−1. Furthermore, the allowed space of consistent
initial values seems to depend on the choice of σ(−1), and
it is ongoing research to investigate the significance of this
fact. //

VI. CONCLUSION

We have shown that for switched singular systems in dis-
crete time with a certain index-1 property a unique one-step-
map exists which can fully characterize all possible solutions.
An application of this result could be the stability analysis
for switched singular systems and is ongoing research.
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