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Abstract— We discuss the problem of minimal realization
for linear switched systems with a given switching signal and
present some preliminary results for the single switch case. The
key idea is to extend the reachable subspace of the second mode
to include nonzero initial values (resulting from the first mode)
and also extend the observable subspace of the first mode by
taking information from the second mode into account. We
provide some simple examples to illustrate the approach.

I. INTRODUCTION

Realization theory is a classical topic in the area of
systems and control. In general, the aim of realization theory
is to construct a state-space model from a given input-
output behavior of the system [1], [2]. Realization theory
provides a theoretical foundation for model reduction, system
identification and filtering/observer design. Indeed, finding a
minimal realization could be seen as the first step towards
model reduction. Realization theory of switched systems has
been discussed e.g. in [3]–[10]. The author in [6] combines
the theory of rational formal power series with the classical
automata theory to discuss the realization theory of hybrid
systems. In particular, the cases of arbitrary and constrained
switching are discussed where switching signal are viewed
as input to the switched systems. Moreover, some other
works have been done on realization theory, observability
and reachability of linear switched systems, e.g., [11]–[15].

In contrast to the existing literature, we view a switched
system as a piecewise-constant time-varying linear system,
in particular, a (minimal) realization in general depends
on the specifically given switching signal. Several minimal
realization approaches have been developed in the context
of time-varying systems, and they are classified by constant
rank systems, piecewise constant rank systems, global and
intervalwise Kalman decomposition, e.g., [2], [16]–[19].
Most available methods are considered by Gramian based
differential Kalman decomposition and some drawbacks are
summarized in [19]. Moreover, the authors in [18] have been
discussed the detection of temporal properties for piecewise
constant rank systems (PCR), indeed a PCR system differs
from the switched linear systems because the time-instants
are a priori fixed and the linear system over each time
interval is time-varying.

To be more specific, we try to find a minimal realization
of linear switched systems (LSSs) with a given switching

The authors are with the Bernoulli Institute for Mathematics, Computer
Science, and Artificial Intelligence, University of Groningen, Nijenborgh 9,
9747 AG, Groningen, The Netherlands.

Email: s.hossain@rug.nl s.trenn@rug.nl

signal of the form

Σσ :

{ ẋq(t) = Aσ(t)xq(t)+Bσ(t)u(t), t ∈ (tq, tq+1)

xq(t+q ) = J
σ(t+q ),σ(t−q )xq−1(t−q ),

y(t) =Cσ(t)xq(t), t ∈ R,
(1)

where xq : (tq, tq+1) → Rnq is the absolutely continu-
ous q-th piece of the state, u : R → Ru is the in-
put and y is the measured output. The switching sig-
nal σ : R → Q = {1,2, · · · , f} ⊂ N is a given piece-
wise constant function with finitely many switching times:{

tq
∣∣ q ∈Q, t1 < t2 < · · ·< t f

}
in the bounded interval

(t1, t f+1) of interest. For each q ∈ Q, the system matrices
Aq,Bq,Cq, are of appropriate size, describing the dynamics
correspond to the linear system active in mode q ∈ Q.
Note that we do allow different state-space dimension nq in
each mode, in particular, it is necessary to provide a jump-
map Jq+,q− : Rnq− → Rnq+ relating the state-value xq−(t−q )
immediately before the switch with the state value xq+(t+q )
after the switch at tq.

We assume that the switching signal is known and fixed,
hence without restricting generality we assume (unless stated
otherwise) that σ(t) = q on (tq, tq+1). In particular, we can
simplify the notation for the jump matrix J

σ(t+q ),σ(t−q ) =
Jq,q−1 =: Jq. Furthermore, in some slight abuse of notation we
will simply speak of the solution x(·) instead of the different
solution pieces xq(·).

As mentioned above, finding a minimal realization of (1)
is a first step towards model reduction. Recently, we have
presented in [20] a time-varying model reduction approach
for linear switched system (with identical state-dimensions
and without jumps). However, the resulting reduced systems
was not a switched system anymore, instead it was fully
time-varying and is therefore difficult to handle numeri-
cally. Therefore, our aim is to gain insight into a more
suitable model-reduction approach by studying the minimal
realization problem for switched systems of the form (1)
within this system class. In particular, the process of going
from a non-minimal representation (with initial value zero)
to a minimal one can be seen as removing “unreachable”
and “unobservable” states; understanding what the notions
“unreachable” and “unobservable” exactly means in this
context allows to generalize these ideas to “difficult to reach”
and “difficult to observe” which then allows to perform
model reduction.

This note is just the first step in this research field and
provides some preliminary results for the single switch case.



II. PROBLEM SETTING AND PRELIMINARIES

A. Minimal realization: definition

In this section, we introduce some notions and properties
related to minimality of linear switched systems (1) and we
begin with the formal definition of minimality.

Definition 1 (cf. [6]): For Σσ as in (1) we define its total
dimension as follows

dimΣσ := ∑
q∈Q

nq.

Furthermore, we define its input-output behaviour as follows

Bio
σ :=

{
(u,y)

∣∣∣∣ ∃xq : (tq, tq+1)→ Rnq satisfying (1)
and x(t−1 ) = 0

}
.

A linear switched system Σ̂σ with corresponding input-output
behavior B̂io

σ is said to be a minimal realization of switched
system Σσ if 1) Bio

σ = B̂io
σ and 2) for any Σ̃σ with Bio

σ = B̃io
σ

we have
dim Σ̂σ ≤ dim Σ̃σ .

For non-switched linear systems it is well known that a
realization is minimal if, and only if, it is minimal, however
for switched systems of the form (1) this is not the case in
general as the following example shows:

Example 2: Consider a switched system with two modes

(A1,B1,C1) =
([

0.1 0 0
0 0.2 0
0 0 0.3

]
,
[

1
0
1

]
, [1 1 0 ]

)
,

(A2,B2,C2,J2) =
([

0.2 0 0
0 0.1 0
0 0 1

]
,
[

0
1
0

]
, [1 0 1 ] ,

[2 0 0
0 3 0
0 0 5

])
.

Assume the single switching signal defined by

σ(t) =

{
1, on (t1, t2),

2, on (t2, t f ).
(2)

It is easily seen, that each modes is unreachable and unob-
servable. However, the switched system is reachable in the
sense that each value x(t−f ) ∈ R3 can be reached from zero
by a suitable input and it is also observable in the sense that
(for a vanishing input) only a zero initial value leads to a
zero output.

On the other hand, the second state is unreachable in the
1st mode and unobservable in the 2nd mode. In particular,
when starting with a zero initial value, for any input the value
of the second state does not effect the output (because in the
first mode it is identically zero and in the second mode the
corresponding coefficient in the C-matrix is zero). Therefore,
we can remove the second state without altering the input-
output behavior.

Remark 3: The above definition of minimality is not spec-
ifying any method how to obtain a minimal realization from
a given switched system. In particular, it does not take into
account constraints like the requirement that the reduced state
is obtained via a uniform projection map (cf. [21], [22] in the
context of model reduction). In general, a minimal realization
can only be obtained by considering each mode individually
(and by properly taking the effect on the other modes into
account).

It is important to note that a naive approach to reduce each
individual mode by removing unreachable and unobservable
states will not work in general, this is illustrated with the
following example:

Example 4: Consider the switched system Σσ with

(A1,B1,C1) =
([

1 0
0 0

]
,
[

1
1

]
, [1 0 ]

)
,

(A2,B2,C2) =
([

1 0
0 0

]
,
[

1
0

]
, [1 1 ]

)
,

with switching signal (2) and without jumps. The second
state is not observable in the first mode and not reachable in
the second mode, hence one may be tempted to remove this
state to obtain an (unswitched) minimal realization given by

ẋ1 = x1 +u, y = x1. (3)

However, it is easily seen, that a non-zero input leads to a
non-zero second state during the first mode, which then will
effect the output of the second mode, i.e. system (3) obtained
by simply reducing each mode individually does not have the
same input-output behavior as the original switched system.

In Section III we will propose a method which takes into
account the effect of the different modes have on each other.
Although this method will not simply consider a minimal
realization of each mode individually, the method of reducing
a given (unswitched) linear system to a minimal one, will
play an important role and we will recalled first.

B. The Kalman decomposition and minimal realization

Assume a linear system

Σ :

{
ẋ(t) = Ax(t)+Bu(t), x(0) = 0,
y(t) =Cx(t),

(4)

with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n. The well known
Kalman decomposition (KD), [2], is a coordinate transfor-
mation x =Vz which leads to the following block triangular
form

(V−1AV,V−1B,CV)=

([
Arō A12 A13 A14
0 Aro 0 A24
0 0 Ar̄ō A34
0 0 0 Ar̄o

]
,

[Brō
Bro
0
0

]
, [0 Cro 0 Cr̄o ]

)
,

where
([

Arō A12
0 Aro

]
,
[

Brō
Bro

])
is reachable and([

Aro A24
0 Ar̄o

]
, [Cro Cr̄o ]

)
is observable. In fact V =

[Vrō Vro Vr̄ō Vr̄o], where imVrō is the intersection of
the reachable and unobservable space, im[Vrō,Vro] is the
reachable space and im[Vrō,Vr̄ō] is the unobservable space.
A minimal realization of (4) is now given by (Aro,Bro,Cro).

This method is based on the assumption that the initial
value is zero. If arbitrary initial values are considered, it is
easily seen that only the unobservable states can be removed.

In the context of switched systems, the initial values for
the second mode are neither zero nor completely arbitrary,
but are constraint to the reachable space of the first mode,
this motivates to find a minimal realization for the linear
system

Σ
X0 :

{
ẋ(t) = Ax(t)+Bu(t), x(0) ∈X0,

y(t) =Cx(t),
(5)



where X0 ⊆ Rn is the subspace of relevant initial values.
Inspired by the fact, that the ODE ẋ = Ax with initial
condition x(0) = x0 has the same solution as the impulsive
ODE ẋ = Ax + x0δ , x(0−) = 0 we propose the following
input-extended system corresponding to (5) (cf. [23] in the
context of model-reduction)

Σ
X0
e :

{
ẋe(t) = Axe(t)+

[
B X0

][ u(t)
u0(t)

]
, xe(0) = 0,

ye(t) =Cxe(t),
(6)

where imX0 = X0. We can now apply the KD on the
extended system and obtain a minimal extended realization

Σ̂
X0
e :

{
˙̂xe(t) = Âex̂e(t)+

[
B̂e X̂0

][ u(t)
u0(t)

]
, x̂e(0) = 0,

ŷe(t) = Ĉex̂e(t),
(7)

and the corresponding minimal realization

Σ̂
X0 :

{
˙̂x(t) = Âex̂(t)+ B̂eu(t), x̂(0) = x̂0 ∈ im X̂0,

ŷ(t) = Ĉex̂(t).
(8)

The properties of the reduced system Σ̂X0 can formalized in
the following lemma.

Lemma 5: Consider ΣX0 as in (5) and Σ̂X0 as in (8)
obtained by first extending (5) to (6), then reducing it via
the KD to a minimal extended realization (7) and finally
removing the extension. Then ΣX0 and Σ̂X0 are input-
output equivalent in the sense that for all trajectories (x,u,y)
satisfying (5) there exists x̂ such that (x̂,u,y) satisfies (8).
Furthermore, Σ̂X0 has the minimal state-dimension under all
systems which are input-output equivalent to ΣX0 .

Proof: The output equation of ΣX0 with initial value
x(0) = x0 ∈X0 is given by

yX0(t) =CeAtx0 +
∫ t

0
CeA(t−τ)Bu(τ)dτ. (9)

Construct an input-extended system Σ
X0
e as in (6), and let

x0 = X0z0 for some z0, where the columns of X0 form the
basis for the subspace of relevant initial values. Then system
(5) is input-output equivalent to system (6) with the input
u0 = z0δ , where δ denotes the Dirac delta distribution and
CeAtx0 =CeAtX0z0.

The output equation of Σ
X0
e as in (6), can be written by

yX0(t) =
∫ t

0
CeA(t−τ)

[
B X0

][ u(t)
u0(t)

]
dτ

=
∫ t

0
CVeV

−1AV(t−τ)V−1 [B X0
][ u(t)

u0(t)

]
dτ,

where V is the KD transformation matrix which transforms
(A, [B,X0],C) into a KD, i.e.

V−1AV=

[∗ ∗ ∗ ∗
0 Âe 0 ∗
0 0 ∗ ∗
0 0 0 ∗

]
,V−1[B X0] =

[ ∗ ∗
B̂e X̂0
0 0
0 0

]
,CV= [0 Ĉe 0 ∗ ] .

So we have, utilizing V−1eAV= eV
−1AV,

yX0(t) =
∫ t

0
ĈeeÂe(t−τ)

[
B̂e X̂0

][ u(t)
u0(t)

]
dτ, (10)

which is the output of minimal extended realization, as in
(7). Again, for u0 = z0δ , equation (10) can be written as

yX0(t) = ĈeeÂet x̂0 +
∫ t

0
ĈeeÂe(t−τ)Ĉeu(τ)dτ, (11)

where x̂0 = X̂0z0 and it represents the output equation for (8).
Therefore, for any arbitrary trajectories (x,u,y) satisfying (5)
there exists x̂ such that (x̂,u,y) satisfies (8).

2nd part: Assume Σ̂
X0
e is the minimal realization of Σ

X0
e .

Consider a system Σ̃X0 which is input-output equivalent to
ΣX0 . Then for all x0 ∈X0, there exists x̃0 ∈ X̃0 such that
for all input u(·), satisfies

y(·,u,x0) = ỹ(·,u, x̃0).

Construct an input-extended system Σ̃
X0
e as in (6) for Σ̃X0

such that

ỹe(·, [ u
u0 ] ,0) = ye(·, [ u

u0 ] ,0), ∀u,u0. (12)

Then we have that

dim Σ̃
X0 = dim Σ̃

X0
e ≥ dim Σ̂

X0
e = dim Σ̂

X0 ,

because Σ̂
X0
e has by construction the minimal state dimension

under all (extended) systems satisfying (12), i.e., Σ̂X0 has
indeed the minimal state-dimension under all systems which
are input-output equivalent to ΣX0 .

III. MINIMAL REALIZATION OF SWITCHED SYSTEM

In this section, we proposed a method to find the minimal
realization of linear switched systems

(A1,B1,C1), on t ∈ (t1, t2),

(A2,B2,C2,J2), on t ∈ (t2, t f ),
(13)

with the single switch switching signal given by (2). We
propose a technique consisting of three main steps. First, we
construct a minimal realization of second mode by taking
into account the reachable subspace of the first mode. As
a second step, we find a minimal realization of first mode
by taking into account the observable states of the second
system. The final step consists of defining the reduced jump
map from mode 1 to mode 2.

A. Step 1: Reduction of second mode

As discussed above the second mode will in general not
start with initial value zero, instead the values of x(t−2 ) cover
the whole reachable space R1 = im[B1,A1B1, . . . ,A

n1−1
1 B1],

consequently x(t+2 ) ∈ J2R1. Using the method described
above we extend the second mode to (A2,B2,e,C2) with
B2,e := [B2,J2R1] where imR1 = R1 and apply to reduc-
tion method described above to obtain the reduced mode
(Â2, B̂2,Ĉ2) which is input-output equivalent with the second
mode (under the assumption that the initial values for the
second mode are determined by the reachable states of
mode 1).



B. Step 2: Reduction of first mode
Restricted to the first interval, all unobservable and un-

reachable states can be removed from the first mode without
changing the input-output behavior. However, some un-
observable, but reachable, state from the first mode may
become observable in the second mode and hence the input
of the first mode may therefore indirectly influence the
output of the second mode (via the initial value for the
second mode). We arrive therefore at the following general
problem: Given a linear system (4) and a subspace L ⊆Rn

of indirectly-observable states, find a minimal realization of
(4) which does not “remove” indirectly-observable states.
To be more precise, we assume that the reduction of (4)
is achieved via a left projection W and a right projection
V , i.e. WV = I and the reduced system of (A,B,C) is
given by (Â, B̂,Ĉ) = (WAV,WB,CV ), in particular, kerW
corresponds to the removed states. The condition that the
space of indirectly-observed states L is not “removed” by
the reduction procedure, can now be formalized by the
condition

kerW ∩L = {0}.

Similar as in Step 1 where we extended the input matrix
to enlarge the reachability space, we now propose to extend
the output matrix to extend the observability space, i.e. we
consider

Σ
L
e :


ẋe(t) = Axe(t)+Bu(t), xe(0) = 0,

ye(t) =
[

C
L>

]
xe(t),

(14)

where imL = L . Very similar as before, we utilize the KD
to obtain a minimal realization of (14) given by

Σ̂
L
e :


˙̂xe(t) = Âex̂e(t)+ B̂eu(t), x̂e(0) = 0,

ye(t) =
[

Ĉe

L̂>

]
x̂e(t).

(15)

Removing the additional rows in the output-matrix we then
arrive at the proposed minimal realization of (4) which does
not “remove” states from L :

Σ̂
L :

{
ẋ(t) = Âex̂(t)+ B̂eu(t), x̂(0) = 0,

ŷ(t) = Ĉex̂(t).
(16)

Let us investigate the properties of the reduced system Σ̂L .
Lemma 6: The two systems (4) and (16) have the same

input output behavior. Furthermore, let W and V be the two
projectors transforming (4) into (16), i.e. WV = I, Âe =WAV ,
B̂e =WB and Ĉe =CV , then kerW ∩L = {0}.

Proof: The output equation of system (4) is

y(t) =
∫ t

0
CeA(t−τ)Bu(τ)dτ

=
∫ t

0

[
I 0

][ C
L>

]
VeV

−1AV(t−τ)V−1Bu(τ)dτ,

where V is the transformation for obtaining a KD for
(A,B, [C>,L]>), i.e.

V−1AV=

[∗ ∗ ∗ ∗
0 Âe 0 ∗
0 0 ∗ ∗
0 0 0 ∗

]
,V−1B =

[ ∗
B̂e
0
0

]
,
[

C
L>

]
V=

[
0 Ĉe 0 ∗
0 L̂> 0 ∗

]
.

Now, together with

[ I 0 ]
[

C
L>

]
V= [0 Ĉe 0 ∗ ] , V−1eAV= eV

−1AV,

we have

y(t) =
∫ t

0
ĈeeÂe(t−τ)B̂eu(τ)dτ = ŷ(t),

where ŷ(t) is the output of minimal realization as in (16).
2nd part: Let the transformation matrices to obtain a KD

of system (14) be V̂= [ V̂rō V̂ro V̂r̄ō V̂r̄o ] , V̂−1 =

Ŵrō
Ŵro
Ŵr̄ō
Ŵr̄o

 .
Clearly, W = Ŵro, V = V̂ro and imL⊆ im

[
C
L>

]>
=: imC>e ,

it follows that

imL⊆

ker

 Ce
CeA

...
CeAn−1

⊥ =
(

im[V̂rō,V̂r̄ō]
)⊥

= im[Ŵ>ro ,Ŵ
>
r̄o ].

Furthermore, by assumption imL ⊆ im[V̂rō,V̂ro] (the reach-
able subspace). Hence

imL⊆ im[V̂rō,V̂ro]∩ im[Ŵ>ro ,Ŵ
>
r̄o ].

Consider an arbitrary z ∈ imL∩ kerW . From Wz = 0 and
z∈ imL⊆ im[V̂rō,V̂ro], we can conclude that there exists z1,z2
such that z = V̂rōz1 +V̂roz2, so 0 =Wz =WV̂rōz1 +WV̂roz2 =
z2, where WV̂rō = 0, WV̂ro = I. Therefore, z = V̂rōz1 and

z ∈ imV̂rō = ker

[
Ŵro
Ŵr̄ō
Ŵr̄o

]
⊆ ker

[
Ŵro
Ŵr̄o

]
=
(

im[Ŵ>ro ,Ŵ
>
r̄o ]
)⊥

.

Altogether, we have that

z ∈ im[Ŵ>ro ,Ŵ
>
r̄o ]∩

(
im[Ŵ>ro ,Ŵ

>
r̄o ]
)⊥

= {0}.

We believe that the above reduction method results in a
minimal realization, however, a complete proof is still work
in progress and we therefore formulate here the minimality
result as a conjecture.

Conjecture 7: Let (Ã, B̃,C̃) be a system which is input-
output equivalent to (4) and which is obtained via a pro-
jection method with left-projector W̃ . If kerW̃ ∩L = {0}
then the state-dimension ñ of (Ã, B̃,C̃) is at least the state
dimension of (16).

C. Step 3: Reduced jump map

Assume the mode before the jump J2 : Rn1 →Rn2 was re-
duced by a projection method with left- and right-projectors
W1,V1 and the mode after the jump was reduced by left- and
right-projectors W2,V2. Then the reduced jump Ĵ2 : Rn̂1 →
Rn̂2 is defined as

Ĵ2 :=W2J2V1. (17)



D. Summary minimal realization algorithm: single switch
case

Overall, the algorithm is summarized as follows.
Step 1a. Compute the reachable subspace R1 = imR1 of
first subsystem (A1,B1,C1) and extend the input matrix of
the second mode to

B2,e := im[B2,J2R1].

Step 1b. Calculate the KD of (A2,B2,e,C2) with correspond-
ing transformation matrix V2 and left- and right-projectors
W2,V2 (i.e. the corresponding rows and columns of V−1

2 and
V2) and let

(Â2, B̂2,Ĉ2) = (W2A2V2,W2B2,C2V2).

Step 2a. Calculate the space L12 = R1 ∩K12 =: imL12 of
additional observable states, where K12 = imK12 for some
full column rank matrix K12 ∈ Rn1×nJ

2 such that J2K12 =V J
2

for a full column rank matrix V J
2 ∈ Rn2×nJ

2 with imV J
2 :=

imV2∩ imJ2. Then extend the output matrix of the first mode
as

C1,e := im
[

C1
L>12

]
.

Step 2b. Calculate the KD of (A1,B1,C1,e) with correspond-
ing transformation matrix V1 and left- and right-projectors
W1,V1 (i.e. the corresponding rows and columns of V−1

1 and
V1) and let

(Â1, B̂1,Ĉ1) = (W1A1V1,W1B1,C1V1).

Step 3. Calculate the reduced jump Ĵ2 according to (17).

The overall reduced switched system is then given by

Σ̂σ :

{
˙̂x1 = Â1x̂1 + B̂1u, on (t1, t2), x̂1(t+1 ) = 0,
˙̂x2 = Â2x̂2 + B̂2u, on (t2, t f ), x̂2(t+2 ) = Ĵ2x̂1(t−2 ).

The steps of the algorithm is illustrated by the following
example.

Example 8 (Example 2 revisited): We now apply the re-
duction method to Example 2.
Step 1a. R1 =

[1 0
0 0
0 1

]
(reachable space of 1st mode).

Step 1b. Via the KD of the extended 2nd mode
(A2, [B2,J2R1],C2] we obtain the left- and right-projectors
W2 =

[
1 0 0
0 0 1

]
, V2 =

[1 0
0 0
0 1

]
and the corresponding reduced 2nd

mode

(Â2, B̂2,Ĉ2) = (W2A2V2,W2B2,C2V2) =
([

0.2 0
0 1

]
,
[

0
0

]
, [1 1 ]

)
.

Step 2a. imR1 ∩ imK12 = im
[1 0

0 0
0 1

]
=: imL12; imK12 =

im
[1 0

0 0
0 1

]
, im(J2K12) = imV J

2 := imJ2∩ imV2 = im
[1 0

0 0
0 1

]
.

Step 2b. Via the KD of the extended 1st mode
(A1,B1, [C>1 ,L12]

>) we obtain the left- and right-projectors
W1 =

[
1 0 0
0 0 1

]
, V1 =

[1 0
0 0
0 1

]
and the corresponding reduced 1st

mode

(Â1, B̂1,Ĉ1) = (W1A1V1,W1B1,C1V1) =
([

0.1 0
0 0.3

]
,
[

1
1

]
, [1 0 ]

)
.

Step 3. The reduced jump map is Ĵ2 =W2J2V1 =
[

2 0
0 5

]
.
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Fig. 1. Outputs of original system and its minimal system.

Figure 1 shows the output of the original and reduced
switched system for input u(t) = 1 and switching signal (2)
with switching time t2 = 2 and clearly both outputs coincide.

Consider now Example 2 with the reversed switching
signal

σ2(t) =

{
2, on (t1, t2),

1, on (t2, t f ),
(18)

and jump matrix J1 = J2. Then the minimal realizations is
obtained as follows.
Step 1a. R1 =

[
0
1
0

]
(reachable space of 1st mode).

Step 1b. Via the KD of the extended 2nd mode
(A1, [B1,J1R1],C1] we obtain the left- and right-projectors
W2 =

[
1 0 0
0 1 0

]
, V2 =

[1 0
0 1
0 0

]
and the corresponding reduced 2nd

mode

(Â1, B̂1,Ĉ1) = (W2A1V2,W2B1,C1V2) =
([

0.1 0
0 0.2

]
,
[

1
0

]
, [1 1 ]

)
.

Step 2a. imR1 ∩ imK12 = im
[

0
1
0

]
=: imL12; imK12 =

im
[1 0

0 1
0 0

]
, im(J2K12) = imV J

2 := imJ2∩ imV2 = im
[1 0

0 1
0 0

]
.

Step 2b. Via the KD of the extended 1st mode
(A2,B2, [C>2 ,L12]

>) we obtain the left- and right-projectors
W1 = [0 1 0 ], V1 =

[
0
1
0

]
and the corresponding reduced 1st

mode

(Â2, B̂2,Ĉ2) = (W1A2V1,W1B2,C2V1) = [0.1 1 0 ] .

Step 3. The reduced jump map is Ĵ1 =W2J1V1 =
[

0
3

]
.
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Fig. 2. Outputs of original system and its minimal system.

Figure 2 shows the output of the original and reduced
switched system for input u(t) = 1 and switching signal (18)
with switching time t2 = 2 and clearly both outputs coincide.



E. Correctness of algorithm

Theorem 9: Consider the switched system Σσ with the
single-switch switching signal (2) and the reduced system
Σ̂σ obtained via the above algorithm. Then both systems are
input-output equivalent in the sense of Definition 1.

Proof: Consider the switched system Σσ as in (13) then
the output equation is given by

yσ (t) =

{∫ t

t1
C1eA1(t−τ)B1u(τ)dτ, x1(t+1 ) = 0,

C2eA2(t−t2)J2x1(t−2 )︸ ︷︷ ︸
yJ

+
∫ t

t2
C2eA2(t−τ)B2u(τ)dτ.

From Lemma 6, we have that∫ t

t1
C1eA1(t−τ)B1u(τ)dτ =

∫ t

t1
Ĉ1eÂ1(t−τ)B̂1u(τ)dτ.

For jump map, original and its minimal system is given by

yJ =C2eA2(t−t2)J2x1(t−2 ) =C2V2eW2A2V2(t−t2)W2J2V1x̂1(t−2 )

= Ĉ2eÂ2(t−t2)Ĵ2x̂1(t−2 ) = ŷJ .

Again from Lemma 5, we have that

yJ +
∫ t

t2
C2eA2(t−τ)B2u(τ)dτ = ŷJ +

∫ t

t2
Ĉ2eÂ2(t−τ)B̂2u(τ)dτ.

The above results conclude that yσ (t) = ŷσ (t), ∀t, where
ŷσ (t) is the output of reduced system Σ̂σ .

Theorem 10: The reduced system Σ̂σ has minimal total
dimension under all possible input-output equivalent system
of Σσ , provided Conjecture 7 is true.

Proof: Because of space limitations we only give a
sketch of the proof. Consider a system Σ̃σ with modes
(Ã1, B̃1,C̃1), (Ã2, B̃2,C̃2, J̃2) which is input-output equivalent
to Σσ .

First of all, this implies that the second mode (Ã2, B̃2,C̃2)
with initial values x̃0 ∈ J̃2R̃1 (R̃1 is the reachable space of
1st mode) is input-output equivalent with the original second
mode (A2,B2,C2) with initials value x0 ∈ J2R1 (where R1
is the reachable space of the first mode). Hence Lemma 5
yields ñ2 ≥ n̂2.

Furthermore, input-output equivalence implies that for
L12 as calculated in Step 2a, the left projector W̃1 used
to obtain Ã1, has to satisfy kerW̃1 ∩L12 = {0}. Hence
Conjecture 7 implies ñ1 ≥ n̂1.

Altogether we therefore have

dim Σ̂σ := (n̂1 + n̂2)≤ (ñ1 + ñ2) := Σ̃σ .

Therefore, Σ̂σ has minimal total dimension under all possible
input-output equivalent system of Σσ .

IV. CONCLUSION

In this paper, we have presented preliminary results con-
cerning the minimal realization of switched linear systems.
The key novelty is the viewpoint of the switched systems
as a piecewise-constant time-varying system (with known
time-variance). We have focused here on the single-switch
case and obtained a minimal realization by first reducing an

input-extended version of the second mode, then reducing an
output-extended version of the first mode and finally reduced
the jump-map between mode 1 and 2. The proposed method
seems also suitable for more than one switch; the details
are currently under investigation. It also seems possible to
extend the underlying ideas to the discrete time setup which
is another topic of ongoing investigations.
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