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Unimodular transformations for DAE initial trajectory problems
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We consider linear time-invariant differential-algebraic equations (DAEs). For high-index DAEs, it is often the first step to
perform an index reduction, which can be realized with a unimodular matrix. In this contribution, we illustrate the effect of
unimodular transformations on initial trajectory problems associated with DAEs.
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1 Introduction

We consider linear time-invariant differential-algebraic equations (DAEs) of the form

Eẋ = Ax+ f (1)

with E,A ∈ R`×n and inhomogeneity f ∈ D`
pwC∞ , where DpwC∞ denotes the space of piecewise-smooth distributions [1]

and the more general higher order form

P ( d
dt )x = f (2)

where P (s) ∈ R[s]`×n. The first order formulation (1) is included in (2) as the special case P (s) = sE −A. It is easily seen
(cf. the proof of [2, Thm. 7]) that these two descriptions are isomorphic, in particular, any higher order model can be written
as a first order model. We also consider initial trajectory problems (ITPs) of the following form

x(−∞,0) = x0(−∞,0),

(P ( d
dt )x)[0,∞) = f[0,∞),

(3)

with given initial trajectory x0. We want to study how unimodular transformation effect a solution of the ITP (3). More
precisely, we are interested how a solution (x, f) of (3) is related to a solution (x̃, f̃) for the ITP

x̃(−∞,0) = x̃0(−∞,0),

(P̃ ( d
dt )x̃)[0,∞) = f̃[0,∞),

(4)

with P̃ (s) := U(s)P (s)V (s) where U(s) ∈ R[s]`×` ad V (s) ∈ R[s]n×n are unimodular. Our motivation for such a
transformation is twofold: First, index reduction for a DAE can be performed via a suitable unimodular matrix U(s), and
second, transformations with unimodular matrices can be used to decide whether a delay differential-algebraic equation is
delay-regular [3].

2 Unimodular transformations and initial trajectory problems

In order to compare solutions of (3) and (4) we make the following definition.
Definition 2.1 The DAE (2), respectively the ITP (3), is called regular if, and only if, for all initial trajectories x0 ∈ Dn

pwC∞
and all inhomogeneities f ∈ D`

pwC∞ a unique solution x ∈ Dn
pwC∞ for the ITP (3) exists.

The ITP (3) can be interpreted as a switched DAE with a switch at time t = 0. Following [1, Thm. 3.5.2] and the proof
of [2, Thm. 7] we conclude that the ITP (3) is regular if, and only if, ` = n and det(P (s)) 6≡ 0. Unimodularity of U(s) and
V (s) implies that the ITP (3) is regular if, and only if, the transformed ITP (4) is regular.

Before we present our main result, we need the following technical observation.

Lemma 2.2 Consider F ∈ D`
pwC∞ and U(s) =

∑d
k=0 Uks

k ∈ R[s]`×`. Then

U( d
dt )
(
F[0,∞)

)
=
(
U( d

dt )F
)
[0,∞)

+

d∑

k=0

Uk

k−1∑

i=0

F (k−1−i)(0−)δ(i),

where δ denotes the Dirac impulse.
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P r o o f. The result is a direct consequence of [4, Prop. 12]. Indeed, applying [4, Prop. 12] yields

U( d
dt )
(
F[0,∞)

)
=

d∑

k=0

Uk

( d
dt

)k
F[0,∞) =

d∑

k=0

Uk

((
F (k)

)
[0,∞)

+
k−1∑

i=0

F (k−1−i)(0−)δ(i)
)

=
(
U( d

dt )F
)
[0,∞)

+

d∑

k=0

Uk

k−1∑

i=0

F (k−1−i)(0−)δ(i).

Theorem 2.3 Let P (s) ∈ R[s]`×n and define P̃ (s) := U(s)P (s)V (s) with unimodular matrices V (s) ∈ R[s]n×n and
U(s) =

∑d
k=0 Uks

k ∈ R[s]`×`. For any x̃0, x̃ ∈ Dn
pwC∞ and f̃ ∈ D`

pwC∞ define

x := V ( d
dt )x̃, x0 := V ( d

dt )x̃
0, and f := U−1( d

dt )

(
f̃[0,∞) +

d∑

k=0

Uk

k−1∑

i=0

(P ( d
dt )x

0)(k−1−i)(0−)δ(i)
)
.

Then x̃ is a solution of the ITP (4) with initial trajectory x̃0 and inhomogeneity f̃ if, and only if, x is a solution of the ITP (3)
with initial trajectory x0 and inhomogeneity f .

P r o o f. First assume that x is a solution of the ITP (3) with initial trajectory x0 and inhomogeneity f . Then

x̃(−∞,0) = (V −1( d
dt )x)(−∞,0) = (V −1( d

dt )x(−∞,0))(−∞,0)

= (V −1( d
dt )x

0
(−∞,0))(−∞,0) = (V −1( d

dt )x
0)(−∞,0) = x̃0(−∞,0).

Lemma 2.2 implies

(P̃ ( d
dt )x̃)[0,∞) = (U( d

dt )P (
d
dt )x)[0,∞)

= U( d
dt )(P (

d
dt )x)[0,∞) −

d∑

k=0

Uk

k−1∑

i=0

(P ( d
dt )x)

(k−1−i)(0−)δ(i)

= U( d
dt )
(
f[0,∞)

)
−

d∑

k=0

Uk

k−1∑

i=0

(P ( d
dt )x

0)(k−1−i)(0−)δ(i)

= f̃[0,∞),

i.e., x̃ is a solution of the ITP (4) with initial trajectory x̃0 and inhomogeneity f̃ .
The converse direction follows analogously. In fact, from x̃ being a solution of the ITP (4) with initial trajectory x̃0 and

inhomogeneity f̃ , it follows that x(−∞,0) = x0(−∞,0) and

U( d
dt )((P (

d
dt )x)[0,∞)) = U( d

dt )f = U( d
dt )f[0,∞).

Remark 2.4 In an index-reduction procedure the inhomogeneity f in (2) is replaced with a linear combination of f and
its derivatives. If however the solution of (2) is not smooth at t = 0, then additional Dirac impulses and derivatives of Dirac
impulses may occur. In Theorem 2.3 this is accounted for in the definition of f .
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