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Abstract

A problem of characterizing conditions under which a topological change in a network of differential algebraic equations
(DAEs) can go undetected is considered. It is shown that initial conditions for which topological changes are indiscernible
belong to a generalized eigenspace shared by the nominal system and the system resulting from a topological change.
A condition in terms of eigenvectors of the nominal system is derived to check for existence of possibly indiscernible
topological changes. For homogenous networks this condition simplifies to the existence of an eigenvector of the Laplacian
of network having equal components. Lastly, a rank condition is derived which can be used to check if a topological
change preserves regularity of the nominal network.
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1. Introduction

Control theory of dynamical networks and multia-
gent systems has gained enormous popularity in the last
years because it involves numerous important applications,
as well as many unsolved mathematical questions. In
the engineering domain, dynamical networks and mul-
tiagent systems networks naturally arise in cooperative
robotics, surveillance and environment monitoring (Ögren
et al., 2004; Beard et al., 2006; Arcak, 2007), as well as
man-made infrastructures such as electrical power grids
(Chakrabortty and Khargonekar, 2013) and transporta-
tion networks (Banavar et al., 2000).

Networks can be modelled in terms of a graph, where the
nodes represent the various network agents and the edges
represent the interaction among the nodes. The overall
network dynamics is then the result of the dynamics of
each node and the network topology (the interconnection
structure formed by the edges). It is known that topology
variations may have a major impact on the network be-
havior. In sensor networks, transceiver failures may signif-
icantly degrade the system performance (Bai et al., 2011).
In power systems, the failure of a transmission line may
even affect the network secure operations (Zhu and Gian-
nakis, 2012). Because of that, the study of network stabil-
ity/performance in the presence of time-varying topologies
has evolved into an active area of research. Most of the
research works in this area, however, have focused only on
understanding how topological changes affect the network
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collective behavior, while little is known on whether topo-
logical changes can be actually revealed, which is funda-
mental to monitor and assess the network state-of-health.
In fact, in many practical situations the occurrence of a
topological variation cannot be revealed by direct instru-
mentation; in contrast, they must be inferred by monitor-
ing the network evolution. This is the case for instance in
distribution networks where information about the topol-
ogy is usually not available directly and must be inferred
from indirect sensor data like PMUs (Cavraro et al., 2015).

In the literature, most of the research works deal-
ing with the problem of detecting network topological
changes have focused on algorithms for on-line detec-
tion (detectors). Examples are methods based on de-
tecting jumps in the measurements (Rahimian and Pre-
ciado, 2015), signature-based methods (Cavraro et al.,
2015), Kalman-based approaches (Costanzo et al., 2017),
approaches based on nearest neighbor communication (Ba-
rooah, 2008) and methods based on orthogonal matching
pursuit and the LASSO (Zhu and Giannakis, 2012). What-
ever the specific algorithm, a basic and largely unexplored
question remains on what are the theoretical limitations
to the detection problem (detectability). This amounts to
asking whether there are topological changes which cannot
be detected irrespective of the specific detection algorithm
one is willing to use. To the best of our knowledge, all the
research works addressing the issue of detectability con-
sider networks whose dynamics can be fully described in
terms of differential equations (Rahimian et al., 2012; Dhal
et al., 2013; Rahimian and Preciado, 2015; Torres et al.,
2015; Battistelli and Tesi, 2015, 2017; Costanzo et al.,
2017). In contrast, there are no results dealing with dy-
namics that obey differential-algebraic equations (DAEs),
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which naturally arise in the presence of mass and energy
balance constraints as in water distribution and electri-
cal circuits. A preliminary result in this direction is our
conference publication (Küsters et al., 2017) which only
considers the SISO case and also does not characterize the
set of network states leading to undetectable topological
changes. In this paper we provide a thorough investigation
of the detectability problem for a general class of DAE net-
works, which also involve multivariable and heterogeneous
dynamics.

We consider networks of DAEs with diffusive coupling,
and study under what conditions topological changes (in
particular, a removal or addition of an edge) cannot be de-
tected from observations of the network dynamics, refer-
ring to this event as “indiscernibility”. We approach this
problem from the perspective of control theory and provide
necessary and sufficient conditions for indiscernibility that
depend on the common eigenspaces of the nominal (before
the addition/removal of an edge) and modified network
configuration. In this respect, a very interesting result is
that indiscernibility can be checked by only looking at the
eigenspace of the nominal network configuration. In many
practical cases, the latter is usually known in advance since
it represents the configuration with which the network is
designed to operate. This renders the approach appealing
from a practical viewpoint since it allows one to check the
existence of indiscernible topological changes with no need
to look at all the possible modified topologies. Another in-
teresting result is that the considered approach is general
enough so as to include the case where each network node
obeys different dynamics, and has possibly different state
dimension.

The results presented here establish fundamental limita-
tions to the problem of detecting topological changes from
measurements, that is limitations which hold irrespective
of the specific detection algorithm (detector) one is will-
ing to use. The problem of designing detectors is left for
future research, and it is discussed in more details in the
paper conclusions. Finally we would like to note that de-
tecting topological changes can be seen as part of the more
general problem of network identifiability (Timme, 2007;
Chowdhary et al., 2011; Sanandaji et al., 2011; Nabavi and
Chakrabortty, 2016; Angulo et al., 2017). In fact, check-
ing whether or not two different network configurations
can generate the same dynamics can also be approached
by asking under what conditions one can uniquely iden-
tify from observations the coupling parameters of the net-
work. However, the problem considered here has much
more “structure” than a generic topology identification
problem. For example, identification approaches do not
assume prior knowledge of a nominal network configura-
tion. In the present context, this knowledge makes it pos-
sible to provide conditions on discernibility that can be
checked by only looking at the properties of the nominal
network configuration.

This paper is organized as follows. First, we define a
nominal network of DAEs and obtain a resulting overall

DAE. We also note the effect of addition/removal of an
edge on the overall DAE and characterize it as a rank
one update to system matrix. Then, we introduce the
notion of indiscernibility and bring out a connection be-
tween indiscernibility and existence of common generalized
eigenspace. This leads to a simple condition on the nomi-
nal network which can be used to characterize all topolog-
ical changes which are possibly indiscernible. Afterwards,
we consider a special case of homogeneous networks and
obtain a condition for possibly indiscernible topological
change which can be checked solely from eigenvectors of
the Laplacian of nominal network. Lastly, we give a simple
rank condition which helps us check whether a topological
change is regularity preserving.

2. System class

We consider a family of N ∈ N differential algebraic
equations (DAEs),

Eiẋi = Aixi +Biui,

yi = Cixi,
i ∈ {1, 2, . . . , N}, (1)

where Ei, Ai ∈ Rni×ni , ni ∈ N, Bi, C
>
i ∈ Rni×p, p ∈ N.

Note that each system can have its own state dimension
and we allow multiple inputs and outputs (but with the
same number p for all systems). Furthermore, we do not
assume that the individual systems are regular (i.e. we al-
low that det(sEi−Ai) is identically zero for some or all i);
in particular, without the coupling with the other systems
the individual systems may not have solutions for all in-
puts ui and solutions, if they exists, may not be uniquely
determined by the initial value and the input. We will
however assume that the overall networks dynamics are
described by a regular DAE, see Section 6 for more de-
tails.

The systems are coupled with each other via diffusive
coupling, i.e. for a given undirected coupling graph G =
(V,E) with vertices V = {1, 2, . . . , N} and edges E ⊆ V×
V; the input of the i-th system is determined by the output
of all neighbouring systems as follows:

ui =
∑

k:(i,k)∈E

wik(yk − yi), (2)

where wij > 0 with wji = wij for i, j ∈ V.
Let the weighted Laplacian matrix L = [`i,j ]i,j∈V of the

graph G be given by

`ij =


−wij , i 6= j, (i, j) ∈ E,

0, i 6= j, (i, j) 6∈ E,∑
k:(i,k)∈E

wik, i = j;
(3)

note that L ∈ RN×N is a symmetric and positive semidef-
inite matrix. We then can write the coupled dynamics in
compact form as

E ẋ = (A− B(L⊗ Ip)C)x =: ALx, (4)
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where, for n :=
∑N
i=1 ni,

x := (x>1 , x
>
2 , . . . , x

>
N )>,

E := diag{E1, . . . , EN} ∈ Rn×n,
A := diag{A1, . . . , AN} ∈ Rn×n,
B := diag{B1, . . . , BN} ∈ Rn×Np,
C := diag{C1, . . . , CN} ∈ RNp×n,

and L⊗Ip ∈ RNp×Np denotes the usual Kronecker product
of L ∈ RN×N with the identity matrix Ip ∈ Rp×p.

3. Indiscernible initial states

In the following we are interested in the effect of a topo-
logical change in the coupling structure and its effect on
the systems dynamics. In particular, we are interested
in characterizing topological change which do not result
in changes in the dynamics (for certain initial values). A
topological change in the form of a removal/addition of
an edge or, more general, a change in the edge weight, re-
sults in a change of the description (4) where L is replaced
by the new Laplacian matrix L while all other matrices
(E ,A,B, C) remain unchanged.

Definition 1 (Indiscernible initial states). Consider the
coupled system (4). An initial value x0 ∈ Rn is called
indiscernible with respect to the topological change L→ L
iff for all solutions x of E ẋ = ALx and all solutions x of
E ẋ = ALx the following implication holds:

x(0) = x0 = x(0) =⇒ x(t) = x(t) ∀t ∈ R.

Note that x0 = 0 is always an indiscernible initial state
(independently of the specific topological variation) and
for certain topological variations it may be the only in-
discernible initial state. We are now interested in fully
characterizing the set of all indiscernible initial states. To-
wards this goal we will need to recall some basic properties
about eigenvectors of matrix pairs, cf. Berger et al. (2012,
Defs. 3.1&3.3).

Definition 2 (Eigenvalues and eigenvector chains). For
a matrix pair (E,A) ∈ Rn×n × Rn×n a complex number
λ ∈ C is called eigenvalue if there exists a nontrivial v ∈
Cn\{0} such that (A−λE)v = 0. The set of all eigenvalues
of (E,A) is denoted by spec(E,A).

A tuple of (complex) vectors (v1, v2, . . . , vk) ∈ (C\{0})k
is called eigenvector chain (EVC) of (E,A) for an eigen-
value λ ∈ C iff v1 is an eigenvector and for all i =
2, 3, . . . , k:

(A− λE)vi = Evi−1. (5)

The eigenspace of order k for eigenvalue λ ∈ C is recur-
sively given by V0

λ := {0} and

Vkλ := (A− λE)−1(EVk−1
λ ) ⊆ Cn;

here (A−λE)−1 stands for the set-valued preimage (A−λE
is not invertible).

The limit Vλ :=
⋃
k∈N Vkλ of the increasing subspace se-

quence Vkλ is called generalized eigenspace for eigenvalue
λ; note that V1

λ is the space of eigenvectors corresponding
to λ.

When introducing eigenvalues, eigenvectors and eigen-
vector chains, it is common to assume regularity of the
matrix pair (E,A), i.e. the polynomial det(sE −A) is not
identically zero. While this is not strictly necessary, most
of the following properties only hold under the regularity
assumption and we will mention this additional assump-
tion appropriately.

Note that in addition to the finite eigenvalues as defined
in Definition 2, a general (regular) matrix pair (E,A) also
has infinite eigenvalues corresponding to the zero eigen-
value of the reversed matrix pair (A,E). These infinite
eigenvalues and the corresponding EVCs play an impor-
tant role in the analysis and control of DAEs; however, it
turned out that (maybe surprisingly) they are not relevant
in the context studied here. In particular, our results are
independent of the so called index of the overall network
DAE.

An interesting characterization for eigenvector chains of
a regular matrix pair (E,A) is the following (Berger et al.,
2012, Prop. 3.8): (v1, v2, . . . , vk) is an eigenvector chain
for eigenvalue λ ∈ C if, and only if, all (complex-valued)
functions, i = 1, 2, . . . , k,

xi(t) = eλt[v1, v2, . . . , vi]

(
ti−1

(i− 1)!
, . . . ,

t2

2
, t, 1

)>
(6)

are linearly independent solutions of Eẋ = Ax; note that
xi(0) = vi. In fact, the following stronger result holds
(which is a simple consequence from the above character-
ization together with (Berger et al., 2012, Thm 3.6)):

Lemma 3. For a regular matrix pair (E,A) with dis-
tinct eigenvalues {λ1, λ2, . . . , λd} ∈ C there exists for each
` ∈ {1, 2, . . . , d} and for each j ∈ {1, 2, . . . ,dimV1

λ`
} a

number k`,j and an eigenvector chain (v`,j1 , v`,j2 , . . . , v`,jk`,j )
for eigenvalue λ` such that all solutions of Eẋ = Ax are
given by

x(t) =

d∑
`=1

eλ`t
dimV1

λ`∑
j=1

k`,j∑
i=1

α`,j,i

i∑
η=1

v`,jη
ti−η

(i− η)!
(7)

and the coefficients α`,j,i are uniquely determined by the
initial value x(0). In particular, the set v`,ji

∣∣∣∣∣∣
` ∈ {1, . . . , d},
j ∈ {1, . . . ,dimV1

λ`
},

i ∈ {1, . . . , k`,j}


is linearly independent and the coefficients α`,j,i are deter-
mined by the unique decomposition

x(0) =

d∑
`=1

dimV1
λ`∑

j=1

k`,j∑
i=1

α`,j,i v
`,j
i .
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With the help of common EVCs it is now possible to
characterize all indiscernible initial states as follows:

Theorem 4. Consider a network with dynamics given by
(4) and a regularity preserving1 topological change L→ L.
Let

CL,L :=

v ∈ Cn

∣∣∣∣∣∣∣∣
∃(v1, v2, . . . , vk) common EVC of
(E ,AL), (E ,AL) for the same
eigenvalue λ ∈ C and
v = vi for some i ∈ {1, 2, . . . , k}


be the set of all vectors which appear in a common eigen-
vector chain of (E ,AL) and (E ,AL). Then x0 ∈ Rn is an

indiscernible initial state for the topological change L→ L
if, and only if, it is in the span of all common eigenvector
chains of (E ,AL) and (E ,AL), i.e.

x0 ∈ spanCL,L ∩ Rn.

Proof. Sufficiency is easily seen by considering a linear
combination of (common) solutions of the form (6).

For showing the converse implication, let us assume that
x0 is indiscernible i.e., x ≡ x̄, where x denotes the solution
of E ẋ = ALx, x(0) = x0 and x̄ is the solution of E ˙̄x =
ALx̄, x̄(0) = x0; in particular, x is given by (7), where

(v`,j1 , . . . , v`,jk`,j ) is the j-th eigenvector chain of (E ,AL) for
eigenvalue λ` and

x̄(t) =

d̄∑
`=1

eλ̄`t
dim V̄1

λ̄`∑
j=1

k̄`,j∑
i=1

ᾱ`,j,i

i∑
η=1

v̄`,jη
ti−η

(i− η)!
,

where (v̄`,j1 , . . . , v̄`,jk`,j ) is an eigenvector chain of (E ,AL) for

one of the d̄ eigenvalues λ̄1, . . . , λ̄d̄.
Due to the linear independence of the exponential func-

tion (with distinct growth rates) it follows that x ≡ x̄ is
only possible, when there is at least one common eigen-
value (unless x0 = 0). We can reorder the eigenvalues
such that for some r ≥ 1

λ1 = λ̄1, . . . , λr = λ̄r

and λp 6= λ̄q for all p, q > r, then x ≡ x̄ implies for ` =
1, 2, . . . , r

dimV1
λ`∑

j=1

k`,j∑
i=1

α`,j,i

i∑
η=1

v`,jη
ti−η

(i− η)!
=

dim V̄1
λ̄`∑

j=1

k̄`,j∑
i=1

ᾱ`,j,i

i∑
η=1

v̄`,jη
ti−η

(i− η)!
(8)

and, for all ` > r and all corresponding i, j

α`,j,i = 0, ᾱ`,j,i = 0.

1i.e. the matrix pairs (E,AL), (E,AL) are both regular

By repeatedly taking time-derivatives of (8) and evalu-
ating at t = 0 we obtain the following equalities for
κ = 0, . . . , κ`max := max{k`,j , k̄`,j} − 1:

w`κ :=

dimV1
λ`∑

j=1

k`,j∑
i=1

α`,j,iv
`,j
i−κ =

dimV1
λ̄`∑

j=1

k̄`,j∑
i=1

α`,j,iv̄
`,j
i−κ;

here we use the convention that quantities indexed outside
their actual domain are zero by definition. It then follows
for all ` = 1, 2, . . . , r and all κ = 0, 1, 2, . . . , κ`max:

(AL − λE)w`κ =

dimV1
λ`∑

j=1

k`,j∑
i=1

α`,j,i(AL − λE)v`,ji−κ

=

dimV1
λ`∑

j=1

k`,j∑
i=1

α`,j,iEv`,ji−κ−1 = Ew`κ+1,

where w`κ`max+1 := 0. An analogous calculation shows that

(AL − λE)w`κ = Ew`κ+1;

in particular, the tuple (w`κ`max
, . . . , w`1, w

`
0) (note the re-

versed order) satisfies the eigenvector chain condition (5)
and we have shown that

x(0) =

r∑
`=1

w`0

is an element of spanCL,L.

Remark 5. Note that existence of at least one common
eigenvector is both necessary and sufficient for the exis-
tence of a nontrivial indiscernible initial condition (because
any common eigenvector chain also contains a common
eigenvector). But the set of initial conditions which are
indiscernible are not limited to the span of common eigen-
vectors; they are spanned by common eigenvector chains.
Only when all (common) eigenvalues are semi-simple (i.e.
they do not correspond to Jordan blocks of size bigger than
one), the span of common eigenvectors yields the whole
space of indiscernible initial states.

4. Indiscernible topological changes

In the design of a suitable network topology (with Lapla-
cian matrix L) one goal could be to avoid the existence of
any (nontrivial) indiscernible initial state with respect to
many fault scenarios L→ L. It is therefore meaningful to
define the following properties of a topological change:

Definition 6. For a coupled system (4) a topological
change L → L is called always-discernible if there is
no (nontrivial) indiscernbible initial state and possibly-
indiscernible if there exists a nontrivial indiscernible initial
state.
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Note that we do not simply say that a topological change
is discernible/indiscernible because the possibility to de-
tect a topological change strongly depends on the ini-
tial state. Furthermore, even when a topological change
is possibly-indiscernible, it will usually be discernible for
almost all initial states, because the subspace of indis-
cernible initial states is a subspace of dimension usually
smaller than n.

Our goal is now to provide a simple characterization of
possible-indiscernibility which does not require the calcu-
lation of the whole set of indiscernible initial states. The
following lemma is a key observation towards this goal:

Lemma 7. Let (λ, v) ∈ C × Cn \ {0} be an eigenvalue-
eigenvector pair of (E ,AL). Then (λ, v) is also an
eigenvalue-eigenvector of (E ,AL) if, and only if,

v ∈ ker(AL −AL)

Proof.

(AL − λE)v = 0 ⇔ (AL −AL +AL − λE)v = 0

(AL−λE)v=0⇔ (AL −AL)v = 0.

Utilizing the special structure of AL−AL we can derive
the main result of this section:

Theorem 8. Consider a family of DAEs of the form (1)
connected by a network graph G = (V,E) with weighted
Laplacian L resulting in the overall system (4), which
we assume to be regular. Any regularity-preserving re-
moval/addition of the edge (i, j) is a possibly-indiscernible
topological change if, and only if, there exists an eigenvec-
tor v ∈ Cn \ {0} of (E ,AL) with

(Cv)i − (Cv)j ∈ ker

[
Bi
Bj

]
; (9)

here (Cv)k ∈ Rp (for k either i or j) denotes the k-th
(block) entry of the vector Cv ∈ RNp consisting in total of
N entries of length p.

Proof. The addition/removal of edge (i, j) leads to a
topological change L→ L with

L = L± wij(ei − ej)(ei − ej)>;

hence v ∈ ker(AL −AL) if, and only if,

Cv ∈ kerB((ei − ej)(ei − ej)> ⊗ Ip);

where we used bilinearity of the Kronecker product and
wij 6= 0. It is easily seen that

B((ei− ej)(ei− ej)>⊗ Ip) =


0 0 0 0 0
0 Bi 0 -Bi 0
0 0 0 0 0
0 -Bj 0 Bj 0
0 0 0 0 0

, (10)

with suitably sized zero matrices. Together with Theo-
rem 4 (in particular, Remark 5) and Lemma 7 this shows
the claim of the Theorem.

Remark 9. The condition (9) derived in Theorem 8 es-
tablishes fundamental limitations to the problem of detect-
ing topological changes in DAEs networks with dynamics
as in (4). In fact, under (9) there exist edges whose re-
moval/addition can go undetected irrespective of the de-
tection algorithm one is willing to use, even in the most
favourable situation where the whole network state is avail-
able for measurements. In connection with condition (9),
it is worth remarking that this condition does only involve
the knowledge of the dynamics of the nodes (the matrices
(Ei, Ai, Bi, Ci), which are usually obtained through a local
identification procedure) and the topology of interest (the
Laplacian L, which represents the nominal configuration
under which the network should operate). This condition
can be therefore checked off-line and without actually mea-
suring the network evolution. The very same conclusions
apply to Corollary 14 of Section 5.

Remark 10. The condition (9) derived in Theorem 8 will
be satisfied if either (Cv)i = (Cv)j or (Cv)i − (Cv)j ∈

ker

[
Bi
Bj

]
. If (Cv)i = (Cv)j then there is no diffusion tak-

ing place at the edge (i, j) and as a result any addition or
removal of edge between i-th and j-th vertex will go un-

detected. On the other hand, if (Cv)i − (Cv)j ∈ ker

[
Bi
Bj

]
then the diffusive coupling between i-th and j-th vertex
is unable to influence the dynamics at the respective ver-
tices. Thus, any addition or removal of edge between i-th
and j-th vertex will once again go undetected. Further,
if we assume that input matrices Bi are of full column
rank for all i, then condition (9) reduces to (Cv)i = (Cv)j .
It also follows from (9) that a necessary requirement to
avoid the existence of a possibly-indiscernible topological
change is that the overall dynamics of the network with
output y = Cx must be observable in a behavioral sense
(Berger et al., 2017). In fact, in the unobservable case
there always exists a pair (λ, v) satisfying ALv = λEv
along with Cv = 0, which implies the fulfilment of (9)
regardless of B. Unobservable states are obviously a par-
ticular class of initial states for which no diffusion takes
place. Notice that the same conclusions could have been
drawn also by looking at Theorem 4 since the existence of
a pair (λ, v) satisfying ALv = λEv and Cv = 0 implies that
ALv = ALv = Av, which means that (λ, v) is a common
eigenvalue-eigenvector pair of (E ,AL) and (E ,AL).

For illustrating the above result, we will present two ex-
amples. The first example is the well known Wheatstone
bridge with additional grounded capacitors which we re-
call from (Küsters et al., 2017, Ex. 6); the second exam-
ple is a 9 bus power grid benchmark from MATPOWER
(Zimmerman et al., 2011) which is similar to the Western
System Coordinating Council (WSCC) 3-Machine-9-Bus
power network (Sauer and Pai, 1998).
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Example 11. Consider a circuit as shown in Figure 1.

R 34

R14

R13

R24

R23

C1

C2

v4

v1 v3

v2

Figure 1: RC-circuit.

Here nodes 1 and 2 are connected to grounded capacitors
and hence lead to dynamic equations. On the other hand
nodes 3 and 4 lead to algebraic equations. At each node i
we have as state variable the potential vi, which is also the
output yi, and as input the total current ui flowing into
this node (via a resistive edge); the relationship of state,
input and output is described by a DAE for each node as
follows.

Node 1 : C1v̇1 = u1, y1 = v1,

Node 2 : C2v̇2 = u2, y2 = v2,

Node 3 : 0 = u3, y3 = v3,

Node 4 : 0 = u4, y4 = v4.

Note that the DAEs at node 3 and 4 are non-regular: The
state variables v3 and v4 are completely free, and the in-
put variables u3 and u4 are not arbitrary. The nodes are
coupled via resistors, which lead to the following coupling
conditions:

u1 = R14(v4 − v1) +R13(v3 − v1),

u2 = R24(v4 − v2) +R23(v3 − v2),

u3 = R13(v1 − v3) +R23(v2 − v3) +R34(v4 − v3),

u4 = R14(v1 − v4) +R24(v2 − v4) +R34(v3 − v4).

The overall system equation is given by (4) with

E =


C1 0 0 0
0 C2 0 0
0 0 0 0
0 0 0 0

, A = 04×4, B = I4, C = I4

and

L =

[
R13+R14 0 −R13 −R14

0 R23+R24 −R23 −R24

−R13 −R23 R13+R23+R34 −R34

−R14 −R24 −R34 R14+R24+R34

]
.

In this case, equation (4) reduces to

E v̇(t) = −Lv(t). (11)

Assuming equal values of magnitude one for all the resis-
tances and capacitances in this circuit, we compute the

eigenvalues and eigenvectors of the matrix pair (E ,−L).
There are two finite eigenvalues λ1 = 0 and λ2 = −2 with
corresponding eigenvectors

v1 =


1
1
1
1

 , v2 =


1
−1
0
0

 .

Clearly, both the eigenvectors are such that (Cv)3−(Cv)4 =
0 is satisfied. Thus, by Theorem 8, the addition/removal
of edge (3, 4) is indiscernible for “any” consistent initial
value.

Example 12. We consider a power grid model which is
similar to the WSCC 3-machine 9-bus power network con-
sists of 3 generators and 9 buses; the generators are con-
nected to buses 1, 2, 3 and loads are connected on buses
4, ..., 9 (see Figure 2).

Figure 2: WSCC 3 Machine 9 Bus Power Grid

To use Theorem 8, we will derive a DAE model of the
form (4) describing the overall network dynamics (Küsters
et al., 2017; Küsters, 2018). Generators connected to bus
i = 1, 2, 3 are governed by the following differential equa-
tions

α̇i(t) = ωi(t),

M iω̇i(t) = −Diωi(t) + P ig(t)− P ie(t),

where αi, is the (incremental) angle and ωi is the angular
velocity of the rotor of the i-th generator, P ig is the genera-

tor power and P ie is the electrical power acting on the rotor
of the i-th generator; Mi, D

i ∈ R are the mass and damp-
ing coefficients of the i-th generator, respectively. Assum-
ing that the difference in the rotor angle αi(t) and the
voltage angle θi(t) at the i-th bus stays small, the electri-
cal power acting on the rotor of the i-th generator is given
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by:

P ie(t) =
1

zi

(
αi(t)− θi(t)

)
,

where zi > 0 is the transient reactance of the generator
connected to the i-th bus. Let P i(t) be the power fed (or
extracted out) at the bus i. Also, assume that the differ-
ence in voltage angles between two connected bus stays
sufficiently small and the line conductances are negligible.
Then, the linearized power flow equation at the generator
bus i = 1, 2, 3 is

P i(t) + P ie(t) =

9∑
k=1

wik(θk(t)− θi(t))

and at load bus i = 4, ..., 9 is

P i(t) =

9∑
k=1

wik(θk(t)− θi(t))

where wik = −bik = −bki ≥ 0, and bik is the (nonpositive)
susceptance between buses i and k. Next let the generator
power and power extracted out at the load bus be con-
stant, which allows us to include them as state variables
with vanishing derivative. Altogether we obtain for the
generator buses i = 1, 2, 3 the following DAEs

Eiẋi = Aixi +Biui

yi = Cixi

where xi := (P i, P ig, α
i, ωi, θi)> and

Ei =


1

1
1

M i

0

 ,

Ai =


0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 1 − 1

zi
−Di 1

zi
−1 0 − 1

zi
0 1

zi

 ,
Bi = e5, Ci = e>5

and for the load buses i = 4, ..., 9, we get

Eiẋi = Aixi +Biui

yi = Cixi

where xi = (P i, θi)> and

Ei =

[
1 0
0 0

]
, Ai =

[
0 0
−1 0

]
, Bi =

[
0
1

]
, Ci =

[
0 1

]
,

Note that similar as in Example 12 the DAEs correspond-
ing to non-dynamic nodes are modeled by non-regular

DAEs. The coupling equations for all buses are given by
power flow equations as follows

ui =

9∑
k=1

wik(θk − θi).

Since, the entire graph is one connected component and it
contains three generator buses, the overall DAE is regular
(see (Gross et al., 2016)). Thus, we can now use Theorem 8
to obtain possibly indiscernible topological changes in this
power network. For that we assume generator parameter
values from (Sauer and Pai, 1998) shown in following table.

Bus i Mi Di zi

i = 1 0.15 0.015 0.14
i = 2 0.04 0.008 0.89
i = 3 0.02 0.006 1.31

The line impedances are as follows z14 = 0.0576i, z45 =
0.017 + 0.092i, z56 = 0.039 + 0.17i, z67 = 0.0119 + 0.1008i,
z78 = 0.0085 + 0.072i, z89 = 0.032 + 0.16i, z94 = 0.01 +
0.085i, z36 = 0.0586i, z28 = 0.0625i, with corresponding

line susceptances bij := − im(zij)
|zij |2 . Assuming these param-

eter values we can now form matrices E ∈ R27×27 and
AL = (A − BLC) ∈ R27×27 required to form the overall
DAE (4).

For this network, there exists an eigenvector v ∈ R27

corresponding to a zero eigenvalue written as follows:

v =
[
v>1 v>2 . . . v>9

]
with

vi =
[

1
zi

−1
zi

0 0 1
]>

for i = 1, 2, 3

vi =
[
0 1

]>
for i = 4, ..., 9.

For this eigenvector, the condition (9) of Theorem 8 is sat-
isfied for all 1 ≤ i, j ≤ 9. Therefore, we conclude that for
this specific initial value any topological change is indis-
cernible. Note that this eigenvector can be written an-
alytically for any network topology and is not restricted
to the example under consideration. It corresponds to a
situation wherein all buses are operating at same voltage
angles resulting in no power flowing between lines; as a
consequence, any line changes will not be discernible.

On numerically computing all eigenvectors correspond-
ing to non-zero eigenvalues, we note that condition (9)
is not satisfied. Therefore, starting with initial condi-
tions from span of eigenvectors corresponding to non-zero
eigenvalues, all topological changes in this network are dis-
cernible.

However, it is also important to note that for eigen-
vectors corresponding to non-zero eigenvalues, condition
(9) is “close” to being satisfied for some lines. The
non-zero eigenvalues are −0.1381, −0.1148 ± 7.3537i and
−0.1162 ± 6.0873i. Let us denote an eigenvector cor-
responding to eigenvalue −0.1381 by v1 ∈ R27. Simi-
larly, let v2 ∈ C27, its complex conjugate v3 ∈ C27, and
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v4 ∈ C27, its complex conjugate v5 ∈ C27, be eigenvec-
tors corresponding to complex conjugate pair of eigenval-
ues −0.1304± 7.1067i and −0.1162± 6.0873i respectively.
For v1, we observe that |(Cv1)i − (Cv1)j | is of the order of
magnitude 10−4 for any 1 ≤ i, j ≤ 9, i 6= j. Thus, it can be
said that a line change between any two buses is “close” to
being possibly indiscernible. For eigenvectors v2 and v3 the
quantities |(Cv2)7 − (Cv2)8| and |(Cv3)7 − (Cv3)8| are also
of the order of magnitude 10−4; thus, disconnecting line
(7, 8) is “close” to being possible indiscernible. Lastly, for
eigenvectors v4 and v5 too, the quantities |(Cv4)4− (Cv4)5|
and |(Cv5)4 − (Cv5)5| are of the order of magnitude 10−4;
therefore, disconnecting line (4, 5) is also “close” to being
possible indiscernible. It is clear that the discernibility of
changes in links will depend upon the precision with which
the output at each node is being measured. Thus, the no-
tion of “degree” of discernibility, considered in (Baglietto
et al. (2014)) for classical ODEs, becomes relevant. How-
ever, an investigation of this point in the context of DAE
networks is a subject of future research.

5. Indiscernibility for homogeneous networks

For homogenous networks, it is possible to simplify the
result further. In this case, we have identical differential
equations connected by a graph G = (V,E) with weighted
Laplacian L. Substituting Ei = E, Ai = A, Bi = B,
Ci = C and ni = n for all i ∈ V in (4), we are able to
write the overall dynamics in a simplified form as follows.

E ẋ = ALx, (12)

where
E := (IN ⊗ E),

AL := (IN ⊗A)− L⊗BC.
As a result, indiscernibility of homogenous DAE net-

work can be partly described in terms of the eigenvectors
of the Laplacian of the connection graph under certain
observability assumptions. For that we first note the
following properties of eigenvalue-eigenvectors pairs of
(E ,AL) in the homogeneous case.

Lemma 13. Let α1, α2, . . . , αN ∈ R be the N real eigen-
values (counting multiples) of the symmetric Laplacian L.
Then, for (E ,AL) as above,

spec(E ,AL) =

N⋃
i=1

spec(E,A− αiBC). (13)

Furthermore, for all eigenvalues α of L, all corresponding
eigenvectors zα and any eigenvector chain (wα1 , . . . , w

α
k ) of

(E,A − αBC) we have that (v1, . . . , vk) is an eigenvector
chain of (E ,AL), where

vi = zα ⊗ wαi , i = 1, . . . , k. (14)

Conversely, all generalized eigenspaces of (E ,AL) are
spanned by vectors of the form (14).

Proof. Since L is symmetric there exists an orthogo-
nal coordinate transformation S such that S>LS = Λ =
diag{α1, . . . , αN}. Choose a coordinate transformation
D := S⊗ In for AL. From the properties of the Kronecker
product (X ⊗ Y )> = X> ⊗ Y > and (X ⊗ Y )(Z ⊗W ) =
(XZ ⊗ YW )) it follows that

D>AD = D>(IN ⊗A)D

= (S> ⊗ In)(IN ⊗A)(S ⊗ In)

= (S> ⊗ In)(S ⊗A) = IN ⊗A = A,
D>ED = E

and

D>(L⊗BC)D = (S> ⊗ In)(L⊗BC)(S ⊗ In)

= Λ⊗BC.

Therefore,

D>ALD = D>AD −D>(L⊗BC)D

= (IN ⊗A)− (Λ⊗BC)

= diag{A− α1BC,A− α2BC, . . . , A− αNBC},

which shows (13).

Note that for any eigenvalue-eigenvector pair (α, zα) ∈
R× RN of L and any (λ,w) ∈ C× Cn we have

(AL − λE)(zα ⊗ w)

=
(
(IN ⊗A)− (L⊗BC)

)
(zα ⊗ w)− λ(zα ⊗ Ew)

= (zα ⊗Aw)− (Lzα ⊗BCw)− λ(zα ⊗ Ew)

= (zα ⊗Aw)− (αzα ⊗BCw)− λ(zα ⊗ Ew)

= zα ⊗
(
(A− αBC − λE)w

)
(15)

as well as E(zα ⊗ w) = zα ⊗ Ew. This shows that (14)
indeed leads to an eigenvector chain as claimed.

Finally, the block diagonal structure obtained after ap-
plying the coordinate transformation D implies that for
each eigenvalue λ of (E ,AL) the corresponding general-
ized eigenspace Vλ is composed of a direct sum of the gen-
eralized eigenspaces Vαλ of (E,A − αBC). The latter is
spanned by eigenvector chains and the construction (14)
leaves linear independents intact, so that the eigenvector
chains constructed by (14) indeed span Vλ.

Similar as in the homogeneous case we can now utilize
Lemma 7 to simplify the condition for the existence of
indiscernible initial states.

Corollary 14. Consider a family of identical DAEs (1) of
the form

Eẋ = Ax+Bu

y = Cx

connected via the diffusive coupling (2) by a network with
weighted Laplacian L resulting in the overall system (12),
which we assume to be regular. Then any v ∈ Rn is an
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indiscernible initial state for the removal/change/addition
of edge (i, j) if it has the form

v = z ⊗ w

where z ∈ RN \ {0} is an eigenvector of L for eigenvalue α
and w ∈ Rn \ {0} is an eigenvector of (E,A− αBC) such
that either

zi = zj (16a)

or

BCw = 0. (16b)

Proof. Let L the Laplacian resulting from the change
of edge (i, j). Then by Theorem 4 it suffices to show that
v is a common eigenvector of (E ,AL) and (E ,AL). From
Lemma 13 it follows that v is indeed an eigenvector of
(E ,AL) and by Lemma 7 v is also an eigenvector of (E ,AL)
if, and only if (AL−AL)v = 0. Due to the special structure
of v this can be rewritten as

(L− L)z ⊗BCw = 0.

This is clearly satisfied if either zi = zj (because L− L =
γ(ei − ej)(ei − ej)> for some γ ∈ R) or BCw = 0.

We note following aspects of the conditions obtained in
Corollary 14.

1. First note that the two conditions in (16) have a
very distinct feature which is as follows. The condition
zi = zj only depends on the Laplacian of network graph.
On the other hand existence of eigenvector w of the pair
(E,A − αBC) for which BCw = 0 is equivalent the exis-
tence of an eigenvector w of (E,A) with BCw = 0 which
in turn is solely a property of the individual subsystems.
Thus, Corollary 14 offers two independent indiscernibility
conditions – one on the network and the other one on each
subsystem.

2. The fact, that existence of an eigenvector w of the
pair (E,A) for which BCw = 0 leads to indiscernibility, is
quite intuitive because of the following reason. If we set
the initial condition of each subsystem to be in the span of
w, then the diffusive coupling between any two nodes will
be annihilated by the matrix B. Thus, it will not have any
effect on the overall dynamics and hence addition/removal
of any edge (i, j) will be unnoticed.

3. The Laplacian matrix L always has at least one
eigenvalue which is zero with corresponding eigenvector
z = (1, 1, . . . , 1)>. The condition zi = zj is always satis-
fied for this eigenvector. As a consequence, any topological
change of a homogeneous network is necessarily possibly-
indiscernible. This special eigenvector corresponds to the
situation where all subsystems start with the same initial
value; as a consequence, the diffusive coupling is zero and
a topological variation has no effect on the dynamics.

4. If we assume that the matrix B is full column rank
and that the individual systems are observable in the be-
havioral sense2, i.e.

[
λE−A
C

]
has full rank for all λ ∈ C

2see e.g. Berger et al. (2017)

then condition (16b) is never satisfiable.

Remark 15. Both Theorem 8 and Corollary 14 rest on
the computation of certain eigenspaces. In addition to the
fact that this computation can be performed off-line (cf.
Remark 9), it is also worth mentioning that computation-
ally efficient algorithms do exist to approach large-scale
eigenvalue problems, e.g. see Saad (1992). Moreover, for
several fundamental graphs such as complete, star and grid
graphs an analytical characterization of the eigenspaces is
available (Mesbahi and Egerstedt, 2010, Section 2.4). This
characterization can be used in connection with Corollary
14 to check condition (16a) without resorting to any nu-
merical computation.

6. Regularity preserving topological changes

Our main results (Theorems 4 and 8) assume regularity
preserving topological changes. Without the regularity as-
sumption, uniqueness of solutions does not hold any more,
so that even Definition 1 becomes meaningless. In general,
it is not a trivial task to decide whether the overall DAE
(4) is regular or not. The following examples show that
it is possible that although all subsystems are regular, the
coupled system loses regularity; and, on the other hand,
the coupled system can be regular although the individual
subsystems are not regular.

Example 16 (Loss of regularity by coupling3). Consider
two DAE systems given by

0 = x1 + u1, 0 = x2 + u2,
y2 = x1, y2 = x2,

which are clearly regular. However, under diffusive cou-
pling with coupling strength w12 = w21 = 1

2 , the overall
system reads as

0 = 1
2x1 + 1

2x2,

0 = 1
2x1 + 1

2x2,

which is not regular.

Example 17 (Regularization by coupling). Consider the
following three DAE systems

0 = x1, 0 = x2, 0 = u3

y1 = x1, y2 = x2, y3 = x3

where the third DAE is not regular (because E3 = 0 =
A3). However, under diffusive coupling with w12 = w21 =
0, w13 = w31 = R1 > 0, and w23 = w32 = R2 > 0, the
overall DAE reads as

0 = x1

0 = x2

0 = (R1 +R2)x3 −R1x1 −R2x2

which is regular, for any positive choices of R1 and R2.
Another example is the Wheatstone bridge as in Exam-
ple 12 above.

3We thank Ferdinand Küsters for providing this nice example.
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Under the (reasonable) assumption that the nominal
coupled DAE (E ,AL) is regular, one can interpret any
topological change L → L as an introduction of an ad-
ditional feedback term:

AL = AL ± B ((L− L)⊗ Ip)C︸ ︷︷ ︸
:=F

.

Therefore, we can use the following sufficient condition for
regularity:

Lemma 18 ((Bunse-Gerstner et al., 1992, Thm. 11)).
Consider a regular matrix pair (E,A) ∈ Rn×n × Rn×n
and B ∈ Rn×p. If

rankE = rank[E,B],

then (E,A+BF ) is regular for all feedback matrices F ∈
Rp×n.

Therefore, we arrive immediately at the following suffi-
cient condition for regularity preservation:

Corollary 19. Consider a regular coupled DAE (4). If
rank E = rank[E ,B] then any topological change L→ L is
regularity preserving.

Due to the block structure of E and B, the condi-
tion rank E = rank[E ,B] is equivalent to rankEi =
rank[Ei, Bi] for all i = 1, 2, . . . , N . In fact, by consid-
ering a removal/addition/change of a single edge (i, j) the
regularity-preservation condition reduces in view of (10)
to the two sufficient conditions

rankEi = rank[Ei, Bi] and rankEj = rank[Ej , Bj ].

In other words, any topological change involving edges be-
tween nodes which satisfy the rank condition rankEi =
rank[Ei, Bi] preserves regularity of the corresponding
DAE.

7. Conclusions

Understanding when a topological variation cannot be
detected is fundamental for monitoring, and eventually
controlling, complex networks. In this paper, we have
studied this problem for a class of linear DAE networks,
using tools from control theory. The results, which ac-
count for multivariable and heterogenous dynamics, show
that the problem can be fully characterized in terms of
generalized eigenspaces. Moreover, under rather mild con-
ditions, the existence of indiscernible topological changes
can be assessed by only looking at the properties of the
nominal network configuration.

Our results represent only a first step towards the de-
velopment of algorithms for detecting and isolating net-
work topological changes. Yet, the results provide many
quantitative insights into the problem. For example, they
indicate that under the homogeneity assumption, one can

obtain separate conditions on the dynamics at the nodes
and the network structure, in which case assessing dis-
cernibility is not more difficult than for a simple integrator
network Battistelli and Tesi (2015).

We envision three main directions for future research, all
of major practical value. The present results establish fun-
damental limitations to the problem of detecting topolog-
ical changes from measurements, that is limitations which
hold irrespective of the specific detection algorithm (de-
tector) one is willing to use, even in the most favourable
situation where the whole network state is available for
measurements. The design of detectors clearly remains an
important research line. In this respect, we point out that,
in addition to the research works mentioned in the Intro-
duction, the problem of designing detectors has been also
considered from a control-theoretic perspective within the
context of switched systems (Vidal et al., 2002; Babaali
and Egerstedt, 2004; Baglietto et al., 2007; De Santis,
2011; Baglietto et al., 2014). While these results only con-
sider ODE systems and do not address the network case,
they capture the switching nature of the topology detec-
tion problem and also consider settings where a switching
should be detected only via a limited number of sensors,
which is always the case in practice when dealing with net-
works. As such, these results may prove relevant for the
problem discussed in this paper.

Second, extending the analysis so as to incorporate a
notion of “degree” of discernibility, as done in Baglietto
et al. (2014). In fact, it is natural to expect that states
close (in terms of Euclidean distance) to the indiscerni-
bility set are in practice as much critical as indiscernible
states. A notion of “degree” of discernibility would then
help us to identify regions of the state space where detect-
ing topological changes is more easy or difficult to obtain.

A third research line pertains how to “design” the net-
work structure and its weights in order to decrease, and
possibly minimize, the set of undetectable topological vari-
ations. Interesting results in this direction have been re-
ported in Shafi et al. (2012), where the authors consider
the problem of assigning edge weights to enforce con-
straints on the Laplacian spectrum. While these results
can be used in connection with Corollary 14, it remains
unclear how they can be extended to the general setting
of Theorem 8 where the conditions for discernibility de-
pend on the coupling between the node dynamics and the
graph structure. Moreover, it is also unclear how one could
translate regularity-type constraints (Section 6) into a de-
sign procedure as the one in Shafi et al. (2012).
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