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a b s t r a c t

When a group of heterogeneous node dynamics are diffusively coupled with a high coupling gain, the
group exhibits a collective emergent behavior which is governed by a simple algebraic average of the
node dynamics called the blended dynamics. This finding has been utilized for designing heterogeneous
multi-agent systems by building the desired blended dynamics first and then splitting it into the node
dynamics. However, to compute the magnitude of the coupling gain, each agent needs to know global
information such as the number of participating nodes, the graph structure, and so on, which prevents
a fully decentralized design of the node dynamics in conjunction with the coupling laws. To resolve this
issue, the idea of funnel control, which is a method for adaptive gain selection, can be exploited for a
node-wise coupling, but the price to pay is that the collective emergent behavior is no longer governed
by a simple average of the node dynamics. Our analysis reveals that this drawback can be avoided by an
edge-wise design premise, which is the idea that we present in this paper. After all, we gain benefits
such as a fully decentralized design without global information, collective emergent behavior being
governed by the blended dynamics, and the plug-and-play operation based on edge-wise handshaking
between two nodes.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Recently it was reported in Kim, Yang, Shim, Kim, and Seo
2016), Lee and Shim (2020, 2022) and Panteley and Loría (2017)
hat a network of heterogeneous agents exhibits an emergent
ehavior when the node dynamics are diffusively coupled with a
igh coupling gain. In particular, it turned out that the emergent
ehavior is governed by a so-called blended dynamics, which is
imply the algebraic average of the node dynamics. This finding
ielded a methodology for designing heterogeneous agents that
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collectively perform a particular task or computation. That is,
build a dynamic system first (as the blended dynamics) that
performs the desired task, and then, assign to each node dynamics
a piece of the vector field of the blended dynamics, so that
the algebraic average of all the assigned vector fields becomes
the blended dynamics. This design method has been employed
for, e.g., distributed optimization (Yun, Shim, & Ahn, 2019), dis-
tributed estimation of network size (Lee, Lee, Kim, & Shim, 2018),
distributed observer (Kim, Lee, & Shim, 2019), and so on.

However, all the aforementioned results use linear diffusive
coupling for exchanging information among the agents, and the
lower bound for the linear coupling gain depends on global in-
formation such as the number of participating agents, the graph
structure, the vector fields of node dynamics, and so on. Since
this drawback restricts applicability of the method, the (node-
wise) funnel coupling was studied in Lee, Trenn, and Shim (2022)
and Shim and Trenn (2015), which is a nonlinear coupling whose
design does not depend on the global information. Unfortunately,
the introduction of the (node-wise) funnel coupling no longer
yields the collective emergent behavior governed by the algebraic
average of all the node dynamics (but by a nonlinear function
of node dynamics given in an implicit form called the emergent
dynamics; see Lee et al. (2022, for more details). This is a serious
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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rawback, because no explicit expression for the emergent dy-
amics is available and hence the design of the dynamic system
hat governs the emergent behavior is no longer a simple task.

Inspired by the preliminary studies (Lee, Berger, Trenn, &
him, 2020; Trenn, 2017), this paper presents an alternative to
he (node-wise) funnel coupling in Lee et al. (2022), which is
dge-wise funnel coupling. The advancement is that the funnel
technique is directly applied to the output difference between
two nodes connected by an edge. In particular, we prove that
edge-wise funnel coupling has the following benefits:

• The design of the edge-wise funnel coupling does not need
global information.

• By designing the funnel, the convergence rate and the resid-
ual error of the output difference between two nodes can
be arbitrarily controlled, which is an inherent advantage of
funnel control (that was introduced in Ilchmann, Ryan, &
Sangwin, 2002; see Berger, Ilchmann, & Ryan, 2021; Berger,
Lê, & Reis, 2018 for recent advances).

• The collective emergent behavior is governed by the blended
dynamics (i.e., the simple algebraic average of the vector
fields of the participating nodes when they have no internal
dynamics; when they have internal dynamics, the blended
dynamics take the form presented for the case of linear
diffusive coupling in Lee & Shim, 2020).

• During the operation of the multi-agent system, agents can
leave and join the network without interrupting the op-
eration of the system, which is called the ‘plug-and-play’
property (Lee & Shim, 2020). Edge-wise funnel coupling en-
ables a simple handshaking procedure between two nodes
of a newly created edge for the plug-and-play operation.

The paper is structured as follows. Section 2 introduces a class
of heterogeneous multi-agent systems considered in this paper,
and presents the edge-wise funnel coupling. Edge-wise funnel
coupling employs the funnel function to every edge with the goal
that the output difference of two nodes connected by the edge
remains within the funnel. This goal is called ‘funnel objective’
in this paper, and is achieved in Section 2 under a symmetry
assumption on the funnel functions and under an assumption that
the blended dynamics has no finite escape time. When the funnel
objective is achieved and the funnel size shrinks to zero or to a
small number as time goes by, the (asymptotic or approximate)
output synchronization is achieved with a connected graph. The
question whether the funnel coupling remains bounded even
when the funnel size shrinks to zero is also answered in Section 2.
Section 3 shows that, if the output synchronization is achieved
and if the blended dynamics is stable in a certain sense, then
an emergent behavior arises among the heterogeneous agents
and the behavior is described by the solution to the blended
dynamics. A simulation result with the plug-and-play operation
is illustrated in Section 4, and the conclusion follows in Section 5.

While the analysis for the funnel objective is motivated by Lee
et al. (2022), in contrast to that work, our results take into account
the internal dynamics of each node and are based on a new graph
theoretical lemma, which quantifies the effect of consensus in
each edge for arbitrarily given edge weights, and thus, is useful
in the analysis of time-varying or state-dependent edge coupling
gains like the edge-wise funnel coupling. This lemma is found in
the Appendix. Finally, we remark that similar coupling laws have
been presented in Bechlioulis and Kyriakopoulos (2014, 2015),
Bechlioulis and Rovithakis (2017), Macellari, Karayiannidis, and
Dimarogonas (2017), Mehdifar, Bechlioulis, Hashemzadeh, and
Baradarannia (2020), Stamouli, Bechlioulis, and Kyriakopoulos
(2019) and Verginis, Nikou, and Dimarogonas (2019). However,
they either consider a leader–follower formulation (Bechlioulis
& Kyriakopoulos, 2014, 2015; Bechlioulis & Rovithakis, 2017)
2

(which corresponds to a tracking control problem), a specific
graph structure, e.g., a tree graph (Verginis et al., 2019) or in-
finitesimal rigidity (Mehdifar et al., 2020) (which simplifies the
analysis), or homogeneous agents (Macellari et al., 2017; Mehdi-
far et al., 2020) (which again simplifies the analysis). The problem
of dynamic average consensus was solved in Stamouli et al.
(2019) using a prescribed performance control (which shares
some features of funnel control). These works, however, do not
consider the emergent behavior which is the focus of the current
paper.

2. Edge-wise funnel coupling law

In the present paper, we consider a heterogeneous multi-agent
system given by

ẏi(t) = Fi(t, yi(t), zi(t)) + Γ i(t,wi(t)) · ui(t),
żi(t) = Zi(t, zi(t), yi(t)),
wi(t) = Wi(yi(t), zi(t)), i ∈ N .

(1)

Here, N := {1, . . . ,N} is the set of agent indices, the number
of agents is N , ui(t) ∈ Rm is the coupling law to be designed,
wi(t) ∈ Rmi is the introspective1 output whose dimension mi
may vary across the agents, yi(t) ∈ Rm is the output with (agent-
independent) dimension m which is communicated with other
agents and is to be synchronized approximately, and zi(t) ∈ Rni

is the internal state with (agent-dependent) dimension ni. The
following two assumptions pose the required properties for Fi,
Zi, Wi, and Γ i.

Assumption 1 (Open Loop Dynamics). The functions Fi : [t0,∞)×
Rm

×Rni → Rm, Zi : [t0,∞)×Rni ×Rm
→ Rni and Γ i : [t0,∞)×

Rmi → Rm×m are measurable in t , locally Lipschitz with respect to
(yi, zi) or wi, resp., and bounded on each compact subset of Rm+ni

or Rmi , resp., uniformly in t . The function Wi : Rm
× Rni → Rmi

is locally Lipschitz.

Assumption 2 (Gain Matrix). The gain matrix Γ i(t,wi) is known
and available for the design of the coupling law ui, and is invert-
ible for all t and wi. Its inverse is uniformly bounded, i.e., there
exists MΓ > 0 such that2 ∥Γ i(t,wi)−1

∥∞ ≤ MΓ for all t and wi.

Note that Assumption 2 justifies to say that system (1) has
relative degree one, because for time-invariant systems the defi-
nition given in Byrnes and Isidori (1991) is then satisfied. Under
the above assumptions, we propose for each i ∈ N the edge-wise
funnel coupling law

ui(t)=ui
(
t,wi, {νij}

)
=Γ i(t,wi)−1

∑
j∈Ni

uij(t, νij),

uij(t, νij) = col
(
µ1

ij

(
ν1ij (t)

ψ1
ij (t)

)
, . . . , µm

ij

(
νmij (t)

ψm
ij (t)

))
,

νij := yj − yi = col(ν1ij , . . . , ν
m
ij ),

(2)

where Ni ⊆ N is the set of agents that send information to
agent i. The communication graph and the functions ψp

ij and µp
ij

atisfy the following assumptions.

ssumption 3 (Communication Graph). The communication graph
= (N , E) induced by the neighborhoods Ni for i ∈ N (i.e., N is

1 This terminology was used in, e.g., Grip, Yang, Saberi, and Stoorvogel (2012),
hose meaning is that the variable can be measured within the agent. We will
se the value of wi when we compose the coupling law ui .
2 The symbol ∥·∥∞ denotes the maximum norm for a vector and the induced
aximum norm for a matrix.
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he set of nodes and (j, i) ∈ E if, and only if, j ∈ Ni) is undirected
nd connected.3

For the basics of graph theory we refer to Diestel (2017); some
pecific lemmas required for the proofs of the main results can
lso be found in Appendix A.

ssumption 4 (Design Functions). For each edge (i, j) ∈ E and
∈ M := {1, 2, . . . ,m} we have:

• Performance functions ψp
ij : [t0,∞) → R>0 are bounded

and continuously differentiable with bounded derivatives.
Furthermore, they are symmetric in the sense that ψp

ij (t) =

ψ
p
ji (t), ∀t ≥ t0.

• Coupling functions µp
ij : (−1, 1) → R are continuous and

satisfy lims→±1 µ
p
ij(s) = ±∞. Furthermore, they satisfy the

symmetry property that µp
ij(−s) = −µ

p
ji(s), ∀s ∈ (−1, 1).

Under the simple coupling law ui as in (2) and the above
assumptions we will prove that the following ‘funnel objective’
is achieved:

∀ t ≥ t0 ∀ (j, i) ∈ E ∀ p ∈ M :
⏐⏐νpij (t)⏐⏐ < ψ

p
ij (t) (3)

(whose meaning is that the signal νpij remains inside the funnel
haracterized by ψp

ij ). While the choice of ψp
ij is completely up

o the designer, it is often chosen as a monotonically decreasing
unction (so that the funnel shrinks as time goes on). By designing
he function ψp

ij , one can control the upper bound of |νpij (t)| during
he transient and the residual error lim supt→∞ |ν

p
ij (t)|. Note that

e allow for limt→∞ ψ
p
ij (t) = 0.4

We also note that the design of ui in (2) does neither use
he information of the vector fields Fi and Zi nor the state zi.
hen Γ i(t,wi) does not depend on wi (which is often the case,

.g., when Γ i(t,wi) = I), the introspective output wi does not
eed to be measured. Finally, we emphasize that the information
f yj and yi themselves is not needed as long as the difference
ij is available. This is useful in some practical applications. For
xample, a self-driving car i can easily measure the distance yj−yi
rom the front car j, but the absolute positions yj and yi are hard
o measure.

emark 1 (Symmetry). Note that the symmetry in the functions
p
ij and µp

ij, stated in Assumption 4, is already assumed in the
inear coupling law ui =

∑
j∈Ni

kνij, with a constant k > 0, used
n Kim et al. (2016), Lee and Shim (2020, 2022) and Panteley and
oría (2017). (Indeed, this is the case when µp

ij is the identity
unction and ψ

p
ij ≡ 1.) Therefore, the edge-wise funnel cou-

ling (2) can be viewed as a generalization of these approaches
n that, instead of the constant uniform gain k, each edge has its
ndividual nonlinear time-varying gain function.

emark 2 (Normal Form). The proposed coupling law (2) can
e easily obtained even when the node dynamics is not in the
ormal form as in (1). For example, consider the node dynamics
iven by ẋi = fi(xi) + gi(xi)ui and yi = hi(xi). If Lgihi(xi) :=
′

i(xi)gi(xi) depends only on an introspective output wi and is non-
ingular for all wi (i.e., the system has relative degree one (Byrnes
Isidori, 1991)), then the coupling law (2) can still be constructed
ith Γ i(wi) = Lgihi(xi).

3 Different from the literature (Diestel, 2017), in the present paper edges
j, i) ∈ E always have a direction (from node j to node i), and a graph is
ndirected, if for any (j, i) ∈ E we also have (i, j) ∈ E .
4 In this case, since limt→∞ ν

p
ij (t) → 0, the coupling law (2) thus contains the

uotient of two ‘‘infinitesimally small’’ terms. Therefore, the case of asymptotic
ynchronization seems to be of limited practical utility; similar to asymptotic
racking by funnel control, cf. Berger et al. (2021, Rem. 1.7).
3

Solutions to the differential equations of the closed-loop sys-
tem (1) and (2) are understood in the sense of Carathéodory, and
their existence and uniqueness (local in time) follow from the as-
sumptions. Throughout the paper, when speaking of solutions, we
will always mean the unique (maximal) Carathéodory solution.

Now, to guarantee (3), we need one more assumption: the
blended dynamics (to be defined) has no finite escape time. For
this, define s(t) := (1/N)

∑N
i=1 yi(t). Then

˙(t) =
1
N

N∑
i=1

[Fi(t, yi(t), zi(t)) + Γ i(t,wi(t)) · ui(t)]

=
1
N

N∑
i=1

Fi(t, yi(t), zi(t))

here the coupling terms cancel out because of the symmetry
n Assumption 4. Denoting the synchronization error by ei(t) :=

yi(t) − s(t), we have

ṡ(t) =
1
N

N∑
i=1

Fi(t, s(t) + ei(t), zi(t)),

żi(t) = Zi(t, zi(t), s(t) + ei(t)), i ∈ N .

(4)

When ei ≡ 0 for all i ∈ N , the system (4) is called the blended
dynamics in Lee and Shim (2020). Here, we call (4) the perturbed
blended dynamics when we treat ei, i ∈ N , as independent input
signals to the blended dynamics. In particular, we note that, if (3)
holds, then from Assumption 3, we get

∀ t ≥ t0 ∀ i, j ∈ N :
yi(t) − yj(t)


∞

≤ dGΨ (t), (5)

where dG is the diameter5 of the communication graph G =

(N , E) and Ψ (t) := maxp∈M max(j,i)∈E ψ
p
ij (t), and we find

∀ t ≥ t0 ∀ i ∈ N :

∥ei(t)∥∞ =

 1
N

N∑
j=1

(yi(t) − yj(t))


∞

≤ dGΨ (t). (6)

Assumption 5 (No Finite Escape Time). For any initial time t0, the
perturbed blended dynamics (4) with any absolutely continuous
inputs ei : [t0,∞) → Rm, i ∈ N , such that ∥ei(t)∥∞ ≤ dGΨ (t) for
all t ≥ t0, has a global solution for any initial values s(t0) ∈ Rm,
zi(t0) ∈ Rni , i ∈ N .

We stress that if the functions Fi and Zi are globally Lipschitz
in their arguments, then Assumption 5 holds.

Lemma 1. Under Assumptions 1–5, assume that a solution of system
(1) with (2) exists on [t0, ω) for some ω > t0 and satisfies |ν

p
ij (t)| <

ψ
p
ij (t) for all t ∈ [t0, ω), (j, i) ∈ E , and p ∈ M. Then (yi, zi) is

bounded on [t0, ω) for all i ∈ N .

The proof of Lemma 1 is a direct consequence of the represen-
tation (4), Assumption 5, and (6); the details are omitted.

Theorem 1 (Evolution Inside Funnel). Consider the system (1) with
the edge-wise funnel coupling law (2). Under Assumptions 1–5, if the
initial values yi(t0) of (1) and the performance functions ψp

ij satisfy

∀ (j, i) ∈ E ∀ p ∈ M : |ν
p
ij (t0)| < ψ

p
ij (t0), (7)

then the global solution (y1, z1, . . . , yN , zN ) : [t0,∞) →

RNm+n1+···+nN of (1) and (2) exists, which satisfies the funnel ob-
jective (3).

5 The diameter of a graph G is the maximum length among the shortest
paths between any two nodes.
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The proof is relegated to Appendix B. Note that, under the
assumptions of Theorem 1, the inequality (5) holds, and thus,
approximate (when lim supt→∞ Ψ (t) > 0 is small) or asymptotic
(when limt→∞ Ψ (t) = 0) output synchronization is achieved.

Remark 3 (Plug-and-play). In virtue of Theorem 1, the multi-agent
system (1) with the edge-wise funnel coupling (2) is amenable to
the plug-and-play operation; that is, agents can leave the network
at any time (which, however, may decompose the network into
several connected components), and agents can also join the net-
work with no initialization of any agent in the network (see Lee
& Shim, 2022 for more details). In practice, both the required
symmetry of ψp

ij and µp
ij in Assumption 4 and the condition (7)

can be implemented when a new edge (i, j) between agent i and
agent j is created. That is, the first communication between agent
i and agent j is a handshake for these properties. For example,
under the premise that all the coupling functions are the same
as µp

ij = s/(1 − |s|) and the performance function has the form
ψ

p
ij (t) = ψ

p
ji (t) = (Bp

− η)e−λ(t−tk) + η where η and λ are already
determined, the undetermined Bp and tk are negotiated by the
handshake such that tk is set as the time of the handshake and Bp

is determined as |ypi (tk) − ypj (tk)| < Bp. Then, all the conditions of
Assumption 4 hold and we have

∀ p ∈ M :
⏐⏐νpij (tk)⏐⏐ < ψ

p
ij (tk) = ψ

p
ji (tk) (8)

so that the condition (7) holds at time tk and Theorem 1 applies
afterward.

We note that, similar to Lee et al. (2022, Rems. 1 &2), the edge-
wise funnel coupling law (2) is also able to achieve finite-time
synchronization. Moreover, the coupling law (2) is guaranteed
to remain bounded (even when the performance functions ψp

ij
converge to zero), under mild additional assumptions.

Theorem 2 (Boundedness of Coupling Law). In addition to the
assumptions of Theorem 1, assume that at least one of the following
holds.

(a) Fi(t, y, z) ≡ F̂(t, y) + F̃i(t, y, z), where F̂(t, y) is globally
Lipschitz with respect to y uniformly in t and there exists MF
such that ∥̃Fi(t, y, z)∥∞ ≤ MF for all i ∈ N , t ≥ t0, y ∈ Rm,
and z ∈ Rni .

(b) There exists My,z such that ∥col(yi(t), zi(t))∥∞ ≤ My,z for all
i ∈ N and t ≥ t0.

Then the input ui of (2) for (1) is bounded on [t0,∞), i.e., there exists
Mu > 0 such that for all t ≥ t0 and i ∈ N , we have ∥ui(t)∥∞ ≤ Mu.

The proof is similar to that of Lee et al. (2022, Thm. 3), when
we additionally invoke the boundedness of Γ−1

i from Assump-
tion 2; hence it is omitted.

3. Blended dynamics as emergent behavior

Theorem 1 in the previous section provides sufficient condi-
tions for the funnel objective (3) to be achieved. In this section,
we show that, if the funnel shrinks (i.e., Ψ (t) gets small) as time
goes by, then an emergent behavior arises which is described
by the solution to the blended dynamics. In fact, this emergence
is based on a certain stability of the blended dynamics, and,
in this section, we utilize ISS (input-to-state stability) and δ-ISS
(incremental ISS) of the perturbed blended dynamics (4), which
are briefly reviewed in the following subsection.

3.1. ISS and δ-ISS

Consider a system ẋ(t) = F(t, x(t),u(t)) whose solution exists
globally in time for any initial condition x(t ) and for any locally
0

4

essentially bounded measurable input u. The system is ISS with
(β, γ̂ ) for a closed set A, if there exist β ∈ KL and γ̂ ∈ K∞, such
that, for all t ≥ t0,6

∥x(t)∥A ≤ β(∥x(t0)∥A, t − t0) + γ̂ (sups∈[t0,t)∥u(s)∥∞). (9)

On the other hand, the system is δ-ISS with (β, γ̂ ) if there exist
β ∈ KL and γ̂ ∈ K∞ such that, for any x̂(t0) and x(t0) and
for any locally essentially bounded measurable inputs û and u,
the corresponding solutions x̂ and x, respectively, satisfy, for all
t ≥ t0,

∥x̂(t) − x(t)∥∞ ≤ β(∥x̂(t0) − x(t0)∥∞, t − t0)
+γ̂

(
sups∈[t0,t)∥û(s) − u(s)∥∞

)
. (10)

From (9) and (10), it follows from causality that, if the input
(or, the input difference û − u, resp.) converges to zero, then

the state x (or, the state difference x̂ − x, resp.) tends to zero.
However, to quantify an explicit rate of convergence for decaying
inputs, we present a lemma whose proof is in Appendix C.

Lemma 2. If the system is ISS with (β, γ̂ ) for a closed set A, then, for
any Mx0 > 0, Mu > 0 and for any decreasing function w : R≥0 →

(0, 1] such that limt→∞w(t) = 0, there exists γ ∈ K∞
7 such that

∥x(t)∥A ≤ β(∥x(t0)∥A, t − t0) + γ (δt ), t > t0 (11)

where

δt := sup
s∈[t0,t)

∥u(s)∥∞w(t − s),

for any solution x with an initial condition x(t0) and a locally
essentially bounded measurable input u such that

∥x(t0)∥A ≤ Mx0 and sup
s∈[t0,t)

∥u(s)∥∞ ≤ Mu. (12)

We note that, for the system considered in this subsection, δ-
SS with (β, γ̂ ) of the system is equivalent to ISS with (β, γ̂ ) for
he closed set A = Rn

× {0} of the extended dynamics

˙̂x(t) = F(t, x̂(t), û(t)),
˙x(t) = F(t, ex(t) + x̂(t), eu(t) + û(t)) − F(t, x̂(t), û(t))

ith ex := x−x̂, input eu := u−û and for any signal û. Therefore,
emma 2 also applies to the δ-ISS case.

.2. Emergent behavior

heorem 3 (Emergent Behavior). Let the assumptions of Theorem 1
old and assume that the perturbed blended dynamics (4) is ISS with
β, γ̂ ) for a closed set A. Then, for any Mx0 > 0 and any decreasing
unction w : [0,∞) → (0, 1] such that limt→∞w(t) = 0, there
xists γ ∈ K∞ such that

max
i∈N



⎡⎢⎢⎢⎢⎣
yi(t)
z1(t)
...

zN (t)

⎤⎥⎥⎥⎥⎦

A

≤ β

⎛⎜⎜⎜⎜⎝


⎡⎢⎢⎢⎢⎣
1
N

∑N
i=1 yi(t0)
z1(t0)
...

zN (t0)

⎤⎥⎥⎥⎥⎦

A

, t − t0

⎞⎟⎟⎟⎟⎠
+ γ (sups∈[t0,t)dGΨ (s)w(t − s)) + dGΨ (t), ∀t ≥ t0

or any solution col(y1, z1, . . . , yN , zN ) of (1) and (2) such that
col((1/N)

∑N
i=1 yi(t0), z1(t0), . . . , zN (t0))∥A ≤ Mx0 .

6 For a set Ξ ⊆ Rn , ∥x∥Ξ denotes the distance between the point x ∈ Rn

nd Ξ , i.e., ∥x∥Ξ := infy∈Ξ ∥x − y∥∞ .
7 An example of γ in the explicit form is given in the proof of Lemma 2.
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roof. Define yzi := col(yi, z1, . . . , zN ), for convenience, where
i and zi, i ∈ N , are the solutions to (1) with (2) such that
(1/N)

∑N
i=1 y

z
i (t0)∥A ≤ Mx0 . Now let sz := col(s, z̄1, . . . , z̄N )

be the solution to the perturbed blended dynamics (4) with the
particular input ei = yi − s, i ∈ N and the initial condition
s(t0) = (1/N)

∑N
i=1 yi(t0) and z̄i(t0) = zi(t0), i ∈ N . It is seen

from (4) that z̄i(t) = zi(t) for all t ≥ t0 with this particular input,
and (6) holds from Theorem 1. Then, for each i ∈ N ,

∥yzi (t)∥A ≤ ∥sz(t)∥A + ∥yi(t) − s(t)∥∞

≤ β(∥sz(t0)∥A, t − t0) + γ̂ (sups∈[t0,t)dGΨ (s)) + dGΨ (t).

Applying Lemma 2 with Mu = dG supt∈[t0,∞) Ψ (t), the proof is
complete. □

When the perturbed blended dynamics (4) is ISS for a closed
set A, the behavior of the blended dynamics (which is (4) with
ei(t) ≡ 0, i ∈ N ):

˙̂s(t) =
1
N

N∑
i=1

Fi(t, ŝ(t), ẑi(t)),

˙̂
i(t) = Zi(t, ẑi(t), ŝ(t)), i ∈ N ,

(13)

s that all the solutions converge to the set A. This is an emergent
ehavior because individual node dynamics do not necessarily
ave such a property. With the edge-wise funnel coupling whose
unnel shrinks such that lim supt→∞ Ψ (t) is sufficiently small or
ven zero, it is seen from Theorem 3 that the behavior of (1) with
2) mimics that of the blended dynamics.

On the other hand, even when the perturbed blended dynam-
cs (4) do not have such an attractive set A, a similar phenomenon
s observed if (4) is δ-ISS.

Corollary 1 (Emergent Behavior). Let the assumptions of Theorem 1
hold and assume that (4) is δ-ISS with (β, γ̂ ). Then, for any decreas-
ng function w : R≥0 → (0, 1] such that limt→∞w(t) = 0, there
xists γ ∈ K∞ such that, for each i ∈ N ,[
yi(t)
zi(t)

]
−

[
ŝ(t)
ẑi(t)

]
∞

γ (sups∈[t0,t)dGΨ (s)w(t − s)) + dGΨ (t), (14)

here yi and zi, i ∈ N , are a solution to (1) with (2), and ŝ
and ẑi are a solution to the blended dynamics (13) with ŝ(t0) =

1/N)
∑N

i=1 yi(t0) and ẑi(t0) = zi(t0), i ∈ N .

Proof. As in the proof of Theorem 3, let sz := col(s, z̄1, . . . , z̄N )
be the solution to the perturbed blended dynamics (4) with the
particular input ei = yi − s, i ∈ N and the initial condition
s(t0) = (1/N)

∑N
i=1 yi(t0) and z̄i(t0) = zi(t0), i ∈ N , so that

z̄i(t) = zi(t) for all t ≥ t0, and (6) holds. Then, for each i ∈ N ,[yi(t)zi(t)

]
−

[
ŝ(t)
ẑi(t)

]
∞

≤

[yi(t)zi(t)

]
−

[
s(t)
z̄i(t)

]
∞

+

[ s(t)z̄i(t)

]
−

[
ŝ(t)
ẑi(t)

]
∞

≤ dGΨ (t) + γ̂

(
sup

s∈[t0,t)
dGΨ (s)

)
which follows from δ-ISS of the perturbed blended dynamics, and
the fact that s(t0) = ŝ(t0) and z̄i(t0) = ẑi(t0), i ∈ N . Finally, apply-
ing Lemma 2 with any Mx0 > 0 and Mu = dG supt∈[t0,∞) Ψ (t), the
proof is complete. □

Again, inequality (14) shows how the individual solution yi
and zi is approximated by the solution to the blended dynamics
(13) when the funnel shrinks as time goes by. In particular, if
asymptotic output consensus is achieved with limt→∞ Ψ (t) = 0,
then (14) implies that the behavior of the network (1) with (2)
asymptotically tends to the behavior of the blended dynam-
ics (13).
5

Remark 4. Let the assumptions of Corollary 1 hold. Now, assume
that there exists at least one bounded solution col(s, z1, . . . , zN )
of the perturbed blended dynamics (4) with some bounded in-
put ei, i ∈ N . Then, δ-ISS of (4) implies that any solution
of (4) with bounded input is bounded. In particular, any solution
col(ŝ, ẑ1, . . . , ẑN ) of the blended dynamics (13) is bounded (since
ei ≡ 0, i ∈ N ). This further implies by (14) that any solution
col(y1, z1, . . . , yN , zN ) of (1) with (2) is bounded, which gives that
the corresponding inputs ui, i ∈ N , are bounded by Theorem 2.

3.3. Identical internal dynamics

In the remainder of this section we consider the special case
when all the internal dynamics (the differential equation for zi)
share the same vector field, i.e., Zi = Z for all i ∈ N , but not
necessarily the same initial condition. In this case, it may be
convenient to consider a reduced order blended dynamics:

˙̃s(t) =
1
N

N∑
i=1

Fi(t, s̃(t), z̃(t)), (15a)

˙̃(t) = Z(t, z̃(t), s̃(t)). (15b)

his is motivated by the observation that, under the assumption
hat Zi = Z, i ∈ N , if the perturbed blended dynamics (4) is δ-ISS
ith (β, γ̂ ), then the set
z
:=
{
col(ŝ, ẑ1, . . . , ẑN )

⏐⏐ ∀ i, j ∈ N : ẑi = ẑj
}

is globally asymptotically stable for (13) (i.e., (4) with zero inputs)
hence Sz is an invariant set of (13). Indeed, let col(ŝ, ẑ1, . . . , ẑN )
e a solution of (13), then it also solves (4) with ei ≡ 0, i ∈ N .
ow, let (s̃, z̃) be any solution of (15) such that s̃(t0) = ŝ(t0), then
ol(s̃, z̃, . . . , z̃) also solves (4) with ei ≡ 0, i ∈ N . Therefore, for
ll i ∈ N and for all t ≥ t0,[ ŝ(t)ẑi(t)

]
−

[
s̃(t)
z̃(t)

]
∞

≤ β(max
j

∥ẑj(t0) − z̃(t0)∥∞, t − t0). (16)

orollary 2 (Emergent Behavior). Let the assumptions of Theorem 1
old and assume that (4) is δ-ISS with (β, γ̂ ). Then, for any decreas-
ng function w : R≥0 → (0, 1] such that limt→∞w(t) = 0, there
xists γ ∈ K∞ such that, for each i ∈ N ,[yi(t)zi(t)

]
−

[
s̃(t)
z̃(t)

]
∞

≤ β(max
j

∥zj(t0) − z̃(t0)∥∞, t − t0)

+ γ (sups∈[t0,t)dGΨ (s)w(t − s)) + dGΨ (t)

here yi and zi, i ∈ N , are a solution to (1) with (2), and s̃ and
˜ are a solution to the reduced order blended dynamics (15) with
˜(t0) = (1/N)

∑N
i=1 yi(t0).

roof. The claim follows from[yi(t)zi(t)

]
−

[
s̃(t)
z̃(t)

]
∞

≤[yi(t)zi(t)

]
−

[
ŝ(t)
ẑi(t)

]
∞

+

[ ŝ(t)ẑi(t)

]
−

[
s̃(t)
z̃(t)

]
∞

ombined with (14) and (16) and with ŝ(t0) = s̃(t0) and ẑi(t0) =

i(t0), i ∈ N . □

While the solutions yi and zi are compared to the solution
o the blended dynamics (13) in Corollary 1, they are compared
o the solution to the reduced order blended dynamics (15) in
orollary 2, which is simpler to compute. However, the drawback
s the addition of the transient term β , which is caused by the
ifference in the initial values z (t ) and z (t ), i, j ∈ N .
i 0 j 0
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Now, to best utilize the benefit of low dimensionality of the re-
duced order blended dynamics (15), it is desired that the stability
condition is imposed on the reduced order blended dynamics (15)
rather than (4). For this, let us introduce the perturbed reduced or-
der blended dynamics with input col(e0, e1, . . . , eN , d1, . . . ,

N ):

˙̄s(t) =
1
N

N∑
i=1

Fi(t, s̄(t) + ei(t), z̄(t) + di(t)),

˙̄z(t) = Z(t, z̄(t), s̄(t) + e0(t)).

(17)

And, instead of δ-ISS of (4), we will assume δ-ISS of (17) with
the additional assumption that the internal dynamics (15b) is
also δ-ISS with (β̃, γ̄ ) when s̃ is viewed as an input. Indeed, in
this case, the solutions zi and yi, i ∈ N , of (1) with (2) have
the property that ∥zj(t) − zi(t)∥∞ ≤ β̃(∥zj(t0) − zi(t0)∥∞, t −

t0) + γ̄ (sups∈[t0,t) ∥yj(s) − yi(s)∥∞) for all j, i ∈ N . If the funnel
objective is achieved, then by (5) and Lemma 2, for any Mx0 > 0
and any decreasing function w̃ : [0,∞) → (0, 1] such that
limt→∞ w̃(t) = 0, there is γ̃ ∈ K∞ such that, for any j, i ∈ N ,

∥zj(t) − zi(t)∥∞ ≤ max
j,i
β̃(∥zj(t0) − zi(t0)∥∞, t − t0)

+ γ̃ (sups∈[t0,t)dGΨ (s)w̃(t − s)) =: D(t),

for the solutions such that maxj,i ∥zj(t0) − zi(t0)∥∞ ≤ Mx0 . It is
clear that D(t) has similar properties as Ψ (t); i.e., lim supt→∞ D(t)
is small or zero if lim supt→∞ Ψ (t) is small or zero, resp.

Corollary 3 (Emergent Behavior). Let the assumptions of Theorem 1
hold and assume that the internal dynamics (15b) with input s̃ is
δ-ISS. If the perturbed reduced order blended dynamics (17) is δ-ISS
with (β, γ̂ ), then for any decreasing function w : [0,∞) → (0, 1]
such that limt→∞w(t) = 0, there exists γ ∈ K∞ such that, for each
i ∈ N ,[yi(t)zi(t)

]
−

[
s̃(t)
z̃(t)

]
∞

≤ β(∥zi(t0) − z̃(t0)∥∞, t − t0)

+ γ (sups∈[t0,t) max{dGΨ (s),D(s)}w(t − s)) + dGΨ (t)

where zi and yi are solutions to (1) with (2) such thatmaxj,i ∥zj(t0)−
zi(t0)∥∞ ≤ Mx0 , and col(s̃, z̃) is the solution of the reduced order
blended dynamics (15) with initial condition s̃(t0) = (1/N)

∑N
i=1

yi(t0) and z̃(t0) = (1/N)
∑N

i=1 zi(t0).

Proof. Pick any i ∈ N . Then, any solution col(y1, z1, . . . , yN , zN )
of (1) and (2) satisfies

ṡ(t) =
1
N

N∑
j=1

Fj
(
t, s(t) + (yj(t) − s(t)), zi(t)

+ (zj(t) − zi(t))
)

żi(t) = Z(t, zi(t), s(t) + (yi(t) − s(t)))

(18)

where s = (1/N)
∑N

j=1 yj. Comparing (15) and (18) under δ-ISS of
(17) with e0 = yi − s, ej = yj − s, and dj = zj − zi,[yi(t)zi(t)

]
−

[
s̃(t)
z̃(t)

]
∞

≤ ∥ei(t)∥∞ +

[ s(t)zi(t)

]
−

[
s̃(t)
z̃(t)

]
∞

≤ ∥ei(t)∥∞ + β(∥zi(t0) − z̃(t0)∥∞, t − t0)

+ γ̂

⎛⎝ sup
s∈[t0,t)


⎡⎣ ∥e0(s)∥∞

maxj ∥ej(s)∥∞

maxj ∥dj(s)∥∞

⎤⎦
∞

⎞⎠.

The proof concludes by applying Lemma 2 and by (6). □ r

6

Fig. 1. Switched graph G(t) and time intervals used for simulation. Red dots
are agents leaving the network. Green dots are agents newly joined. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Remark 5. If (17) is δ-ISS with (β, γ̂ ) and the function s − γ̂ (2s)
is of class K∞, then it can be shown that (4) is δ-ISS (whose proof
is in the extended arXiv version of this paper). Then, Corollary 2
can be employed instead of Corollary 3.

4. An example

In this section, we illustrate that different emergent behaviors
can arise when some heterogeneous agents join or leave the
network (plug-and-play operation). Consider a system of four
heterogeneous agents:

ẏi(t) = Fi(t, yi(t), zi(t)) + 100 ui(t),
żi(t) = Z(t, zi(t), yi(t)), i∈N ={1, . . . , 4},

where zi(t) := col(zi,1(t), zi,2(t), zi,3(t)), Z(t, zi, yi) := col(Z1(t,
zi,1, yi), Z2(t, zi,2, yi), Z3(t, zi,3, yi)), and

Z1(t, z, y) := −100z + 100y,

Z2(t, z, y) :=

{
−z + 0.4(y + 0.5), if y + 0.5 < 0,
−z + 7(y + 0.5), if y + 0.5 ≥ 0,

Z3(t, z, y) :=
1
20

{
−z, if y + 1 < 0,
−z + 50(y + 1), if y + 1 ≥ 0.

The heterogeneous vector fields Fi are given by

F1(t, y1, z1) := −
100
3 y31 + 400z1,1 + 1100,

F2(t, y2, z2) := −
100
3 y32 − 1600z2,2 −

5500
3 ,

F3(t, y3, z3) := −
100
3 y33+1600z3,2−(20z3,2−22)2+ 1100

3 ,

F4(t, y4, z4) := −
100
3 y34 − 400z4,3 +

5500
3 .

ach agent represents a neuromorphic circuit with one posi-
ive/negative feedback inspired by Ribar and Sepulchre (2019).
ince Γi ≡ 100 for all agents, they satisfy Assumption 1 and 2.

Fig. 1 illustrates the switched graph G(t) with the corresponding
time intervals for the demonstration.

The coupling functions are all chosen initially as µij(s) =

an((π/2)s) and the performance functions are all chosen as
ij(t) = (π/2)(0.9 exp(−t) + 0.1) for (j, i) ∈ E . Then, upon
he joining of agent 1 at t = 100, we set ψ14(t) = (π/2)
8.9 exp(−(t−100))+0.1). When agent 2 joins at t = 170, we set
24(t) = (π/2)(0.9 exp(−(t −170))+0.1). When agent 3 joins at
= 220, we set ψ32(t) = (π/2)(4.9 exp(−(t − 220))+ 0.1). These
hoices ensure that condition (7) in Theorem 1 (and Assumption 3
nd 4 for each connected component) is satisfied at each starting
nstance by handshake as illustrated in Remark 3. The simulation
n Fig. 2 is performed in Matlab/Simulink software package with
nitial conditions yi(0) = 1 and zi(0) = col(0, 0, 0), i ∈ N .

Without coupling, each agent can only converge to an equilib-
ium, but with coupling they exhibit various emergent behaviors
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Fig. 2. Various emergent behaviors depending on the participating agents
ccording to Fig. 1. Agents 1, 2, 3, and 4 have the colors magenta, green, red,
nd blue, respectively. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

Fig. 3. u1 (magenta), u2 (green), u3 (red), and u4 (blue). (For interpretation of
he references to color in this figure legend, the reader is referred to the web
ersion of this article.)

uch as spiking pulses and bursting as seen in Fig. 2. In fact,
hen all agents are connected, the system is an extension of the
itzHugh–Nagumo model which exhibits the bursting behavior.
uch behavior is utilized in neuromorphic engineering, for in-
tance, to emulate PWM (Pulse Width Modulation) (Sepulchre,
022). The variety in these periodic behaviors comes from a
ifferent limit cycle (hence Assumption 5 is satisfied) associated
o a different blended dynamics that appears by a different set of
gents being connected at each instance (Theorem 3).
Fig. 3 shows that the corresponding inputs are bounded, which

n turn implies that the fractions |νij(t)|/ψij(t) are uniformly
maller than 1 and all output differences corresponding to an
dge evolve inside the respective funnel (Theorem 1).

. Conclusion

In this paper, we introduced the edge-wise funnel coupling
aw, which retains all the benign properties of the node-wise
unnel coupling law in Lee et al. (2022), and exhibits a more
traightforward design of the emergent behavior, which is given
y the blended dynamics. The new coupling law is also better
uitable for plug-and-play operation. Future research will focus
n the extension of the results to systems with arbitrary relative
egree.

ppendix A. Graph theoretical lemmas

For technical reasons, regardless of our assumption being
hat the underlying graph is undirected and connected (Assump-
ion 3), in this section, we present two graph theoretical lemmas,
7

that are essential for our proof of Theorem 1 outlined in Ap-
pendix B. The lemmas are concerned with directed graphs that
have no loops. In Appendix B we will consider directed subgraphs
of the original graph that have this property.

Recall that a tuple (i0, i1, . . . , il) ∈ N l+1 is called a path (of
length l) from i0 to il, if ik ∈ Nik+1 for all k = 0, . . . , l − 1.
If i1, . . . , il are distinct, then it is called elementary. A loop is
an elementary path with i0 = il. A node is isolated, if it has
no incoming/outgoing edges. A source (sink) is a node that has
no incoming (outgoing) edge. An isolated node is regarded as
a source. If a graph has no loop and E ̸= ∅, then there exist
both a source and a sink. Note that if {(i, j), (j, i)} ∈ E , then this
‘‘undirected edge’’ constitutes a loop (i, j, i) in G.

Lemma A.1. Consider a graph G = (N , E) with non-empty E . Then
G has no loop if, and only if, there exists a vector χ ∈ RN such that
χj − χi > 0 for all (j, i) ∈ E .

Proof. (Sufficiency): If there is a loop (i0, i1, . . . , il) in G where
i0 = il, then we have

0 = χi0 − χil =
∑l−1

p=0(χip − χip+1 ) > 0

by the assumption, which is a contradiction.
(Necessity): Since there is no loop, every path in the graph

is elementary and has a finite length. Thus, we can define Ñk
as the set of nodes to which a path of maximal length k from a
source leads. Obviously, Ñ0 is the set of the sources, and there is
a maximal length K for all paths in G. Then, {Ñk}

K
k=0 is a partition

of N . Now, for each k = 0, . . . , K , let χi := −k for all i ∈ Ñk.
Then, for all (j, i) ∈ E , if j ∈ Ñk for some k ∈ {0, . . . , K − 1}
(note that k = K is not possible), then clearly i ∈ Ñl for some
l ∈ {k + 1, . . . , K }, thus χj = −k and χi = −l ≤ −(k + 1), thus
χj − χi ≥ 1 > 0. □

Let N↑ and N↓ be the sets of the sources and the sinks,
respectively. Further, let E↑ :=

{
(j, i) ∈ E

⏐⏐ j ∈ N↑

}
and E↓ :={

(j, i) ∈ E
⏐⏐ i ∈ N↓

}
, which are the outgoing edges from the

sources, and the incoming edges to the sinks, respectively.

Lemma A.2. Consider a graph G = (N , E) with non-empty E . If G
has no loop, then there exist constants ξij > 0 associated with each
edge (j, i) ∈ E such that, for all vectors σ ∈ RN , we have∑
(j,i)∈E

ξij(σj − σi) ≡

∑
(j,i)∈E↑

ξijσj −
∑

(j,i)∈E↓

ξijσi. (A.1)

Proof. The graph theoretic interpretation of (A.1) is the existence
of edge weights ξij, such that for all nodes which are not sinks or
sources the sum of the weights of the incoming edges is equal
to the sum of the outgoing edges. We show that, by choosing
appropriate edge weights starting from the sources the proof can
be concluded.

In the following, we sequentially pick a node j ∈ N and
determine ξij for all outgoing edges from node j. To this end, let dj
be the out-degree of node j ∈ N (i.e., the number of all outgoing
edges), and let Ek := {(j, i) ∈ E | j ∈ Ñk} be the set of all
outgoing edges from the nodes in Ñk, where Ñk is as in the proof
of Lemma A.1. It is clear that {Ek}Kk=0 is a partition of E . As the
first step, for each (j, i) ∈ E0, assign ξij := 1/dj. Regarding ξij as
the amount of flow through the edge (j, i), this is interpreted as
assigning the equally divided outgoing flow from the source. By
this, the incoming flows for all nodes j ∈ Ñ1 are determined, and
thus, we can assign the outgoing flow ξij for all (j, i) ∈ E1 as the
amount of incoming flow divided by its out-degree:

ξij :=
1
dj

∑
ξjl > 0. (A.2)
l∈Nj
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n this way, we sequentially assign all the outgoing flow for the
odes in Ñk, k = 0, . . . , K , in the increasing order of k. Recalling
hat {Ek}Kk=0 is a partition of E , this procedure determines the flow
ij > 0 for all edges in E . Then, by construction, (A.1) holds. □

ppendix B. Proof of Theorem 1

The proof technique is similar to that of the node-wise funnel
oupling case, given in Lee et al. (2022), hence we will keep the
roof brief. In this section, we explain the main differences. For
his purpose, we will cite equations from Lee et al. (2022) as, for
xample, (3) in Lee et al. (2022) as (N3). The full proof is available
n the extended version of the paper on arXiv.

First, we show the existence of a unique (local) solution. Let
:= Nm + n1 + · · · + nN and define the relatively open set

:=

{
(t, y1, z1, . . . , yN , zN )
∈ R≥0 × Rq

⏐⏐⏐⏐ ∀ (j, i) ∈ E ∀ p ∈ M :

|ν
p
ij | < ψ

p
ij (t)

}
nd R : Ω → Rq, (t, y1, z1, . . . , yN , zN )

→ col
(
R1, . . . ,RN

)
with

Ri =

[Fi(t, yi, zi) +
∑

j∈Ni
uij(t, νij)

Zi(t, yi, zi)

]
,

i ∈ N . Then the system (1), (2) is equivalent to

ẋ(t) = R(t, x(t)),
x(t0) = col

(
y1(t0), z1(t0), . . . , yN (t0), zN (t0)

)
.

By assumption we have x(t0) ∈ Ω and R is measurable and locally
integrable in t and locally Lipschitz continuous in x. Therefore,
by the theory of ordinary differential equations (see e.g. Walter,
1998, § 10, Thm. XX) there exists a unique maximal solution
x : [t0, ω) → Rq, ω ∈ (0,∞], of (1) and (2) which satisfies
(t, x(t)) ∈ Ω for all t ∈ [t0, ω). Furthermore, the closure of the
graph of this solution is not a compact subset of Ω .

Assume that ω < ∞. Then, different from Lee et al. (2022), we
find that

Ep
+({τk}) :=

{
(j, i) ∈ E

⏐⏐⏐⏐ lim
k→∞

ν
p
ij (τk)

ψ
p
ij (τk)

= 1
}

is non-empty for some p ∈ M,

or

Ep
−({τk}) :=

{
(j, i) ∈ E

⏐⏐⏐⏐ lim
k→∞

ν
p
ij (τk)

ψ
p
ij (τk)

= −1
}

is non-empty for some p ∈ M,

nstead of that I+({τk}) is non-empty or I−({τk}) is non-empty.
ssuming that Ep

+({τk}) is non-empty, we will instead show that
contradiction occurs, if the graph (N , Ep

+({τk})) has a loop. If
N , Ep

+({τk})) has no loop, then we will show that it is possible
o construct another time sequence {τ̄k} (based on {τk}), such
hat |Ep

+({τk})| < |Ep
+({τ̄k})|, similar to (N9). By repeating the

rgument, we arrive at a graph (N , Ep
+({τ̂k})), for some time

equence {τ̂k}, that has a loop, which yields a contradiction as
e will show. Therefore, we conclude that ω = ∞ and (3) is
chieved.
For convenience, we write Ep instead of Ep

+({τk}) in the fol-
owing. Note first that, by the definition of Ep, there exists k∗

∈ N
uch that for all k ≥ k∗ and all (j, i) ∈ Ep we have ypj (τk)−ypi (τk) =
p
ij (τk) > 0, because ψp

ij (t) > 0 for all t ∈ [t0, ω). Hence, by
emma A.1 the graph (N , Ep) cannot have a loop.
The remainder of the proof follows as in Lee et al. (2022),

here we instead use the absolutely continuous function

(t) :=

∑
ξijν

p
ij (t) =

∑
ξij · (y

p
j (t) − ypi (t))
(j,i)∈Ep (j,i)∈Ep

8

here ξij is given by Lemma A.2 in terms of the graph (N , Ep).
he sequences {εq}q∈N, {τkq}q∈N and {sq}q∈N are similarly defined
s in Lee et al. (2022), and similar to (N14) we may conclude that,
or some ξ̄ > 0,

q ∈ N : Ẇ (sq) ≥ −ξ̄ θψ := −ξ̄ sup
t≥t0,(j,i)∈E,p∈M

⏐⏐ψ̇p
ij (t)

⏐⏐ . (B.1)

The main difference appears when we arrive at the derivation
f (N16). We have to instead invoke Lemma 1 together with
emma A.2 in Appendix A for the graph (N , Ep) to obtain, for
lmost all t ∈ [t0, ω),

˙ (t) ≤ M0 +

∑
(j,i)∈Ep

↑

ξij
∑
(l,j)∈E

µ
p
jl(t)

−

∑
(j,i)∈Ep

↓

ξij
∑
(l,i)∈E

µ
p
il(t),

(B.2)

here µp
kl(t) = µ

p
kl(ν

p
kl(t)/ψ

p
kl(t)) for (l, k) ∈ E . Define the edge

ets
p
large :=

{
(l, i) ∈ Ep

⏐⏐ ∃ j ∈ N : (j, i) ∈ Ep
↓

}
= Ep

↓
,

p
small :=

{
(l, j) ∈ E

⏐⏐ ∃ i ∈ N : (j, i) ∈ Ep
↑

}
∪
{
(i, l) ∈ E

⏐⏐ (l, i) ∈ E \ Ep, ∃ j ∈ N : (j, i) ∈ Ep
↓

}
.

y definition of Ep
↑
and Ep

↓
in Appendix A, we have ∅ ̸= Ep

↓
=

p
large ⊆ Ep and ∅ ̸= {(i, j)|(j, i) ∈ Ep

↑
} ⊆ Ep

small ⊆ E \ Ep. The
atter holds because from (j, i) ∈ Ep

↓
, node i is a sink of the graph

N , Ep), hence (i, l) /∈ Ep for all l ∈ N . Similarly, if (j, i) ∈ Ep
↑
, then

is a source of the graph (N , Ep), hence (l, j) /∈ Ep for all l ∈ N .
Now, since −µ

p
il(t) = µ

p
li(t) for any (l, i) ∈ E by Assumption 4,

e can rewrite (B.2) as

˙ (t) ≤ M0 +

∑
(l,j)∈Ep

small

ζjlµ
p
jl(t) −

∑
(l,i)∈Ep

large

ζilµ
p
il(t) (B.3)

ith positive constants

jl =

{∑
(j,k)∈Ep

↑

ξkj +
∑

(k,l)∈Ep
↓

ξlk, (l, j) ∈ Ep
small,∑

(k,j)∈Ep
↓

ξjk, (l, j) ∈ Ep
large.

hen, from (B.1) and (B.3), we may similarly conclude that
(l,j)∈Ep

small
max{µp

jl(sq), 0} → ∞ as q → ∞. Therefore, invoking
hat E \ Ep is finite, there exist a subsequence {τ̄k} = {sqk} and
n edge (j∗, i∗) ∈ Ep

small ⊆ E \ Ep such that νpi∗j∗ (τ̄k)/ψ
p
i∗j∗ (τ̄k) → 1

s k → ∞. Consequently, Ep
+({τk}) ⊆ Ep

+({sq}) ⊆ Ep
+({τ̄k}). Since

j∗, i∗) ∈ Ep
+({τ̄k}) \ Ep

+({τk}), the proof concludes.

ppendix C. Proof of Lemma 2

Construct the function γ as follows:

(i) set Mx := β(Mx0 , 0) + γ̂ (Mu) > 0,
(ii) define βMx (·) := β(Mx, ·), which is a strictly decreasing

function from [0,∞) onto (0, βMx (0)],
(iii) for ε ∈ (0, 2βMx (0)] define γ̃ via its inverse

γ̃−1(ε) := w
(
β−1
Mx

(
ε
2

))
γ̂−1 ( ε

2

)
(C.1)

which is a strictly increasing function from (0, 2βMx (0)]
onto (0, w(0)γ̂−1(βMx (0))] such that limε→0 γ̃

−1(ε) = 0,
(iv) choose any γ ∈ K∞ such that γ (s) = γ̃ (s) for s ∈

(0, w(0)γ̂−1(βMx (0))].

The function γ defined above has the following property:

γ (s) = 2γ̂
(

s
)

(C.2)

w(T∗(s))
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or all s ∈ (0, w(0)γ̂−1(βMx (0))], where T ∗(s) := β−1
Mx

(γ (s)/2)
s a strictly decreasing function from (0, w(0)γ̂−1(βMx (0))] onto
[0,∞). (This property is easily proved with s = γ−1(ε).)

We now prove the statement of Lemma 2. Pick t > t0. Then,
either (i) t0 + T ∗(δt ) ≤ t or (ii) t < t0 + T ∗(δt ) holds. If (i),
then for all s such that t0 ≤ t − T ∗(δt ) ≤ s ≤ t , we have
(T ∗(δt )) ≤ w(t − s). Therefore,

γ̂
(
sups∈[t−T∗(δt ),t)∥u(s)∥∞

)
≤ γ̂

(
sups∈[t−T∗(δt ),t)∥u(s)∥∞

w(t−s)
w(T∗(δt ))

)
≤ γ̂

(
1

w(T∗(δt ))
sup

s∈[t0,t)
∥u(s)∥∞w(t − s)

)
= γ̂

(
δt

w(T∗(δt ))

)
=

1
2γ (δt ).

Then, (11) follows since

∥x(t)∥A ≤ β
(
∥x(t − T ∗(δt ))∥A, t − (t − T ∗(δt ))

)
+ γ̂

(
sups∈[t−T∗(δt ),t)∥u(s)∥∞

)
≤ β

(
Mx, T ∗(δt )

)
+

1
2γ (δt ) = γ (δt ).

f (ii), then for all s such that t0 ≤ s ≤ t , we have w(T ∗(δt )) ≤

(t − s). Thus, we obtain

x(t)∥A ≤ β (∥x(t0)∥A, t − t0)+ γ̂
(
sups∈[t0,t)∥u(s)∥∞

)
≤ β (∥x(t0)∥A, t − t0)

+ γ̂

(
sup

s∈[t0,t)
∥u(s)∥∞

w(t−s)
w(T∗(δt ))

)
= β (∥x(t0)∥A, t − t0)+ γ̂

(
δt

w(T∗(δt ))

)
= β (∥x(t0)∥A, t − t0)+

1
2γ (δt)

hich warrants (11).
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