Impulse controllability of switched differential-algebraic equations

Paul Wijnbergen and Stephan Trenn

Abstract— This paper addresses impulse controllability of
switched DAEs on a finite interval. First we present a forward
approach where we define certain subspaces forward in time.
These subpsaces are then used to provide a sufficient condition
for impulse controllability. In order to obtain a full charac-
terization we present afterwards a backward approach, where
a sequence of subspaces is defined backwards in time. With
the help of the last element of this backward sequence, we are
able to fully characterize impulse controllability. All results are
geometric results and thus independent of a coordinate system.

I. INTRODUCTION

We consider switched differential algebraic equations
(switched DAEs) of the following form:

E i = A,z + Byu, (D

where o : R — N is the switching signal and E,, A, €
R™*", B, € R™*™ for p,n,m € N. In general, trajectories
of switched DAEs exhibit jumps (or even impulses), which
may exclude classical solutions from existence. Therefore,
we adopt the piecewise-smooth distributional solution frame-
work introduced in [1]. We study impulse controllability
of (1) where impulse controllability means that for every
initial value there exist an input such that the resulting
trajectory is impulse free (see Definition 9 for details).

Differential algebraic equations (DAEs) arise naturally
when modeling physical systems with certain algebraic con-
straints on the state variables; examples of applications of
DAE:s in electrical circuits (with distributional solutions) can
be found, e.g., in [2]. These constraints are often eliminated
such that the system is described by ordinary differential
equations (ODEs). However, in the case of switched systems,
the elimination process of the constraints is in general
different for each individual mode and therefore there does
not exist a description as a switched ODE with a common
state variable for every mode in general. This problem can
be overcome by studying switched DAEs directly.

Ever since control systems have been considered, the
question whether the control objective can be achieved with
minimal (quadratic) cost has been of great interest. In the
non-switched case, optimal control of DAEs has been studies
in e.g. [3]-[5]. It is proven in both [3] and [4] that impulse
controllability is a necessary condition for the existence of
finite (quadratic) cost regardless of the initial condition. This
follows from the fact that the integral over the square of
a Dirac impulse is not well defined and therefore such an
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integral is assigned an infinite value. Trajectories resulting
in finite cost must thus be free of impulsive behavior. This
argument is independent of the underlying system model and
hence trajectories of switched DAEs need to be impulse free
as well in order to achieve finite quadratic cost. Therefore,
there is a need for a characterization of all switched DAEs
that are impulse controllable.

Several other structural properties of (switched) DAEs
have been studied recently. Among those are controllability
[6], stability [7] and observability [8]. However, impulse
controllability has thus far only been studied in the non-
switched case [9]-[12] and, to the best of the authors
knowledge, there are no results yet for the switched case.
An obvious sufficient condition is to demand each mode
of the switched system to be impulse controllable. This
is however not a necessary condition. If the first mode is
impulse controllable and any initial condition can be steered
to a point at the switching time where it doesn’t produce
Dirac impulses the system would be impulse controllable as
well. A more detailed example of such a system will be given
in Section III.

In this paper we give a characterization of impulse con-
trollability on a given interval. We will consider two points
of view with respect to impulse controllability: a forward and
a backward approach. In the forward approach we consider
the first mode and consider the space where the state can
be steered to at the switching times. It follows that in order
to ensure an impulse free solution, all future modes need to
be taken into account. Therefore it is necessary for finding
a characterization of impulse controllability to consider a
time interval with a finite number of switches. The second
method is concerned with the backward approach. In this
approach the space from which the last mode can be reached
in an impulse free way is considered. This space needs
to contain all allowed initial conditions in order for the
system to be impulse controllable. Our results are geometric
characterizations, i.e. they do not depend on a specific choice
of a coordinate system. Furthermore, we do not make an a-
priori assumption on the index of the individual DAEs.

The outline of the paper is as follows: notations and results
for non-switched DAEs are presented in Section II. The main
results on impulse controllability are presented in Section
III, followed by a brief discussion on the interpretation of
the results. Conclusions and discussions on future work are
given in Section IV.



II. MATHEMATICAL PRELIMINARIES

In this section we recall some notation and properties
related to the non-switched DAE

Ez = Az + Bu. )

A. Properties and definitions for regular matrix pairs

In the following, we call a matrix pair (E, A) and the
associated DAE (2) regular iff the polynomial det(sE — A)
is not the zero polynomial. Recall the following result on the
quasi-Weierstrass form [13].

Proposition 1: A matrix pair (E, A) € R™*" x R"*"™ is
regular if, and only if, there exists invertible matrices S, T €
R™*™ such that

(SET,SAT)—Qé ]OV}B ?D 3)

where J € R™">*" (0 < n; < n, is some matrix and N €
R™2%™2 ny :=n —nq, is a nilpotent matrix.

The matrices S and T can be calculated by using the so-
called Wong sequences [13], [14]:

Vo :=R", Vig1 = A_l(EVi),
Wo = {O}, Wit1 = E_l(AWZ‘),
The Wong sequences are nested and get stationary after
finitely many iterations. The limiting subspaces are defined

1=0,1,...

as follows:
ve=v, w=Jw. )
i
For any full rank matrices V,W with imV = V* and
imW = W?* the matrices T := [V,W] and S :=

[EV, AW]~! are invertible and (3) holds.

Based on the Wong sequences we define the following
projector and selectors.

Definition 2: Consider the regular matrix pair (£, A) with
corresponding quasi-Weierstrass form (3). The consistency
projector of (E, A) is given by

I 0Of,._
H(E,A) =T |:0 0:| T 17

the differential selector is given by

gt . |L O
mir ._T[O ol s

and the impulse selector is given by

i 0 0

imp
H(E’A) =T [0 7 S.
In all three cases the block structure corresponds to the
block structure of the quasi-Weierstrass form. Furthermore

we define

diff .__ yydiff imp .__ 17!

Adtt . — H(E’A)A, EMP.— H}?A)E,
diff .__ 7ydiff imp .__ yyim

B = H(E)A)B, B™P .= H(EP,A)B.

Note that all the above defined matrices do not depend on
the specifically chosen transformation matrices S and T
they are uniquely determined by the original regular matrix

pair (E, A). An important feature for DAEs is the so called
consistency space, defined as follows:

Definition 3: Consider the DAE (2), then the consistency
space is defined as

Vig,a) = {xo cR" Ei = Az, with z(0) = zo

d smooth solution 2 of }
b)

and the augmented consistency space is defined as

V(E,A,B) = { To € R"

3 smooth solutions (z,u) of }
Ei = Az + Buand z(0) =z¢ |-

In order to express (augmented) consistency spaces in
terms of the Wong limits we need the following notation
for matrices A,B of suitable sizes:

(A| B) :=im[B,AB,..., A" 'B].

Proposition 4 ( [15]): Consider the regular DAE (2), then
V(E,A) = % = imIlg 4y = ich(thf’A) and V(g a,B) =
V* @ <E1mp ‘ B]mp>.

For studying impulsive solutions, we consider the space of
piecewise-smooth distributions Dpyco from [1] as the solu-
tion space, that is, we seek a solution (z,u) € (Dpwcee )" "™
to the following initial-trajectory problem (ITP):

(6a)
(6b)

T(—00,0) = T(—00,0)
(Ex)[o,oo) = (A.Z‘ + Bu)[O,oo)a

where 20 € (Dpwee)™ is some initial trajectory, and fz
denotes the restriction of a piecewise-smooth distribution f
to an interval Z. In [1] it is shown that the ITP (6) has a
unique solution for any initial trajectory if, and only if, the
matrix pair (E, A) is regular. As a direct consequence, the
switched DAE (1) with regular matrix pairs is also uniquely
solvable (with piecewise-smooth distributional solutions) for
any switching signal with locally finitely many switches.

B. Properties of DAE’s

Recall the following definitions and characterization of
(impulse) controllability [15].

Proposition 5: The reachable
DAE (2) defined as

space of the regular

R= {xT €R" with (0) =0 and z(T") = =7

3T > 0 3 smooth solution (z, u) of (2) }

satisfies R = (A% | Bdifty o (pimp | pimp),
It is easily seen that the reachable space for (2) coincides
with the controllable space, i.e.

R = {xo e R"

3T > 0 3 smooth solution (x,u) of (2) }
with 2(0) = zo and z(T') =0 )
Corollary 6: The augmented consistency space of (2)
satisfies V(g 4, B) = V(g,4) + R = V(g,4) © (Eimp Bimp),
Definition 7: The DAE (2) is impulse controllable if for
all initial conditions zo € R™ there exists a solution (x,u)
of the ITP (6) such that 2:(0~) = z( and (z,u)[0] = 0, i.e.
the state and the input are impulse free at ¢ = 0. The space
of impulse controllable states of the DAE (2) is given by

' 3 solution (z,u) € Dyweoo of (6)
imp o n 5 p
C(EVA,B) T {xo €R s.t. z(07) = o and (z,u)[0] = 0.




In particular, the DAE (2) is impulse controllable if and only
. 1m|
if C(E*jA,B) =R"

The impulse controllable space can be characterized as
follows [16].

Proposition 8: Consider the DAE (2) then
CE“;AB) = V(E,A,B) + ker E
= V(E7A) + R+ ker B
=V(p,a) + (E™ | B™) + ker E.

According to [17] if the input u(-) is sufficiently smooth,
trajectories of (2) are continuous and given by

z(t) = wy(t, to; 7o) = €Adiﬁ(t—t°)H(E,A)33o

t iff o n_l . . . .
+/ eAdm(t_s)Bdlﬁu(S) ds _Z (Elmp)lBlmpu(z)(t). (7)
to i=0

In particular, all trajectories can be written as the sum of
diff .

an autonomous part Tay(t,to; o) = e? tH(EyA)xU and a

controllable part x,(t,ty) as follows

Ty (t, to; o) = Tau(t, to; o) + xu(t, to).

In fact, this solution formula remains valid also for the
switched case (by evaluating the initial value at £ ).

ITII. IMPLUSE CONTROLLABILITY OF SWITCHED DAE’S

The concepts introduced in the previous section are now
utilized to obtain necessary and sufficient conditions for
impulse controllability of switched DAEs. We will consider
impulse-controllability on some finite interval (to,¢s) and
assume that the switching signal only has finitely many
switches in that interval; without restricting generality we
can then assume that the switching signal has the following
form:

o(t)=p iftE [ty tpr), )

where t1 < to < ...t, are the n € N switches in (to,%y)
and for notational convenience let ¢, := ¢;. We will now
first introduce the definition of impulse controllability for
switched DAEs and then the necessity of considering a finite
interval.

A. Impulse controllability: definition

Definition 9: The switched DAE (1) with some fixed
switching signal o is called impulse controllable on the
interval (to,ty), if for all o € V(g, 4,,B,) there exists a
solution (z,u) € Dg;’c”; of (1) with z(tJ) = z¢ which is
impulse free.

If the interval (¢, t¢) does not contain a switch, then the
corresponding switched DAE is always impulse controllable
on that interval due the definition of the augmented consis-
tency space in terms of smooth (in particular, impulse free)
solutions. This seems counter intuitive, because the active
mode on that interval is not necessarily impulse controllable;
however, recall that impulse controllability for a single mode
(see Definition 7) is formulated in terms of the ITP (6), which
can be interpreted as a switched system with one switch at
t1 = 0. In fact, letting tg = —¢, t; = €, (Eo, Ao, Bo) =

(1,0,0) and (E1,A;,B1) = (E,A,B), the DAE (2) is
impulse controllable if, and only if, the corresponding ITP
(reinterpreted as a switched DAE) is impulse controllable on
(—¢,¢).

Clearly, impulse controllability of each mode is a sufficient
condition for impulse controllability of the overall switched
DAE, however, the following example shows that this is in
fact not necessary.

Example 10: Consider the switched DAE

1007 . 1

[886}“’(t):x(t)+[9}w), 0<t<ty,
7 0107 . 0

838] ) =20y + [§]u), 1<

The first mode in the example is impulse controllable, but
the second mode is not. However, since the first mode is
completely controllable, any initial condition can be steered
to the impulse controllable space of the second mode in an
impulse free manner. Hence for any initial condition there
exists an input such that the resulting trajectory is impulse
free and thus the system is impulse controllable on any
interval containing the switch.

B. Impulse controllability: forward approach

We consider the following sequence of subspaces.

Kf = Vigy.a0) + Ro,

Kl = At (KL N e + Ry, 0> 0,
where ;™ == Ci’ , po. 1L == Tl(p, a,) and A" is the
A% _matrix corresponding to (E;, A;). The intuition behind
the definition is as follows: K are all values for z:(¢] ) which
can be reached before the first switch in an impulse free (in
fact, smooth) way. Now, inductively, we calculate the set Isz
of points which can be reached just before the switching time
t;+1 by first consider the points ICif_1 which can be reached
in an impulse free way just before ¢;, then pick those which
can be continued in mode ¢ impulse-freely by intersecting
them with C;"", propagate this set forward according to the
evolution operator and finally add the reachable space. This
intuition is verified by the following two lemmas.

Lemma 11: Consider the switched system (1) on some
interval (t9,ts) with the switching signal given by (8). If
(x,u) € ]D);er is a solution of (1) which is impulse free on

wC >

(to, ty) then for all ¢ € {1,...,n} it holds that

x(t7) e KI ncim.

Proof: Let (z,u) € DSJCTO be an impulse-free solution
of (1). Then by definition of Dpyc- there exists € > 0
such that (x,u) is a smooth solution of Eyi = Aoz + Bou
on (t; — ¢&,t1). Hence x(t]) € Vg, 4,,B,)- Furthermore,
(@, u) is an impulse-free solution of Fy& = A;x + Biu on
[t1,t2), hence x(t;) € C;"". This shows the claim for i = 1
and we conclude the proof inductively by assuming that the
statement holds for ¢ and proving that it holds for ¢+ 1. Since
w is impulse-free on [t;,¢;11) we have

_ d‘iff . 4. _
z(t ) = i (b tl)Hﬂ(ti )+ T (titr, i),



which by assumption does not Qxhibit impulses at the switch,
therefore we have x(t;,,) € C;}"|. By assumption we have
c(t7) e KI, NneE™ and 2y, (ti1,t;) € Ry, thus 2(t;41) €
ICz, which completes the proof. A [ ]
Lemma 1 showed that the sets 7 NC;}Y are large enough
to contain all impulse-free solutions, the next lemma shows
that they are in fact minimal in the sense that each point in
K N C™ can be reached impulse freely on (to, ;).
Lemma 12: Consider the switched system (1) on the
interval (to,t) with switching signal (8). Then for any
ie{l,...,n}andall £ € K]  NC™ there exists a solution
(z,u) of(l) withz(t;) =& Wthh is impulse-free on (¢, t;).
Proof: The proof is again by induction. For i = 1 we
have for all £ € Cy"™ N KC{ that € € K} = Vg, a,) + Ro =
V(Eo,A0,B0)- By definition of the augmented consistency
space (and taking into account the time-invariance of the
definition), we have that there exists a smooth solution (x, u)
of E()ZZ? = A0$ + Bou on (to,tl) with I(tl_) = f
Assuming now that the statement holds for 4, we now
consider the case for i + 1. Let £ € K/ N C;"", then by
definition of K/ we have ¢ € eAgiff(ti“’ti)Hi(lC{_l NCI™P)+
R;, i.e. there exists fAE IC{_1 NC;™ and &g € R; such that

€= AT ITLE 4 g

By the induction assumption, there exists a solution (z, ) of
(1) with 2(t;) = ¢ which is impulse free on (to,t;). Since
Z(t;) € C;™, this solution can be assumed to be impulse
free also on [t;,t;+1). We will now alter this solution on
[ti,ti+1) such that at ¢ 41 the desired value £ is reached
and no additional 1mpulses occur. From the solution formula
(ﬂnﬂMW$mm&zkaﬁHJ—ez“W1terR
and hence {r — {R € R;. By definition of the reachable
space of mode i there exists a (smooth) solution (Z,u) of
Eit = Ajr + Byu such that 2(t;) = 0 and z(t; ;) =
Er — ER In fact, it can be assumed that (z, @) is identically
zero on (to,t;), hence (Z,u) is then also a solution of the
switched DAE (1). By linearity, (z,u) = (Z 4+ Z,u + u)
is a solution of (1) that is impulse free on (to,t;+1) with

w(tipy) = 2(t) +2(t5,) = (e AT —tIILE + €x) +
(€r — &r) = &, which concludes the proof. ]

It is important to note that in general not from all { €
K, NC™ there is a solution (2, u) with z(¢;) = £ which
is also impulse free on [t;,t). To illustrate this, we present
the following example.

Example 13: Consider the following
where (A, B) is controllable.

switched DAE,

#(t) = Axz(t)+ Bu(t) 0<t<t,
P i) =0 1 <t <ty
1007 . _
hgdx@ — z(t) ts < 1.

In order to have impulse free solutions, the state of the
system needs to be in span{e;, es} att = to, where €1, e are
the standard base vectors in R3. However, IC N Clmp R”

and therefore we can reach e3 impulse freely on (0, ¢], but
this would lead to an impulse at ¢t = to.

It thus becomes clear from Example 13 that considering
the elements A/ NC. will not lead to necessary conditions
for impulse controllability. Indeed, the example shows that
in general, the impulse controllable spaces of future modes
need to be taken into account in order to ensure an overall
impulse free solution.

Nevertheless does the forward approach lead to some
useful results. Exploiting Lemma 11 and Lemma 12 we prove
the next theorem, which gives a sufficient condition.

Theorem 14: Consider the switched system (1) with
switching signal (8). If for all ¢ € {1,...,n} it holds that

Kl ca™+Ri, )

then the system is impulse controllable.
Proof:

We prove the statement inductively by showing that if (9)
holds then for any initial value xq there exists a solution
(z,u) with z(t) = =z, 2(t;) € C"™ and which is
impulse free on (to,t;). For i = 1 we find for any xo €
V(Eo, 49,B,) by definition a solution (Z, %) with Z(t]) = o
which is smooth (and in particular impulse free) on (to,t1).
Furthermore, Z(t) € V(g,,40.8,) € C1'" + Ro, i.e. there
exists £ € C™ and n € Ry such that Z(t]) = & + 7.
Since 7 is reachable in mode 0 we can find u such that
the corresponding solution of (1) satisfies Z(tJ) = 0 and
Z(ty) = —n. Now (z,u) := (¥ + Z,u + u) solves (1),
is impulse-free on (to,t;) and satisfies z(tJ) = zo and
a(ty) =&+n—neCy™

‘Now assume that any initial condition can be steered to
C™ impulse-freely on (to,?;). This solution can now be
extended to an impulse free solution (Z, ) onto (tg,t;11).
Similar as in Lemma 11 we can conclude that Z(t; ) €
Ki—1 NC™, and hence () € Kl c Cﬁpl + R,;. Hence
z(t;) = 5—1—77 for £ € C;jipl and n € R,;. Similar as
above we find a solution (Z, &) which is smooth on [tg, t;+1),
identically zero on (to, ;) and satisfies (¢, ;) = —n. Then
(r,u) = (T + Z,u + @) is a solution which is impulse
free on (to,ts), has the same initial value as 7 satisfies
() € C

Finally, from the fact that for any initial value there is a
solution (z,u) with z(t;) € Ci™ it can be concluded that
this solution can be extended to (to,¢s) in an impulse free
way, i.e. the switched system is impulse controllable.

|

Remark 15: Besides giving a sufficient conditions for
impulse controllability of a system for a given switching
signal, the result of Theorem 14 can also be used to design
a specific switching signal so that the switched system
becomes impulse-controllable.

To illustrate the result of Theorem 14 we will give an
example where the subspaces involved become apparent.

Example 16: Consider the following switched DAE, with



a switch at ¢t = ¢4:
0
(Eo, Ao, Boy) = ([ (

-1

0 01-1 1
0} {010}7[0}),
1 -10 1 0
100 100 0
(a5 = ([ah8].[ 588 [4])-
It follows from the computation of the consistency projector
and the reachable space that

ViEo, Ag) = span{[é} , [?}}7 Ro = span{[i]}

such that we obtain IC(J;
space is given by

0
1
0

= R"™. The impulse controllable

i [49].

10

This means that C;'"" + R = R" and hence the condition
that Kf C C™ + R of Theorem 14 is satisfied and we
can conclude that the system is impulse controllable. Indeed
we see that for all elements of the consistency space there
exists a reachable point such that the sum of the two are in
the impulse controllable space.

In the case of a single switch, then there are no other
modes to consider than the first two modes. In that case, the
sufficient condition in Theorem 14 is also necessary.

Lemma 17: Consider the switched DAE (1) with a single
switch at ¢ = ¢,. If the system is impulse controllable, then

Clmp

W(Bo,A0,B0) Cllmp + Ro.
Proof: Since we have that for all initial conditions
there exists an input u(t) such that the resulting trajectory is
impulse free, i.e. for all zg € Vg, 4,,B,) We have

_ diff ;
Ty (1], 20) = eV " Ilgxg + x4 (t7,0) € C™,
which means that
Adifft H
e "oV 5y, 40,80) = V(Bo,40 S Ci + Ro.

from which it follows that Vg, 4,,B,) = V(£o,40) + Ro C
Clmp 1+ Ro. m

C. Impulse controllability: backward approach

In order to incorporate all modes on the bounded interval,
we make use of a backwards method. This method considers
the set of points from which the impulse controllable space of
the last mode can be reached. To that extend we first consider
the largest set of points from which the impulse controllable
space can be reached impulse freely from the preceding
mode. Therefore we define the following sequence of sets
regarding the switched DAE (1) with switching signal (8):

KL=,
Kioy = im0y 0 (e Mtk + Ry )
+ (E; E™ i Blmp> + ker E;_1,
t=nn—1,...,1.
Remark 18: Recall that imIT; = Vg, a,) and that C;mp =

Vg, a) + (E™ | BI™) 4 ker E;. Therefore we have that
Kb cc™.

With these sets, we can prove the following lemma.

Lemma 19: Consider the switched DAE (1) restricted to
the interval [t;_y,t;). Then K? , is the largest set of points
at time ¢,_; from which ICf can be reached (at ¢;7) in an
impulse free way.

Proof: First we show that for all x;_; € K?_, there
exists an input such that the corresponding solution with
initial value x;_; at ¢;_; is impulse free on [¢;_1,¢;) and
xy(t; ,t_1;%i—1) € K;. To do so, consider first the case
T;,_1 €im Hz_lf\l( _Agl‘—fl(ti_l_ti)lc?-i-Ri_l). Since x;_1 €
imIl;_; we know that x;_; is a consistent initial value.
Hence it will not produce any Dirac impulses for a zero
input and the corresponding solution (z,0) satisfies

z(t;) =

where we used the fact, that R;_; is A% -invariant. Let
Z(t7) = £€+n with £ € K and n € R;—1. Now we
are able to choose a smooth solution (Z,u) on [t;_1,t;)
such that Z(¢;_,) = 0 and Z(t]) = —n. Then (z,u) :=
(Z + Z,u) is an impulse free solution on [t;,t;—1) with
z(t;_4) = z(t;) + 2(t;_) = zi—1 + 0 and z(t; ) =
2(t; ) +x(ty) = (E+n)+ ( n) = & € K?. Next assume that
i1 € <E;mp17 B‘mp> C R;_1. Then there exists an input u
such that z,,(¢; ,t; ;;2;_1) = 0 € K?. Finally, suppose that
x;j—1 € ker E;_; then by applying a zero input the state
jumps to zero (impulse-freely) after switching to the 7 — 1%
mode. Altogether, linearity implies that for all z;_; € ;1
there exist an input u such that K? is reached impulse freely.

Next we show that this is the largest set of points from
which K% is impulse freely reachable. Let (x,u) be any
impulse-free solution of (1) on [t;—1,t;) with x( 7)€ Kb
We need to show that ;1 := z(t;_;) € Kb_;. Clearly
by definition, z;_1 € Cimpl =imll;_ + (E, lmp | Blmp> +
ker E;_1. Choose & € imlIl;_;, n € (E;Tpl | B;T%}
¢ € ker E/;_; such that x;_; = & + 1+ (. Then the solution
x; can be decomposed into

Gt o,
eAi—l(t't t“l)xifl c ]Cf +Ri_1,

T; = xaut(ti_ii_fpf) + xu(ti_ati_fp 77) + xaut(ti_ati_flv C)

Note that ker F C kerII which implies that
Taw(t; s t;_1,¢) = 0, from II,_1n = 0 we conclude
that z,,(t; ,¢;,_,,m) € Ri—1 and finally { € imII,_; implies

II;_1€ = &, hence
£E= e—ATfl(t,;—ti,l)xi s

where § = e Ali(ti—ti- l)xu(t. t1,m) € Ri_1, be-
cause R;_; is A4 invariant. Hence ¢ € imIl;_; N
(e‘Aglﬁl(“*l_“)le 4+ Ri-1) and the claim is shown. [}
Corollary 20: Consider the switched DAE (1) with
switching signal (8). Then K/ | N K? is the smallest set
containing states that can be reached in an impulse free way
on (to,t;) and that can be extended in an impulse free way
on [t;, tr).
Proof: By Lemma 12 we have for all z; € K{_l NK? C
ICf L NC™ that there exists an zo such that x,(t,x¢) is
impulse free and z,(t; ,z9) = x;. And by Lemma 19 there



exists an input such that Co™ i

Z;.

Let (z,u) be an impulse free solution. Then by Lemma 11
we have that at t; z; € ICf 1 OClmP and therefore z; € IC
Since we can reach Ca™ 1mpulse freely from z; it must hold
that z; € K?. Therefore x; € IC _, N K?, which proves the
result. [ ]

Since K?_, is the largest set from which K? can be
reached impulse freely, it follows intuitively that the system
is impulse controllable on the whole interval (¢o,ts) if the
initial augmented consistency space is contained in Y. This
would mean that all consistent trajectory of the initial mode
can be steered impulse freely to the impulse controllable
space of the last mode. This idea is formalized in the next
theorem.

Theorem 21: Consider the switched system (1) on (to,%y)
with switching signal (8). The system is impulse controllable
if and only if

is reached impulse freely from

V(EO,AO,BO) c ICS
Proof: (<) Assume that Vg, a,,8,) € K§. This
means that for all initial conditions zo € V(g,, 4,,B,) there
must exists an input w such that the resulting trajectory is
impulse free and reaches K. Hence the system is impulse
controllable.

(=) Assume that the system is impulse controllable. Then
for all 9 € V(g,,4,,B,) there exists an input u such that
the resulting trajectory is impulse free. Since it holds for all
Xo € V(E07A07Bo) it must hold that

b
V(EoonyBo) < ]C()v

which proves the desired result. [ ]
To illustrate the results from Theorem 21 we show the
following example where we verify impulse controllability.
Example 22: Consider the switched DAE with the follow-
ing modes and switching times ¢; = In(4) and t5 = t; + %w.

(5o 4050 = ([ 8 08] . [83¢']. 4]

(E1,A1,Bl):([é?) } [g?%}’[gb’
10¢ 00 0

(B2, A2,B2) = ([088].[ 6, 16].[8]).

Since the second mode rotates the state, it is easy to calculate
that.

e o (], 1]} t=wn{[{].[4]}

Then calculating the subspaces involved yields

. o1 . [—2-3
Ilp=im|10], =im| 1 o |,
10 -3 —4

Ro=on{[ 4]}, i =eomn{[}]}.

= IR™ and hence the

>—IO‘

0
1
0
0
0
1

)

l o

— AT In(4) 4-b
e o K3

From this it can be calculated that X}
system is impulse controllable.

IV. CONCLUSIONS

We have studied impulse controllability of switched DAEs
on a finite interval. Based on sequence of subspace defined
forward in time we were able to provide a sufficient condition
for impulse-controllability. In order to fully characterize
impulse-controllability we introduced a sequence of sub-
spaces defined backwards in time.

As a future direction of research, a natural extension is
to obtain results on impulse free stabilization. In the current
literature impulse free trajectories are part of the definition
of stability of switched (autonomous) DAEs. Therefore,
impulse controllability is a necessary condition for switched
DAEs with inputs to be stabilizable. However, necessary
and sufficient condition for stabilizability of non autonomous
switched DAEs are yet to be formulated.
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