Model reduction of switched systems in time-varying approach

Md Sumon Hossain, Stephan Trenn
Bernoulli Institute for Mathematics, Computer Science, and Artificial Intelligence,
University of Groningen, The Netherlands
Emails: s.hossain@rug.nl, s.trenn@rug.nl

1 Introduction

Consider switched linear systems of the form:

$$
S_{\sigma}:\left\{\begin{array}{l}
\dot{x}(t)=A_{\sigma} x(t)+B_{\sigma} u(t), \quad x\left(t_{0}\right)=\mathbf{0}, \tag{1}\\
y(t)=C_{\sigma} x(t),
\end{array}\right.
$$

where $\sigma: \mathbb{R} \rightarrow M=\{0,1,2, \cdots, s\}$ with finitely many switching times $t_{0}<t_{1}<t_{2}<t_{3}<\cdots<t_{s}$. The system matrices are $A_{i} \in \mathbb{R}^{n \times n}, B_{i} \in \mathbb{R}^{n \times m}, C_{i} \in \mathbb{R}^{p \times n}, D_{i} \in \mathbb{R}^{n \times m}$, where $i \in M$. Here, the i-th mode is active in the interval $\left[t_{i}, t_{i+1}\right)$, for $i=1, \cdots, s$.

Recently, many works have been done on model order reduction (MOR) of switched linear systems. We view here the switched system as a special time-varying system and aim for a (time-varying) model-reduction depending on a given (known) switching signal. A model reduction approach is proposed for piecewise constantly switched systems, based on balancing based MOR method for linear time-varying systems, for details see [1].

2 Problem setting

The available balanced truncation methods for time-varying system assume that the coefficient matrices are at least continuous. However, the switched system (1) seen as a timevarying system has discontinuous coefficient matrices, so we propose (continuously) time-varying approximation:

$$
S_{\varepsilon}:\left\{\begin{array}{l}
\dot{x}(t)=A_{\varepsilon}(t) x(t)+B_{\varepsilon}(t) u(t), \quad x\left(t_{0}\right)=\mathbf{0} \tag{2}\\
y(t)=C_{\varepsilon}(t) x(t)
\end{array}\right.
$$

where, for example $A_{\mathcal{\varepsilon}}($.$) is defined as follows:$

$$
A_{\varepsilon}(t)=\left\{\begin{array}{ll}
A_{i}+\frac{t-t_{i}}{\varepsilon}\left(A_{i+1}-A_{i}\right) & : t \in\left[t_{i}, t_{i}+\varepsilon\right], \\
A_{i+1} & : t \in\left(t_{i}+\varepsilon, t_{i+1}\right]
\end{array} .\right.
$$

3 Model reduction

At first we compute the time-varying controllability and observability Gramians $P(t)$ and $Q(t)$ respectively. Let the time-varying system (2) is boundedly completely controllable and observable on $\left[t_{0}, t_{f}\right]$. Then there exists a timevarying coordinate transformation T such that

$$
T(t)^{-1} P(t) T(t)^{-\top}=T(t)^{\top} Q(t) T(t)=\Pi(t),
$$

for all $t \in\left[t_{0}, t_{f}\right]$. In fact, $T(t)=R(t) U(t) \Pi(t)^{-1 / 2}, T(t)^{-1}=$ $\Pi(t)^{-1 / 2} V(t)^{\top} L(t)^{\top}, \quad$ where $\quad U(t) \Pi(t) V(t)^{\top} \quad=$ $\operatorname{svd}\left(R(t)^{\top} L(t)\right), \quad$ and \quad where $\quad R(t) R(t)^{\top}=P(t) \quad$ and $L(t) L(t)^{\top}=Q(t)$ are the Cholesky decompositions of P and Q, respectively.

Using the projection matrices, we compute reduced system:

$$
\hat{S}_{\varepsilon}:\left\{\begin{array}{l}
\dot{\hat{x}}(t)=\hat{A}_{\varepsilon}(t) \hat{x}(t)+\hat{B}_{\varepsilon}(t) u(t), \quad \hat{x}\left(t_{0}\right)=\mathbf{0} \tag{3}\\
\hat{y}(t)=\hat{C}_{\varepsilon}(t) \hat{x}(t)
\end{array}\right.
$$

where the system matrices are $\hat{A}_{i} \in \mathbb{R}^{r \times r}, \hat{B}_{i} \in \mathbb{R}^{r \times m}, \hat{C}_{i} \in$ $\mathbb{R}^{p \times r}, D_{i} \in \mathbb{R}^{r \times m}$, for $i \in M$ and $r \ll n$.

4 Results

Consider a randomly generated SISO switched linear system

$$
\left.\begin{array}{l}
A_{1}=\left[\begin{array}{ccccc}
-0.74 & 0.3 & 0.2 & -0.01 & -0.06 \\
0.95 & -1.43 & -0.5 & 0.8 & -0.26 \\
0.922 & -0.048 & -0.44 & 0.03 & -0.54 \\
-0.69 & 0.28 & 0.31 & -0.764 & 0.054 \\
-0.634 & -1.26 & 0.534 & 0.662 & -0.48
\end{array}\right], B_{1}=\left[\begin{array}{c}
2 \\
1.4 \\
1.1 \\
-0.06 \\
0.08
\end{array}\right], \\
C_{1}=\left[\begin{array}{llll}
2.5 & 1.6 & 0.02-0.03
\end{array}\right], A_{2}=A_{1}-0.5 * I_{5}, \\
B_{2}=\left[\begin{array}{lll}
2.5 & 1.8 & .3 \\
0.6 & -1
\end{array}\right]^{T}, C_{2}=\left[\begin{array}{ll}
1.5 & 1.4 \\
\hline
\end{array} 0.10 .2\right.
\end{array}\right], \varepsilon=10^{-3} .
$$

Consider switching times are $t_{1}=2 s, t_{2}=4 s$. Applying proposed technique, we compute first order reduced system. Figure 1 shows that the first order reduced system gives good approximation of original system.

Figure 1: Comparison between the output of original system, proposed approximation and 1st order reduced system.

References

[1] N. Lang, J. Saak, T. Stykel "Balanced truncation model reduction for linear time-varying systems," Math. and Comp. Mod. of Dyn. Sys., 22, p. 267-281, 2016.

