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Minimality of Linear Switched Systems with known switching signal
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Minimal realization is discussed for linear switched systems with a given switching signal. We propose a consecutive forward
and backward approach for the time-interval of interest. The forward approach refers to extending the reachable subspace at
each switching time by taking into account the nonzero reachable space from the previous mode. Afterwards, the backward
approach extends the observable subspace of the current mode by taking observability information from the next mode into
account. This results in an overall reduced switched system which is minimal and has the same input-output behavior as
original system. Some examples are provided to illustrate the approach.
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1 Introduction

We consider linear switched system of the form

Σσ :

{ ẋq(t) = Aσ(t)xq(t) +Bσ(t)u(t), t ∈ (tq, tq+1),

xq(t
+
q ) = Jσ(t+q ),σ(t−q )xq−1(t

−
q ),

y(t) = Cσ(t)xq(t), t ∈ R,
(1)

where xq : (tq, tq+1) → Rnq is the absolutely continuous q-th piece of the state, u : R → Ru is the input and y is the
measured output. The switching signal σ : R → Q = {1, 2, · · · , f} ⊂ N is a given piecewise constant function with finitely
many switching times: { tq | q ∈ Q, t1 < t2 < · · · < tf } in the bounded interval (t1, tf+1) of interest. For each q ∈ Q, the
matrices Aq, Bq, Cq , are of appropriate q-dependent size. We need a jump map Jq+,q− : Rnq− → Rnq+ to relate different
state-space dimensions and simplify the notation Jσ(t+q ),σ(t−q ) = Jq,q−1 =: Jq .

The general idea of minimal realization is to construct a state-space model from a given input-output behavior of the system.
In particular, finding a minimal realization could be seen as the first step towards model reduction. In [1], we have presented a
time-varying model reduction approach for linear switched system which was not a switched system anymore. Therefore, our
aim is to gain insight into a more suitable model-reduction approach by studying the minimal realization problem for switched
systems of the form (1) within this system class.

Several approaches have been discussed in the cases of arbitrary and constrained switching e.g. in [1–5] where switching
signal are viewed as input to the switched systems. It can be seen that (minimal) realization in general depends on the
specifically given switching signal, so in contrast to the existing literature, we view the switched system (1) as a piecewise-
constant time-varying linear system. We begin with the formal definition of minimality.

Definition 1.1 For Σσ as in (1), the total dimension is defined by dimΣσ :=
∑

q∈Q nq. Furthermore, we define its
input-output behaviour as follows

Bio
σ :=

{
(u, y)

∣∣ ∀q ∈ Q ∃xq : (tq, tq+1) → Rnq satisfying (1) and x1(t
+
1 ) = 0

}
.

A linear switched system Σ̂σ with corresponding input-output behavior B̂io
σ is said to be a minimal realization of switched

system Σσ if 1) Bio
σ = B̂io

σ and 2) for any Σ̃σ with Bio
σ = B̃io

σ satisfies dim Σ̂σ ≤ dim Σ̃σ.

Remark 1.2 The above definition of minimality is not specifying any method to obtain a minimal realization from a given
switched system as in (1). In general, a minimal realization can only be obtained by considering each mode individually (and
by properly taking the effect on the other modes into account).

2 Minimal realization of single switch switched system

We propose a method to find a minimal realization of linear switched system of the form

Σσ :

{
ẋ1 = A1x1 +B1u, on (t1, t2), x1(t

+
1 ) = 0,

ẋ2 = A2x2 +B2u, on (t2, tf ), x2(t
+
2 ) = J2x1(t

−
2 ).

(2)
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The Kalman decomposition (KD), [6], is a well known method to find a minimal realization of a system, however, this
method is based on the assumption that the initial value is zero. In system (2), we have seen that second mode starts with
nonzero initial values which are not completely arbitrary, but are constraint to the reachable space of the first mode. By taking
into account the reachable subspace of the first mode, we construct an input-extended system which is input-output equivalent
to the second mode (cf. [7] in the context of model reduction). Then we extend the first mode by taking into account the
observable states of the second mode. Finally we define the jump map from mode 1 to mode 2.

Overall, the algorithm of the proposed method is summarized as follows.
Step 1a. Compute the reachable subspace R1 = imR1 of first subsystem (A1, B1, C1) and extend the input matrix of the
second mode to

B2,e := im[B2, J2R1].

Step 1b. Calculate the KD of (A2, B2,e, C2) with corresponding transformation matrix V2 and left- and right-projectors
W2, V2 (i.e. the corresponding rows and columns of V−1

2 and V2) and let

(Â2, B̂2, Ĉ2) = (W2A2V2,W2B2, C2V2).

Step 2a. Calculate the space L2 = R1∩K2 =: imL2 of additional observable states, where K2 = imK2 for some full column
rank matrix K2 ∈ Rn1×nJ

2 such that J2K2 = V J
2 for a full column rank matrix V J

2 ∈ Rn2×nJ
2 with imV J

2 := imV2 ∩ im J2.
Then extend the output matrix of the first mode as

C1,e := im

[
C1

L⊤
2

]
.

Step 2b. Calculate the KD of (A1, B1, C1,e) with corresponding transformation matrix V1 and left- and right-projectors
W1, V1 (i.e. the corresponding rows and columns of V−1

1 and V1) and let

(Â1, B̂1, Ĉ1) = (W1A1V1,W1B1, C1V1).

Step 3. The reduced jump Ĵ2 : Rn̂1 → Rn̂2 is calculated as Ĵ2 := W2J2V1.
The overall reduced switched system is then given by

Σ̂σ :

{
˙̂x1 = Â1x̂1 + B̂1u, on (t1, t2), x̂1(t

+
1 ) = 0,

˙̂x2 = Â2x̂2 + B̂2u, on (t2, tf ), x̂2(t
+
2 ) = Ĵ2x̂1(t

−
2 ).

(3)

The above algorithm ensures following observations. Due to page limitation, we ignore details.

Theorem 2.1 Consider the switched system Σσ and the reduced system Σ̂σ obtained via the above algorithm. Then both
systems are input-output equivalent in the sense of Definition 1.1. Also, Σ̂σ has minimal total dimension under all possible
input-output equivalent system of Σσ .

The proposed approach is illustrated by the following example.

Example 2.2 Consider a switched system as in (2) with modes

(A1, B1, C1) =
([

0.1 0 0
0 0.2 0
0 0 0.3

]
,
[
1
0
1

]
, [ 1 1 0 ]

)
and (A2, B2, C2, J2) =

([
0.2 0 0
0 0.1 0
0 0 1

]
,
[
0
1
0

]
, [ 1 0 1 ] ,

[
2 0 0
0 3 0
0 0 5

])
.

It is easily seen, that each modes is unreachable and unobservable, however, the switched system is reachable and observ-
able. We apply the proposed method. Via the KD of the extended 2nd mode (A2, [B2, J2R1], C2] and the extended 1st mode
(A1, B1, [C

⊤
1 , L2]

⊤) respectively, we obtain the left- and right-projectors W2 = [ 1 0 0
0 0 1 ], V2 =

[
1 0
0 0
0 1

]
, and W1 = [ 1 0 0

0 0 1 ],

V1 =
[
1 0
0 0
0 1

]
with R1 =

[
1 0
0 0
0 1

]
, L2 =

[
1 0
0 0
0 1

]
. The corresponding input-output equivalent minimal switched system is given by

(Â1, B̂1, Ĉ1) = (W1A1V1,W1B1, C1V1) = ([ 0.1 0
0 0.3 ] , [

1
1 ] , [ 1 0 ]) ,

(Â2, B̂2, Ĉ2) = (W2A2V2,W2B2, C2V2) = ([ 0.2 0
0 1 ] , [

0
0 ] , [ 1 1 ]) and Ĵ2 = W2J2V1 = [ 2 0

0 5 ] .
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