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Abstract—This article presents the reachability and con-
trollability characterizations for discrete-time linear switched
systems under a fixed and known switching signal. A geometric
approach is used, and we are able to provide alternative
conditions which are more computationally friendly compared
to existing results by utilizing the solution formula at switching
times. Furthermore, the proposed conditions make it easier to
study the dependency of the reachability and controllability on
the switching times and the mode sequences; this is a new result
currently not investigated in the literature. Some academic
examples are provided to illustrate the novel features found
in this study.

I. INTRODUCTION

We study the reachability and controllability of a class of
switched systems where each mode is a discrete-time linear
system of the form

z(k+1) = Ayyz(k) + Boyu(k) (D
where & € N is the time instant, z(k) € R" is the state,
u(k) € R™,m € Nis the input, 0 : N — {0,1,2,...,p},p €
N, is the switching signal determining which mode o (k) is
active at a time instant k, A; € R"*", B, € R™"*™, The
switching signal ¢ is assumed to be fully known and fixed.
Furthermore, it is a time-only-triggered switching signal. In
other words, neither state nor input trigger the switching.
This means that system (1) can be seen as a time-varying
linear system with a special structure. In applications, there
are many physical systems which can be modelled in this
framework (see e.g. [1], [2], [3], [4], [5], [6]), and this
system class has been attracting many researchers to study
its properties such as stability [7], [8], [9], [10] and control
designs [11], [12], [13], [14], [15].

We focus in this study with the state reachability notion in
the sense of the ability to reach a certain state from a certain
initial value under a fixed and known switching signal. Study
for reachability of system class (1) was initially introduced
in [16] where the set of points reachable from the origin
were investigated; this set was called controllable set in this
study. It has been pointed out that this set is a subspace under
some hypothesis. This study was extended in [17] where the
reachable set was formulated as the union of its maximal
components; some structural properties, such as the bound of
the number of time steps bound on the number of iterations
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necessary to reach a state, were also presented. Nevertheless,
no necessary and sufficient condition for reachability char-
acterization was formulated in those reports. Another study
related to reachability was reported in [18] for the case that
a zero-nonzero structure of the matrices A and B is known.

Necessary and sufficient conditions for reachability and
controllability of (1) were proposed in [19] using geometric
approach under arbitrary switching signal. The reachable
set was presented as a subspace derived from a calculation
using the system’s matrices obtained from each time step for
the whole time interval of the characterization, which may
demand high computational resources. In fact, the condition
can be simplified; this is the first contribution of our study.
Furthermore, the characterizations in [19] are under arbitrary
switching signals, and we need to find a switching signal
which yields reachability. When we have a fixed switching
signal, we can extract the condition directly from the condi-
tion for systems under arbitrary switching signals. In general,
the reachability depends on the switching times, meaning that
a system may not be reachable for a certain switching signal
but unreachable for another switching signal, see the forth-
coming Example 3.7. Now, a new question arises i.e. when
the reachability characterization stays the same if we change
the switching times but keep the mode sequence; this is our
next contribution in this paper, which has not been studied
yet in any literature. It is important if we can know whether
the system is always reachable or unreachable for any choice
of switching times so that only one characterization with
certain switching times is needed to perform.

This paper is structured as follows. In Section II, we first
present some preliminaries for recalling the explicit solution
of linear switched systems, for introducing the switching
signal forms used in the study, and for introducing the
solution formulas at switching times including the state
transition matrix, which plays an important role in the
reachability and controllability characterizations. We present
the main results regarding the reachability and controllability
characterizations in Section III. Finally, the main results
regarding the study of the dependencies of those properties
on the switching times are presented in Section IV. Some
(counter-)examples are also presented within each section to
illustrate the results.



II. PRELIMINARIES

Recall the Inhomogeneous Linear Switched System
(InLSS) (1). Its solutions satisfy ~ Vk,h € N with k > h,
k—1
2(k) = ¢(k, h)x(h) + Y ¢k, j + 1) Bo(jyu(s),
j=h
where ¢U(k‘,h) = Ag(k,l)AU(k,g) "'Aa(h) is the so
called state transition matrix. With initial value z(0) = z¢ €
R™, system (1) has the unique solution at any time instant
keN
k-1
2(k) = ¢(k,0)x(0) + Y é(k,j + 1)Boyu(s). ()
j=0
For the rest of this paper, we restrict the switching signal
to a fixed and known switching signal given via a fixed mode
sequence (0;);cn as follows (see also Fig. 1)
o(k)=ojifk €[k}, ki), 7€{0,1,2,...J},  (3)
where k7 € N denote the switching times with kj = 0,
k%, = K, and 0; € {0,1,...,p}. Here K > 0 denotes the
final time of interest and J > 0 is the number of switches on
the time interval [0, K]. Furthermore, note that the solution
at k = K is obtained from the last mode equation z(K) =
Ay, 2(K — 1) + B,,u(K — 1), i.e. we only consider the
equation (1) up to k = K — 1.

o(k)
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Fig. 1: Mode sequence (3)

The switching times £ are assumed to be strictly increas-
ing, i.e. k7,4 > k7. Under a fixed switching signal we can
write the solution at any switching time & by using the
formula given in the following lemma.

Lemma 2.1: Under a fixed switching signal (3), the solu-
tion of linear switched systems (1) at any switching time k7
is given by

u(ki—1)
z(kj) = Yo (7,0)2(0) + Yo (j, 1) Roy (kT — K§) l : ]

u(0)
u(ky—1)
+wo(j7 2)RJ1(k§ _ki) . +ee
u(ky)
u(k]’—l)
o (o d) Ry (K= K2 |
u(k;_q)
“)
where for ¢,j,h €N, j > h >0,
Ri(k) = [B;, A;B;,- - , Al ' Bj] 5)
Yo (i h) = Aw Pt Ap— TR gtk ()

Proof: Extracting the solution from (2) at the switching
time kj yields (4). [ |
We refer to matrix (6) as the state transition matrix from
the switching time kj to the switching time k7. Moreover,

(6) can be rewritten in a recursive form as

, kS —kS_ .
wo(]vh):Acr?_l] llba(.]—l,h) (7N
with ¢, (h, h) = I, which is more computational-friendly
than (6).

III. REACHABILITY AND CONTROLLABILITY
A. Definitions

In this paper, we study reachability (and also controllabil-
ity) for a finite time interval [0, K]. We adopt the reachability
definition in the sense of reaching a certain final state within
a finite number of time instants. For controllability, we
use the notion of bringing the initial state to zero. The
following definitions precisely introduce the reachability and
controllability notions we use in this study.

Definition 3.1 (Reachability from Zero): A state x; € R"
of the InLSS (1) is called reachable from zero on [0, K] w.r.t.
the switching signal ¢ if with 2(0) = 0 there exists an input
sequence (u(0),u(1),..,u(K — 1)) such that z(K) = xs. //

Definition 3.2: The set of all final states z; € R™ that are
reachable from zero on [0, K| w.rt. the switching signal o
is called the reachable set from zero and denoted by R‘[’O, K]
Furthermore, the InLSS (1) is called completely reachable
from zero on [0, K] w.rt. the switching signal o if Rff, ;) =
R™. /"

Definition 3.3 (Controllability to Zero): An initial state
2o € R™ of (1) is called controllable to zero on [0, K] w.r.t.
the switching signal o if with z(0) = x( there exists an input
sequence (u(0),u(1),..,u(K — 1)) such that z(K)=0. //

Definition 3.4: The controllable set of system (1) on
[0, K] w.r.t. the switching signal o is the set of all initial
states zp € R™ that are controllable to zero on [0, K] under
o and denoted as C[‘B_ k- Furthermore, the InLSS (1) is
called completely controllable to zero on [0, K] w.rt. o if
Cﬁ)’ K] = R™. /"

In addition, we introduce here the notion of deadbeat
controllable i.e. a InLSS is called deadbeat controllable if it
is completely controllable on [0, 1] i.e. within one time step.
In other words, deadbeat controllable means that a single
control action is enough to make the state zero. Note that
using the solution from the initial mode is enough to charac-
terize deadbeat controllability; thus, it is independent from
the switching signal. Clearly, deadbeat controllable implies
completely controllable by setting the input to zero for the
subsequent time steps. If we know that a switched system is
deadbeat controllable, then it is completely controllable on
any time interval and for any switching signal.

Remark 3.5: Completely reachable from zero on [0, K]
is equivalent to completely reachable on [0,K] i.e. any
x5 € R(K) is reachable from any initial value zo € R™.
This can be seen from the fact that also including the term
for the nonzero initial value z¢ i.e. ¥ (J +1,0)x yields the
same condition. The same phenomenon as in nonswitched
systems happens here i.e. reachability and controllability
are equivalent if all of A;s are nonsingular; in general,
reachability only implies controllability because the zero
final state &y = 0 is always reachable from any initial value,



but controllability does not imply reachability. The latter is
illustrated by the following simple single switch switched
system:
k<kj:

xl(k’—i—l):ml(k) a:l(k:—i—l):O

xo(k+1) =u(k) | xz2(k+1) =x2(k)
which is easily seen to be controllable (by setting u(k§—1) =
0) but not reachable on [0, K] for any K > k$. This example
also illustrates that for controllability of the overall switched
system it is not necessary, that any of the individual modes
is controllable. Moreover, by slightly changing the system
above to:

k> kS

k<ki:
x1(k+1)=x1(k) | z1(k+ 1) =u(k)

xo(k+1) =u(k) | x2(k+1) =x2(k)
we obtain a reachable switched system on [0, K| composed
of unreachable modes. o

k> ki :

B. Characterizations

We arrive at our main result for the reachability char-
acterization given in the following theorem with the fol-
lowing subspaces notations. Let R;(k) = im R;(k) =
im[B;, A;B;, - -+ ,Af_lBi] be the ”local” or “individual”
reachable space of mode-i on [0, k], and define the following
sequence of subspaces for j =1,2,...,J

Mo = Roo (kf), (8a)

My = AP TN My Ry, (K — kD). (8b)

The following theorem reveals that in fact, the reachable

space on [0, K] is equal to the subspace M ; defined above.

Theorem 3.6: Consider the InLSS (1) under a fixed and

known switching signal o of the form (3). Let RfO, K] be its
reachable space on [0, K] w.rt. o. Then

My =R ©)

where M ; is given by (8). In particular, (1) is completely

reachable if, and only if, M ; = R"™.
Proof: First, note that M ; can be rewritten as

My =o(J + L1Ro(K]) + Yo (J + 1, 2)Ra(k3 — ki) + -

TR (Kjq — k7).
(10
For any reachable state z(K) € R([B, K] there exists an input
sequence (u(0),...,u(K — 1)) such that (4) is satisfied with
z(ky,) = x(K) ie. x(K) € My and thus R, ;) € M.
From (10), any vector xy € M can be rewritten as the
summation of vectors of the form (4) with zy = x(k%, ) =
x(K) i.e. there exists an input sequence (u(0), ..., u(K —1))
such that 2y = x(K) and thus x¢ is reachable from zero.
Hence, M ; C R‘{)’K]. [ ]
Example 3.7: &onsider InLSS (1) composed of two
modes with

(Ao, Bo) = ([5 91 [6])

(A1, B1) = ([§6],[6]) -
As individual systems, both modes are unreachable with their
corresponding reachable spaces Rg = im [}] and Ry = {0}
respectively. We characterize the switched systems under
switching signals with the mode sequence (o) = (0,1,0) on

time interval [0, K] with K = 12 and with switching times
1 <ki<ki—1andki+1<k5 <K — 1. The switched
systems are reachable when k5 — k{ is odd, however, they
are unreachable when k5 — kf is even; this is explained as
follows. The local reachable space corresponds to mode-0
and mode-1 is Ro(k) = im[}], Vk € N and Rq(k) =
{0}, VEk € N respectively. The sequence of subspaces (8)
for the switched systems under the mode sequence (0, 1,0)
is then given by

Mo =im[}], My = Ay im [§],

My = Af_ki/\/ll +im[}]

K—k3 kS —kS . .
=[o?1" el T im[g] +im[g].
If k5 — k7 is odd, then

Mz = [} §]im[§] +im[§] = R?,

i.e. the InL.SS is (completely) reachable. If k5 — k{ is even,
then

My = [§5]im[g] +im[5] = im[g]
i.e. the InLSS is non-reachable. In particular, this example
also shows that even though all individual modes are un-
reachable, switched systems composed of those modes under
certain switching signals can be reachable. /"
Theorem 3.6 can also be used to characterize the subspace
of points from a nonzero initial values as follows.
Proposition 3.8: Consider the InLSS (1) with z(0) =
o € R™ under a fixed and known switching signal ¢ of the
form (3). Let Rf, ;j(2o) be its reachable space on [0, K]
from x¢ w.r.t. 0. Then the following structure applies:
Rﬁ),K](‘TO) :’l/JU(J“FLO).T()‘FMJ- (1])
Proof: Let (K, o, u(-)) be the solution of (1) at time
step k = K with £(0) = (¢ and input sequence u(-) =
(u(0), ...,u(K — 1). Then, from (4)
(K, zg,u()) = 2(K, 29,0) + (K, 0, u(-))
i.e. (K, xo,u(-)) can be decomposed as the sum of the solu-
tion with zero inputs and the solution with zero initial value.
Since z(K, 20,0) = ¢,(J+1,0)z0 and 2 (K, 0, u(-)) € M
then we have Rf (20) = Yo (J +1,0)x0 + M. [ |
We now present the main result for the controllability

characterization. Define the sequence of subspaces, for j =
J,J—-1,...,0

N1 = {0}, (122)
s _peq—1
Nj = [A’Qﬁ“ k]} i1+ Rj(kjq — K7)] - (12b)

where P~1[P] for some matrix P € R™*™ and some sub-
space P denotes the preimage of P under P, i.e. P~1[P] =
{r e R": Pz € P}.

Theorem 3.9: Consider the InLSS (1) under a fixed and
known switching signal o of the form (3). Let C[‘(’), K] be its
controllable space on [0, K] w.r.t. . Then

No = Cp g (13)
where N is defined by (12). In particular, (1) is completely
controllable if, and only if, Ny = R™.

Proof: For any controllable initial state xy € C%) K]’
there exists an input sequence @ = (u(0), ..., u(K — 1) such



that with 2(0) = x¢ we obtain z(K) = 0. Thus, by backward
iteration we have that the solution z(k$), j = J,J —1,...,0
satisfies

2(ky) €
S ki_kJ—l
a(ky_y) € [45),

kS —k*3 -
- [Agj_;’*l}

e [ASTMH0) + Ro, (K — K5)] = N,

|7 k) + Ro,, (y — k50)

1
[NJ +R0J71(k‘¢SJ - 3—1)} :NJ—lv

2(0) € [A5] " o (kD) + Roy (k)

C[AB) NG + Ry (K)] = No

ie xg € ./\/0 Hence Chx) € Ny. Now, for any vector

no € No = [AF 171N + Ro(k)], there exist n; € N; and
ro € Ro(k3) satlsfymg
ny = Aﬁzno +79.
In particular there exists an input sequence
(u(0),u(1),...,u(k§ — 1) such that with z(0) = mng
we have z(k§) = n;. By forward iteration, there exist
ny € Ny and ry € R,,(K — k%) which corresponds to an
input sequence (u (k:é) w(ky +1),...,u(K — 1) satisfying
O—AUJ ks nJ+TJ:$(K).

Altogether, we have found an input sequence, which controls
the initial value ng € Ny to zero on the time interval [0, K],
hence Ny C Cio.x)- [ ]

Example 3.10: Recall the switched system in Exam-
ple 3.7. The local controllable sets corresponding to mode-
0 and mode-1 are Cf) .y = im[§] and COK = {0}
respectively for all K € N. Thus, both 1nd1v1dual systems
are not (completely) controllable. The sequence of subspaces
(12) for the switched systems under the mode sequence
(0,1,0) is then given by

N3z = {0}
[ K—k3]t ;
Ny = [A¢TH] Vg + Ro(K — k3)] = im [§],
Ny = 'A‘fif’“f] No + Ry (ks — k)]
= (341" M im 3],
- s1—1
No=[46T] IV + Ro(k)

k§—kS . .
= (161" " im[g] +im [g]
k3 is odd, then
No = [V ¢]im[g] +im[5] = R",
i.e. the InLSS is (completely) controllable. If k3
then

If k5 —
— k7 is even,

No = [39)im[§] +im [3] = im 3],
i.e. the InLSS is not (completely) controllable. Similar phe-
nomenon is derived here as in reachability where even though
all individual modes are uncontrollable, the switched system
composed of those modes under certain switching signals
can be controllable. /"

Example 3.11: Consider InLSS (1) composed of two

modes with 0_10
(Ao, By) = ({518190} { D
(o, o) = ([111] - [4])-

First, we observe the switched system on [0, K] with K =
20 under the mode sequence (0,1,0) and switching times

{ = 5 and k3 = 10. The sequence of subspaces (12) for
this switched system is given by

Ns = {0}
107-1 10
No = [A’] 7 N5+ Ro(10)] = {8 é}
-1 10
N = [A‘;’] No +Ri(5)] = [6?}
-1
No = [A5] M1 +Ro(5)] = R?,
i.e. the switched system is (completely) controllable. If
the second switching time is changed with k5 = 11,
then we have Ny = im [(1)(1) i.e. the switched system

is uncontrollable. The characotgnzation results including the
reachability for all possible switching times within the time
interval [0,20] are shown in Fig. 2. It can be seen that in
general, the switched system is reachable and controllable
for some switching times, however, it is unreachable and

uncontrollable for some other switching times. 1"
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Fig. 2: Switching times vs reachability/controllability Exam-
ple 3.11

Finally, the condition for deadbeat controllable can be
derived from the characterization of controllability given in
Theorem 3.9 considered for K = 1:

Corollary 3.12: The InLSS (1) is deadbeat controllable
if, and only if, Agol [im B,,] = R™.

Note that A [im B, ] = R" is equivalent to im A,, C
im B, which just means that the input can compensate any
value A,z resulting from an arbitrary initial value .

Remark 3.13 (Dwell time simplication): By Cayley-
Hamilton theorem, if all modes are active for at least n time
steps (dwell time), then the local/individual reachable space
can be simplified as R; = im[B;, A;B;,---, Al 'B;]. In



this case, the constructions for reachable and controllable
sets (8) and (12) can be simplified as

MO = R(roa
M, = Anh

NJ+1 = {0}7
s _gs7—1
Ny = [A7T ]  ING + R)

ij_l + Raj
and

respectively. If fact, the reachability space under the above
dwell time condition can then also be written as

= Wo(J+1L,j+ DRy,
§=0

The controllability space can however not be written in a

similar way, but we can still conclude that

NGk 2D el +1,07'R,,.
j=0
This difference occurs because for general matrices M and
subspaces P and Q we have M (P + Q) = MP + MQ but
only MY (P+ Q) D M~ 'P+ M~1Q.

Remark 3.14: It is well known that for nonswitched sys-
tems, the following nice inclusion holds:

Rio1) € Rz € - S Rpon) = Riontrry =+ (15)
The subspace inclusion also holds for the controllability
spaces, because once an initial state is controllable to zero it
can also be controlled to zero on a larger time interval (by
simply choosing u(k) = 0 after zero was reached) and this
property remains true also for the switched case, i.e.

Cﬁxkﬂ - C[%),cz] 0< ki <ky <K,

which implies that (complete) controllability on [0, K] im-
plies (complete) controllability on [0, k],Vk > K. In con-
trast, for the reachibility spaces of switched systems, there
is no general relationship between R[o ot and R[o Joo] with
two different time steps k; and ky that correspond to two
different mode activation time intervals i.e. k; € [kF, k5 +1)
and ko € [ki, k7 + 1) with i # j; a simple example for
this is when we have R[o ks] = = R" and the system switches
at k = k¢ to the mode (A;41,Biy1) = (0,0) which yields
Rio.n = {0} for all k£ > k7.

The inclusion (15) may even not be valid within a single
mode interval; this is illustrated by the following single

switch system:
k<kj:

v(k+1) = z(k) + [5]

U

where Ro, g with K > k

m[§] if K —k{ is odd
Romy=19. 11 s
un[o] if K — k7 is even.

However, the following nice observation still applies af-
ter the mode-j is active for at least n time steps: (com-
plete) (un)reachability on [0, k1], k1 € (K}, k5, 4] with k1 —
k? > n implies (complete) (un)reachablhty on [0,k +
k:] Vk < kjiq — k1; however, it does not imply (complete)
(un)reachability on [0, k2], k2 > k7, i.e. once the switched
system is (un)reachable at some time step after the current

f.k] (14)

w(k+1) =Y 5] x(k)

]

mode is active for at least n time steps, it stays (un)reachable
within the current mode time interval, and once it switches
to another mode, it may be no longer (un)reachable. This
is explained as follows; w.l.o.g., we consider here a single
switch system with the mode sequence (0, 1) and switching
time k5. From (15), for k > k§ we have that R,(1) C
R;(2)C---CRj(n) =Rj(n+1)=---, and from (8)
o k—k3
[0,%] =A] "Ro+ R4,
k+1—kS
o1 = A1 Ro+ R1.
Note that R4 is invariant under A, then
k41—
0.k+1) = A1 TTNRe + ARy
= Al(Al_ lRo +R1)
= A1Rp -
If A; is nonsingular then clearly dim R‘[B k1] = dim R‘[{) k]
i.e. the system’s reachability property remains the same.

Now, if A; is singular then by applying the state transfor-
mation £ = Pz to the mode-1 with the nonsingular P and

nilpotent N satisfying PA; P~ = {%1 ol
space is now

~k1-k§ . R}
R :|:Al 10]1111[ 0}+1m[~1}
[0,k+1] 0 0 R} R

. ~k+1—kf§ . R}
:1m[141 o lRé} +1m[~1}

the reachable

R?
with im {ﬂ - Ry and im [g} —  im[PB,
0 1
PAP 71PB1, .. (PAl )n 1PBl] and thus
dim R[o k1] = = dim R[ "R o

From the reachable and controllable sets constructions )
and (12), and the confirmation inferred from Example 3.7 and
Example 3.10, the reachability and controllability properties
depend on the switching times and on how long the individ-
ual modes are active. In those examples, this dependency
happens due to the rotation matrix A; which rotates the
reachable/controllable set so that the reachable/controllable
set of the switched system is equal to the whole space for
some switching times and is unequal to the whole space for
some other switching times. Moreover, in those examples,
the dependency happens both with switching times that are
closed and far away from the time interval boundaries.
However, under single switch switching signals, this de-
pendency seems happen only with switching times that are
closed enough to the time interval boundaries as illustrated
by the forthcoming Example 3.15. We will show that this
dependency indeed only happens when the switching times
are closed enough to the time interval boundaries, see the
forthcoming Proposition 4.3.

Example 3.15: Consider the InLSS (1) composed of two
modes with

-10 0 -1

(o, B0) = ([ o, ¢ [51))

s = (1 11) [4]).
We observe here the switched system with mode sequences
(0,1) and (1,0) on the time interval [0, K] with K = 9.
With short enough (only one time step) activation time for the
first/second mode i.e. when £ = 1 or &, the switched system



is unreachable and uncontrollable, however, with longer
activation times, the switched system is always reachable

and controllable, see Fig. 3. //
s
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Fig. 3: Reachability and controllability characterizations for
Example 3.15

IV. DEPENDENCIES ON THE SWITCHING TIMES

To study the dependency of the reachability and control-
lability properties on the switching times, we will use the
dwell-time term which was initially introduced in [20]. For
a positive constant 7p, let S[™p] be the set of all fixed and
known mode sequences given by (3) where the difference
between two consecutive switching times is not smaller than
7p. We refer to 7p as the (fixed) dwell-time. Furthermore,
by S{gﬂ]q we denote the set of all switching signals o € S[7]
defined on the time interval [0, K].

Definition 4.1 (Constant Reachability/Controllability):
Consider the InLSS (1). Its reachability (controllability) on
[0, K] is called constant w.r.t. the dwell time 7p > 0 if

it is either reachable (controllable) for all ¢ € SE)D K] Of

unreachable (uncontrollable) for all o € S{(?I](]' I

We now present some specific situations where the reach-
ability and controllability properties are constant w.r.t. the
dwell time n. The first situation, which is rather obvious,
is that when A; are idempotent. Indeed, this will make
powers to A; matrices in the reachability and controllability
conditions do not affect the characterization results. The
second situation is when the state is one-dimensional as
proved in the following proposition, which is a property also
seen for observability/determinability, see [21].

Proposition 4.2: Reachability and controllability of one-
dimensional InLSSs are constant on [0, K] for any K € N
w.r.t. the dwell time 7p = 1.

Proof: The local reachable spaces R, (ki1 — kj) =
im B, are either 0 or R irzdependently of the switching

. kS —kS . . .
times and the scalar A;/"" "/ is either 0 or a nonzero inde-

pendently of the switching times. Altogether, the sequences
N and M do not depend on the switching times. [ ]

Another  situation where  constant  reachabil-
ity/controllability can be shown is the single switch
case under a sufficiently large dwell time:

Proposition 4.3: Consider the InLSS (1) under a single
switch switching signal defined on [0, K], K > ki with
ki as the single switching time. Then, its reachability and
controllability are constant w.r.t. the dwell time 7p = n.

Proof: W.lo.g. consider the mode sequence (0, 1) with
the switching time k7. The reachable space at K > ki +n
is

R = AT "TRo+ Ry

with R; = im[B;, A;B;,--- , A" ' B;],i = 0, 1. Clearly, R,
is fixed no matter the switching time k5, and Rq is A;-
invariant. A nonconstant reachability happens if R‘[’Q K] =
R"™ for some k7 and RfO, K & R"™ for some other k7, or in
other words dim RFO,K} = n for some k{ and dim RFO,K} <
n for some other k7.

Case 1: A, is nonsingular. Assume first for k& = K —n,
Rf k) = ATRo+Ri G R™ ie. unreachable then AR+
R1 € R”™ for any | € N i.e. it remains unreachable for any
other possible k7 since dim A?“Ro cannot increase. Now,
if for kf = K—n, Rfy i) = ATRo+R1 = R" i.e. reachable
then from the dimension formula, dim A} Rg+dimR; =n
and dim A?MRo+dim AL Ry = n, and thus dim A7 R+
dimR; = n for any | € N since R, is Aj-invariant. Hence,
it stays reachable for any other possible k7.

Case 2: A; is singular. Then, there exists a nonsingular
matrix P such that

Plap =4 2]

where N is a nilpotent with nilpotency index less than n and
A; is nonsingular. Applying the state transformation x =
P 1z, the system’s modes can now be written as

(Ao, By) = (P~ 4yP, P~'By) and
(A, By) = (wﬂ) ,P7'By).

The reachable space for this new tranformed system is
~ 0 o ~ ~
[0,K] = {o ARk } Ro+ TRy
with R; = im[éi, Ziéi, e ,g?’léi]. The same arguments
as in Case 1 apply here, and thus the reachability is constant.

The constant controllability follows with similar arguments
and the details are omitted. ]

V. SUMMARY AND FUTURE WORKS

Necessary and sufficient conditions using a geometric ap-
proach for reachability and controllability characterizations
have been presented for linear switched systems. Moreover,
the notion of constant reachability/controllability has been
introduced to study when reachability/controllability does not
depend on the switching times. Some specific situations for
constant reachability/controllability have been discussed.

Extending the results from this paper to singular linear
switched systems where each mode is a singular system is
ongoing research and we expect that the same methods will



result in similar results. Furthermore, we will investigate suf-
ficient or necessary conditions for reachability/controllability
which are independent of the switching times.

[1]

[2]

[3

[t

[4

=

[5

[ty

[6

=

[8]

[9]

REFERENCES

W. You, M. Yan, M. Wang, and Y. Yue, “State feedback control of
saturated switched systems and its application to turntable,” in Pro-
ceedings of 2011 International Conference on Electronic Mechanical
Engineering and Information Technology, vol. 2, 2011, pp. 1017-1020.
G. Ma, L. Qin, X. Liu, and G. Wu, “Event-triggered output-feedback
control for switched linear systems with applications to a boost
converter,” in 2016 IEEE 11th Conference on Industrial Electronics
and Applications (ICIEA), 2016, pp. 2431-2436.

N. Gazzam and A. Benalia, “Geometric approach for the observability
of switched systems: Application to three-cells dc/dc converter,” in
2018 International Conference on Applied Smart Systems (ICASS),
2018, pp. 1-5.

K. Haddadi, N. Gazzam, and A. Benalia, “Observability of switched
linear systems based geometrical conditions: An application to dc/dc
multilevel converters,” in 2019 International Conference on Advanced
Electrical Engineering (ICAEE), 2019, pp. 1-5.

G. Zhang, P. Zheng, S. Yu, H. Trinh, and P. Shi, “Controllability anal-
ysis and verification for high-order dc—dc converters using switched
linear systems theory,” IEEE Transactions on Power Electronics,
vol. 36, no. 8, pp. 9678-9688, 2021.

Y. Shi and X.-M. Sun, “Bumpless transfer control for switched linear
systems and its application to aero-engines,” IEEE Transactions on
Circuits and Systems 1: Regular Papers, vol. 68, no. 5, pp. 2171-2182,
2021.

T. S. Gomide and M. J. Lacerda, “Stability analysis of discrete-time
switched systems under arbitrary switching,” IFAC-PapersOnlLine,
vol. 51, no. 25, pp. 371-376, 2018, 9th IFAC Symposium on Robust
Control Design ROCOND 2018.

W. Xuefei and W. Jiwei, “Finite-time stability of discrete-time
switched positive linear systems,” in 2020 Chinese Control And
Decision Conference (CCDC), 2020, pp. 4580-4583.

G. Chen and Y. Yang, “Stability analysis of discrete-time switched
linear time-varying systems based on function-dependent Imis,” IEEE
Access, vol. 8, pp. 19221-19 229, 2020.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

V. D. Iuliis, A. D’Innocenzo, A. Germani, and C. Manes, “On the
stability of discrete-time linear switched systems in block companion
form,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 2033-2038, 2020, 21st
IFAC World Congress.

A. Nayak and A. Kundu, “Stabilizing switching signals for discrete-
time switched linear systems: a unifying framework,” in 2019 Fifth
Indian Control Conference (ICC), 2019, pp. 490-494.

M. T. Augustine and D. U. Patil, “Dynamic programming based
optimal control of discrete time switched linear systems,” in 2019
Australian & New Zealand Control Conference (ANZCC), 2019, pp.
221-224.

Z. Sun, “Finite-path stabilization of discrete-time switched linear
systems,” in 2020 IEEE 16th International Conference on Control &
Automation (ICCA), 2020, pp. 25-28.

J. Zhao, M. Gan, and G. Chen, “Optimal control of discrete-time
switched linear systems,” Journal of the Franklin Institute, vol. 357,
no. 9, pp. 5340-5358, 2020.

Z. He, B. Wu, Y.-E. Wang, and M. He, “Finite-time asynchronous
control of discrete-time switched linear systems with event-triggered
hoo filtering,” Transactions of the Institute of Measurement and
Control, vol. 44, no. 8, pp. 1611-1621, 2022.

D. P. Stanford and L. T. Conner, Jr., “Controllability and stabilizability
in multi-pair systems,” SIAM Journal on Control and Optimization,
vol. 18, no. 5, pp. 488-497, 1980.

L. T. Conner and D. P. Stanford, “The structure of the controllable set
for multimodal systems,” Linear Algebra and its Applications, vol. 95,
pp. 171-180, 1987.

J. v. d. Woude, “Zero controllability in discrete-time structured sys-
tems,” in 2018 European Control Conference (ECC), 2018, pp. 1851—
1856.

S. S. Ge, Z. Sun, and T. H. Lee, “Reachability and Controllability
of Switched Linear Discrete-Time Systems,” IEEE Transactions on
Automatic Control, vol. 46, pp. 1-12, 2001.

J. P. Hespanha and A. S. Morse, “Stability of switched systems with
average dwell-time,” in Proc. 38th IEEE Conf. Decis. Control, 1999,
pp. 2655-2660.

Sutrisno and S. Trenn, “Observability and determinability character-
izations for linear switched systems in discrete time,” in 2021 60th
IEEE Conference on Decision and Control (CDC), 2021, pp. 2474—
2479.



	Introduction
	Preliminaries
	Reachability and Controllability
	Definitions
	Characterizations

	Dependencies on the Switching Times
	Summary and Future Works
	References

