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Abstract: In this abstract the finite horizon linear quadratic optimal control problem with
constraints on the terminal state for switched di↵erential algebraic equations is considered.
Furthermore, we seek for an optimal solution that is impulse-free. In order to solve the problem,
a non standard finite horizon problem for non-switched DAEs is considered. Necessary and
su�cient conditions on the initial value x0 for solvability of this non standard problem are
stated. Based on these results a sequence of subspaces can be defined which lead to necessary
and su�cient conditions for solvability of the finite horizon optimal control problem for switched
DAEs.

Keywords: Switched systems, Di↵erential Algebraic Equations, Optimal control, Linear
systems.

1. INTRODUCTION

In this abstract we consider the following switched di↵er-
ential algebraic system

E�ẋ = A�x+B�u
y = C�x+D�u.

(1)

where � : R ! N is the switching signal and Ep, Ap 2
Rn⇥n and (Ep, Ap) is regular, Bp 2 Rn⇥m, Cp 2 Rq⇥n and
Dp 2 Rp⇥m for p, q, n,m 2 N. We aim to find an impulse-
free solution (x, u) on [t0, tf ) satisfying x(t�0 ) = x0 and
x(t�f ) 2 Vend that minimizes

J(x0, u, tf ) =

Z tf

t0

y(t)>y(t) dt+ x(t�f )
>Px(t�f ) (2)

for some positive semi definite P = P> 2 Rn⇥n and y is
the output resulting from the solution (x, u) of (1) satisfy-
ing x(t�0 ) = x0. In general, trajectories of switched DAEs
exhibit jumps (or even impulses), which may exclude clas-
sical solutions from existence. Therefore, we adopt the
piecewise-smooth distributional solution framework intro-
duced in Trenn (2009).

Di↵erential algebraic equations (DAEs) arise naturally
when modeling physical systems with certain algebraic
constraints on the state variables. Examples of applica-
tions of DAEs in electrical circuits can be found e.g. in
Tolsa and Salichs (1993); Riaza (2008); Reis (2010) and
gas networks, where the algebraic constraints are induced
by the network topology. e.g. in Grundel et al. (2014).
The algebraic constraints are often eliminated such that
the system is described by ordinary di↵erential equations
(ODEs). However, in the case of switched systems, the
elimination process of the constraints is in general di↵er-
ent for each individual mode. Therefore, in general, there
does not exist a description as a switched ODE with a
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common state variable for every mode. This problem can
be overcome by studying switched DAEs directly.

The literature on optimal control of non-switched DAEs
is quite mature, (besides the already mentioned literature)
see for the finite horizon e.g. Kunkel and Mehrmann (2008,
1997); Ilchmann et al. (2019, 2021); Wijnbergen and Trenn
(2021b) on a finite horizon and for the infinite time horizon
see e.g. Cobb (1983); Mehrmann (1989); Reis et al. (2015);
Reis and Voigt (2019); Bankmann and Voigt (2019). Fur-
thermore, several structural properties of switched DAEs
have been investigated recently (Wijnbergen and Trenn,
2021a, 2020). However, to the best of the authors knowl-
edge, optimal control of switched DAEs has not been
studied yet.

The finite horizon problem is motivated by the study of
optimal control on an infinite horizon, i.e., the minimiza-
tion of

J(x0, u) =

Z 1

t0

y(t)>y(t) dt. (3)

on the interval [t0,1) while using a dynamic programming
approach. It can be shown that if there exists an input that
minimizes (3), the optimal cost resulting from the interval
[tf ,1) is quadratic in x(t�f ), i.e., x(t

�
f )

>Px(t�f ) for some

matrix P 2 Rn⇥n. This result allows for a dynamic
programming approach. Assuming that the matrix P and
the optimal input u restricted to [tf ,1) are known, it
follows that the minimization of (3) is equivalent to finding
the input u restricted to [t0, tf ) such that

J(x0, u) =

Z tf

t0

y(t)>y(t) dt+

Z 1

tf

y(t)>y(t) dt

=

Z tf

t0

y(t)>y(t) dt+ x(t�f )
>Px(t�f ).

is minimal.
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For many real word applications Dirac impulses in the
state are to be avoided as they can cause damage to
components of the system or create hazardous situations.
Therefore, we aim to find an optimal impulse-free solution
(x, u). However, there generally only exists an optimal
(impulse-free) solution on [tf ,1) if the state at tf is
contained in some subspace, i.e., x(t�f ) 2 Vend for some

subspace Vend ✓ Rn.

In order to solve the problem for switched systems with a
switching signal that induces an arbitrary yet finitely many
modes on the interval [t0, tf ) we will first consider the case
that only two modes are induced on [t0,1) and the switch
occurs at tf . Within this context we aim to minimize (2)
with respect to a non-switched DAE. Once conditions for
the single switched case are obtained, conditions for the
general case will follow straightforwardly. Hence first we
will focus on finding an optimal solution to

Eẋ = Ax+Bu, (4)
y = Cx+Du (5)

that minimizes (2) under the constraint x0 2 Rn and
x(t�f ) 2 Vend.

As the terminal cost matrix P represents the cost resulting
from the interval [tf ,1) and the mode active on this inter-
val is not necessarily structurally related to the dynamics
(4), we can only assume that P 2 Rn⇥n is some positive
semi-definite matrix. This is in contrast to the assumption
commonly made in the literature for optimal control of
non switched DAEs that the terminal cost matrix is of the
form P = E>P̃E for some positive semi-definite P̃ 2 Rn⇥n

(Lewis, 1985; Bender and Laub, 1985; Katayama and Mi-
namino, 1992). Also note that whereas commonly a closed
interval is of interest, in this paper a half open interval is
considered. Consequently, the terminal cost can penalizes
algebraic states and as a result x(t�f ) is not necessarily
equal to x(tf ) or even well defined such that an optimal
solution might fail to exist.

The remainder of this paper is structured as follows.
The mathematical preliminaries and the main results are
given in Section 2 and 3, respectively. Conclusions and a
discussion on future work are given in Section 4.

2. MATHEMATICAL PRELIMINARIES

In the following, we consider regular matrix pairs (E,A),
i.e. for which the polynomial det(sE � A) is not the
zero polynomial. Recall the following result on the quasi-
Weierstrass form (QWF) (Berger et al., 2012).

Proposition 1. A matrix pair (E,A) 2 Rn⇥n ⇥ Rn⇥n is
regular if, and only if, there exists invertible matrices
S, T 2 Rn⇥n such that

(SET, SAT ) =

✓
I 0
0 N

�
,


J 0
0 I

�◆
, (6)

where J 2 Rn1⇥n1 , 0 6 n1 6 n, is some matrix and
N 2 Rn2⇥n2 , n2 := n� n1, is a nilpotent matrix.

The matrices S and T can be calculated by using the so-
called Wong sequences (Berger et al., 2012; Wong, 1974):
Based on the Wong sequences we define the following
projectors and selectors.

Definition 2. Consider the regular matrix pair (E,A) with
corresponding quasi-Weierstrass form (6). The consistency
projector of (E,A) is given by

⇧ := T


I 0
0 0

�
T�1,

the di↵erential selector and the impulse selector are given
by

⇧di↵ := T


I 0
0 0

�
S, ⇧imp := T


0 0
0 I

�
S.

respectively

In all three cases the block structure corresponds to the
block structure of the QWF. Furthermore we define

Adi↵ := ⇧di↵A, Eimp := ⇧impE,

Bdi↵ := ⇧di↵B, Bimp := ⇧impB.

Note that all the above defined matrices do not depend
on the specifically chosen transformation matrices S and
T ; they are uniquely determined by the original regular
matrix pair (E,A). An important feature for DAEs is the
so called consistency space, defined as follows for the DAE
given in (4).

Definition 3. Consider the DAE (4), then the consistency
space is defined as

V(E,A) :=
n
x0 2 Rn

��� 9 smooth solution x of (4)
with u = 0 and x(0) = x0

o
,

and the augmented consistency space is defined as

V(E,A,B) :=
n
x0 2 Rn

��� 9 smooth solutions (x, u) of (4)
with x(0) = x0

o
.

For studying impulsive solutions of (4), we consider the
space of piecewise-smooth distributions DpwC1 from Trenn
(2009) as the solution space. That is, we seek a solution
(x, u) 2 (DpwC1)n+m to the following initial-trajectory
problem (ITP) associated with (4):

x(�1,0) = x0
(�1,0), (7a)

(Eẋ)[0,1) = (Ax)[0,1) + (Bu)[0,1), (7b)

where x0 2 (DpwC1)n is some initial trajectory, and fI
denotes the restriction of a piecewise-smooth distribution
f to an interval I. In Trenn (2009) it is shown that the
ITP (7) has a unique solution for any initial trajectory
if, and only if, the matrix pair (E,A) is regular. As
a direct consequence, the switched DAE considered in
(1) with regular matrix pairs is also uniquely solvable
(with piecewise-smooth distributional solutions) for any
switching signal with locally finitely many switches.

The space of initial values for which there exists an
impulse-free solution (x, u) of (4) is defined as follows.

Definition 4. Consider the DAE (4), then the impulse
controllable space is defined as

Cimp :=
n
x0 2 Rn

��� 9 solution of (7) satisfying
x(0�) = x0 and (x, u)[0] = 0

o
,

The DAE is called impulse controllable if Cimp = Rn.

Lemma 5. (Cobb (1981)). The DAE (4) is impulse con-
trollable if and only if there exist a feedback input u =
Lx + v such that in terms of the selectors ⇧di↵ and ⇧imp

resulting from the Wong sequences based on (E,A+BL),
the solution x is given by x = xdi↵ � Bimpv where xdi↵

solves
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ẋdi↵ = (A+BL)di↵xdi↵ +Bdi↵v (8)

Given a matrix pair (E,A) and a matrix B we can
always generate an impulse-controllable DAE with the
same solution behavior for initial values x0 2 Cimp.

Lemma 6. Consider the DAE (4). A solution (x, u) satis-
fying x(0�) = x0 2 Cimp solves (4) if and only if (x, u)
solves

EWẋ = Ax+Bu (9)

whereW is an orthogonal projector onto Cimp. In addition,
(9) is impulse controllable.

3. MAIN RESULTS

The concepts introduced in the previous section are now
utilized to study the minimization of (2) subject to the
non-switched DAE (4). We aim to minimize (2) over all
(x, u) that are impulse-free and satisfy x(t�0 ) = x0 and
x(t�f ) 2 Vend.

As we aim to find an impulse-free solution (x, u) that
minimizes (2), it is necessary that x(t0) = x0 2 Cimp.
Consequently, it follows from Lemma 6 that we can assume
without loss of generality that (4) is impulse controllable.
Moreover, we can assume that an index-reducing feedback
in the sense of Lemma 5 has been applied and that the
system is of index-1.

In the case (4) is of index-1, we observe, by making use of
the decomposition x = xdi↵ � Bimpu, that (x, u, y) solves
(4) if, and only if, (xdi↵ , u, y) with xdi↵(t�0 ) = ⇧x0 solves

ẋdi↵ = Adi↵xdi↵ +Bdi↵u

ȳ = Cxdi↵ + (D � CBimp)u
(10)

which shows that the minmization of (2) subject to (4) is
equivalent to the minimization of

J̄(xdi↵ , u) =

Z tf

t0

ȳ(t)>ȳ(t) dt+ x̄(t�f )
>Px̄(tf ). (11)

where x̄ := xdi↵ �Bimpu, subject to (10). This shows that
the optimal control problem for non switched DAEs can be
reduced to an equivalent problem for ordinary di↵erential
equations (ODEs). However, note that the latter problem
is still not a standard finite horizon linear quadratic
optimal control problem for ODEs as the terminal state
of the input is penalized by the terminal cost and because
of the subspace endpoint constraint x̄(t�f ) = x(t�f ) 2 Vend.

In order to ensure that the optimal input does not contain
impulses, we assume that D̄ := D � CBimp has full
column rank, such that D̄>D̄ is positive definite. For ODE
optimal control problems with a cost resulting from an
output (10) this is standard. However, in the literature on
optimal control on DAE it is often assumed that D>D is
positive definite, which we do not require here. Note that
a su�cient condition for D̄ to have full column rank is

rank [CW D] = m

were W is some projector onto kerE. This assumption
is very similar to the assumption that the system (4) is
impulse-observable.

3.1 Regarding the terminal cost

As the terminal cost in (11) penalizes the input, it follows
that if there exists a solution that minimizes (11), the
value of u(t�f ) must be well defined and satisfies given the

optimal state xdi↵(t�f )

((xdi↵(t�f )�Bimpu(t�f ))
>P ((xdi↵(t�f )�Bimpu(t�f ))

6 ((xdi↵(t�f )�Bimpv)>P ((xdi↵(t�f )�Bimpv))

for all v satisfying xdi↵(t�f ) � Bimpv 2 Vend. Using La-
grange multipliers and noting that the terminal cost is a
convex function of u(t�f ) leads to the following result.

Lemma 7. Let (xdi↵ , u) be a solution satisfying x̄(t�0 ) = x0

and x̄(t�f ) 2 Vend that minimizes (11). Then the terminal
cost satisfies

x̄(t�f )
>Px̄(t�f ) = xdi↵(t�f )

> >P xdi↵(t�f ). (12)

where  = (I �BimpN) for some N satisfying

[ I 0 N ] ker


Bimp>PBimp Bimp>⇧>

V? �2Bimp>P⇧
⇧V?Bimp 0 �⇧V?⇧

�
= 0.

where ⇧V? is an orthogonal projector onto the orthogonal
complement of Vend.

It follows from Lemma 7 that instead of minimizing (11)
directly, we can focus on finding an input that minimizes

J̄ (x
di↵ , u) =

Z tf

t0

ȳ(t)ȳ(t) dt

+ xdi↵(t�f )
> >P xdi↵(t�f ) (13)

and verify whether the optimal input satisfies (12). How-
ever, the computation of the input that minimizes (13) is
rather straightforward. After denoting

ȳ(t)>ȳ(t) =
⇥
xdiff

u

⇤> h
Q S>

S R

i ⇥
xdiff

u

⇤

we can state the following result.

Lemma 8. The cost functional J̄ (xdi↵ , u) satisfies

J̄ (x
di↵ , u)� xdi↵(t�0 )

>X(t0)x
di↵(t�0 )

=

Z tf

t0

⇣��u+R�1(B̄di↵>X + S>)x̄di↵
��2
2

⌘

where X solves

Ẋ = Adi↵>X +X>Adi↵ +Q

� (S +X>Bdi↵)R�1(Bdi↵>X + S>). (14)

with terminal condition X(tf ) =  >P .

Corollary 9. If an input u minimizes (13), then

u = �R�1(Bdi↵>X + S>)xdi↵ (15)

where X is a solution to (14) with X(tf ) =  >P .

The result of Corollary 9 shows that if there exists an
optimal control, it needs to be of a particular form.
However, a feedback of the form (15) does not necessarily
controls an initial value ⇧x0 to the desired subspace, e.g.,
in the case Vend is the zero subspace, and hence an optimal
control might fail to exist. In order to determine which
intial values are controlled to Vend at t�f we define the
following flow operator.
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Definition 10. The backwards state transition matrix for
the closed loop ODE

ẋdi↵ =
�
Adi↵ �Bdi↵R�1

�
Bdi↵>X + S>��xdi↵

is given by ⌦(t, tf ). Hence xdi↵(t) = ⌦(t, tf )xdi↵(t�f ).

Recall that the state x = xdi↵ � Bimpu and thus for the
input (15) we have x(t�f ) = Mxdi↵(t�f ) where

M := I �BimpR�1
�
Bdi↵> >P + S>� .

As xdi↵(t�f ) = ⇧⇠ for some ⇠ 2 Rn it follows that

x(t�f ) 2 Vend if and only if

xdi↵(t�f ) = ⇧⇠ 2 ker⇧V?M

Next, observe that the input (15) satisfies (12) if and only
if

x(t�f )
>Px(t�f ) = xdi↵(t�f )

>M>PM⇧x(t�f )

= xdi↵(t�f )
> >P xdi↵(t�f ).

This is the case if M>PMxdi↵(t�f ) =  >P xdi↵(t�f ).
Given these observations, we can state the following result
regarding the minimization of (11).

Theorem 11. There exists an impulse-free solution (x, u)
satisfying x(t�0 ) = x0 and x(t�f ) 2 Vend that minimizes
(11) if and only if

x0 2 V init := ⌦(t0, tf ) ker


⇧V?M

M>PM � >P 

�
⇧.

3.2 Multiple switched case

Given the result of Theorem 11 we are now able to state
conditions for the existence of a solution that minimizes (2)
subject to (1). To do so, we define the following sequence

Vend
n = Vend,

Vend
i�1 = V init

i ,
i = n, n� 1, ..., 0

where V init
i is defined according to Theorem 11 on the

interval [ti, ti+1) w.r.t. Vend
i .

Theorem 12. There exists an impulse-free solution (x, u)
that minizes (2) and satisfies x(t�0 ) = x0 and x(t�f ) 2 Vend

if and only if x0 2 V init
0 .

4. CONCLUSION

In this abstract we considered the finite horizon optimal
control problem for switched DAEs. Based on sovability
of n nonstandard optimal control problems for ODEs
solvability of the optimal control problem for switched
DAEs can be concluded. In this abstract impulse-freeness
of the solution (x, u) was required. A natural direction of
research is to investigate the existence of optimal impulsive
solutions.
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