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a b s t r a c t

As a powerful adaptive control method for the output tracking problem, funnel control has attracted
considerable attention in theoretical research and engineering practice. The funnel control strategy can
guarantee both transient behavior and arbitrary good accuracy. A noticeable shortcoming is however
that the derivative of the tracking error may become unnecessarily large resulting in a bouncing
behavior of the tracking error between the funnel boundaries. To avoid this phenomenon, we present
a novel two stages funnel control scheme to solve the output-tracking control problem for uncertain
nonlinear systems with relative degree one and stable internal dynamics. This new scheme defines the
control input in terms of a desired error derivative while still ensuring that the tracking error evolves
within the prescribed funnel. In particular, we can quantify the range of the error derivative with a
derivative funnel in terms of the known bounds of the system dynamics. Furthermore, we extend our
approach to the situation where input saturations are present and extend the control law outside the
funnel to ensure well-defined behavior in case the input saturations are too restrictive to keep the
error within the funnel.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Funnel control is a well-established universal control method
o achieve output tracking of unknown nonlinear relative degree
ne systems with arbitrary prespecified tracking accuracy. Com-
ared to the other adaptive control methods like λ−tracking [1]
r high-gain adaptive control, funnel controllers can ensure pre-
pecified transient behavior and the boundedness of the adaptive
ain. After the pioneering paper [2] there have been numerous
xtensions on funnel controller; we refer the reader to the sur-
ey [3] for the historical context and some early extensions and
o [4] for a recent unifying approach encompassing most existing
xtensions. Applications of funnel control and other adaptive con-
rol strategies in a mechatronics context have been extensively
iscussed in [5].
The key feature of funnel control is to guarantee the transient

ehavior of the closed loop (see Figs. 1 and 3) which usually
annot be found in other control methods, like sliding mode
ontrol, PI control, and fuzzy control. Transient behavior has
een addressed in the context of prescribed performance control
PPC) [6,7], which however requires a special (known) structure
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of the nonlinear dynamics and does not consider internal dy-
namics. Furthermore, in contrast to PPC, the funnel controller
is an output-feedback controller and not a state-feedback con-
troller (and also does not invoke any observers), which also
distinguishes it from approaches utilizing barrier Lyapunov func-
tions [8] and model reference adaptive control (MRAC) [9]; the
more recent MRAC approach in [10] does however address input
constraints and prescribed performance.

To motivate our novel approach and to highlight the short-
comings of the existing funnel controller methods, we consider
the following simple scalar linear system

ẏ = ay + bu, a ∈ R, b > 0, y(0) = y0, (1)

with a = 2, b = 1, y0 = 0. This system has a so-called
high-gain property, i.e. the simple proportional feedback u(t) =

−ky(t) stabilizes the system for sufficiently large gain k (here
any k > a/b = 2 is suitable). If the system parameters a and
b are unknown, it may not be immediately clear which value
for k is ‘‘sufficiently large’’; furthermore, the ‘‘correct’’ (and not
too large) choice of k to achieve a desired transient behavior and
a desired final accuracy for tracking an output reference yref is
not straightforward. Funnel control can resolve these problems
by considering an ‘‘adaptive’’ gain in the (error) feedback

u(t) = −k(t)e(t), (2)
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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here e(t) := y(t)−yref(t) and k(t) is chosen adaptively based on
a prespecified (time-varying) error bound ψ : [0,∞) → (0,∞):

k(t) :=
1

ψ(t) − |e(t)|
. (3)

The intuition behind this simple control law is that whenever the
tracking error approaches the boundary of the funnel

Fψ :=
{
(t, e) ∈ R≥0 × R

⏐⏐ |e(t)| < ψ(t)
}
,

i.e. ψ(t) − |e(t)| becomes small, then the gain k(t) gets very
arge and the high gain property of the system ensures that the
agnitude of the error decreases.
The funnel controller has been shown to ensure that the

rror remains within the funnel and hence approximate track-
ng is achieved with prespecified transient behavior and any
esired final accuracy. Interestingly, as a time-varying feedback
ule, the internal-model-principle does not apply, i.e. it is possible
to achieve asymptotic tracking of an arbitrary reference signal,
see [11–13]; however, in practical applications, it may still be
advantageous to add an internal model if the generator of the
reference signal is known [5, Ch. 7].

For yref(t) := sin(50t) and ψ(t) := 0.8e−5t
+0.2 the application

of the funnel controller (3) to system (1) is illustrated in Fig. 1.
This simulation shows clearly that the funnel controller (3)

ensures that the error evolves within the prespecified funnel;
however, the funnel controller pays no attention to the evolution
of the error derivative, which results in a possibly undesired
bouncing behavior of the error signal between the upper and
lower funnel boundary.

The bouncing problem of funnel control may also occur for
input-saturated systems. For the simple scalar system (1) with
input saturation |u(t)| ≤ û it can be guaranteed (straightforward
worst-case analysis) that the error can be kept in the funnel if
û > 0 satisfies

bû ≥ |a|[∥ψ∥∞ + ∥yref∥∞] + ∥ẏref∥∞ +Λ =: Bψ,yref +Λ,

where Λ denotes the Lipschitz constant of ψ . However, with this
choice of û, the error derivative ė evolves in general within a
rather large range given by

|ė(t)| ≤ bû + |a|[∥ψ∥∞ + ∥yref∥∞] + ∥ẏref∥∞ = bû + Bψ,yref .

This range is much larger than the necessary range |ė(t)| ≤ Λ

which is actually needed to stay within the funnel. Consequently,
an ad-hoc limiting of the input will not resolve the bouncing
problem. In fact, simulations in [13] already showed that the
bouncing behavior may lead to numerical issues for tight funnels.
Apart from the latter observation, there seem to be no discussions
in the literature to limit the magnitude of the error derivative.
However, by taking the future funnel into account as proposed
in [14] the magnitude of the error derivative may be reduced,
but this has only a significant effect when the funnel is shrinking
quickly and does not avoid bouncing in general.

In many applications, the bouncing behavior significantly de-
grades the control performance; in particular, limiting the bounc-
ing, or the magnitude of the error derivative in general, is a
desirable additional control objective. One of the major advan-
tages of funnel control is its simplicity and universality (it does
not depend at all on the to be controlled system model), but this
feature is also a disadvantage, because the available knowledge
about the system model cannot be utilized easily to further im-
prove the performance of the controller. Our approach resolves
this dilemma by directly incorporating known (not necessarily
tight) bounds on the systems dynamics in the control design with
the goal to additionally limit the range of the error derivative.

Towards this goal we introduce a novel two stages error-
derivative-limiting (EDL) funnel controller for relative-degree one
 f

2

Fig. 1. Traditional funnel controller (3).

Fig. 2. Overall system structure.

ystems (cf. Remark 1). The first step is the design of an ‘‘op-
imal’’ convergence rate eop(e(t), t) depending on the current
racking error and the current funnel. The idea is to ensure that
n the closed loop ė(t) is not too far away from eop(t) because
ė(t) = eop(e(t), t) would be sufficient to stay within the funnel
(see Definition 1). The second step, which we call orientated
funnel controller, is then to calculate the input u(t) in terms
of eop(e(t), t), the reference signal, and known bounds on the
system’s dynamics. The overall controller structure is illustrated
in Fig. 2.

To illustrate this two stage design let us discuss a simplified
version of the actual EDL funnel controller (presented in Sec-
tion 3) for the simple linear system (1). One possible choice for
eop is

eop(t) =
e(t)
ψ(t)

ψ̇(t). (4)

The intuition behind this choice is that if e(t) is close to the
funnel boundary ψ(t), then eop(t) is approaching ψ̇ (i.e. in case
(t) > 0, the error decreases as quickly as the funnel), on the
ther hand, if e(t) is far away from the funnel boundary or ψ̇
s small then also eop(t) is small. In fact, it is easily seen that if
˙(t) = eop(e(t), t) then the funnel Fψ is positively invariant, i.e.
f the initial error e(0) is in the funnel, then the error e(t) will
tay within the funnel for all times. Under the assumption that
e have full knowledge of all parameters in (1) (which is only
ssumed here for illustrating purposes and will not be assumed
or the actual controller proposed in Section 4) as well as access to
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Fig. 3. Funnel controller (5) with eop (4).

he derivative of the reference signal, we can define the following
riented funnel controller

(t) =
eop(t) + ẏref(t) − a · y(t)

b
. (5)

Plugging controller (5) into (1), we obtain

ė = ẏ − ẏref

= a · y + b
eop + ẏref − a · y

b
− ẏref

= eop.

imulation results for this case are shown in Fig. 3, which clearly
how that the error remains within the funnel without exhibiting
ny bouncing behavior.
The remainder of this paper is structured as follows. In Sec-

ion 2 we present the actual system class with corresponding
ssumptions and highlight some boundedness properties of this
ystem class. Afterward, in Section 3 we present our proposed
ptimal convergence rate for the two stages EDL funnel con-
roller. In Section 4 we motivate and propose our oriented funnel
ontroller in terms of the optimal convergence rate and prove
hat this choice indeed ensures that the error evolves within
he funnel. Furthermore, we also analyze the behavior of the
rror derivative and derive some bounds for the error derivative
n Section 5. The theoretical results are illustrated with some
imulations. Finally, in Section 6 we also study the case of input
aturations and how to adjust the EDL funnel controller accord-
ngly. In particular, we provide conditions under which it can
e guaranteed that the error remains within the funnel. We also
tudy the case, when the input saturations are too restrictive to
eep the error within the funnel; in this case, we provide an outer
unnel in which the error is guaranteed to stay within.

. Problem formulation

We consider nonlinear system of the following input affine
orm

˙ = f
(
pf , y, z

)
+ g

(
pg , y, z

)
u, y(0) = y0, (6a)

ż = h
(
ph, y, z

)
, z(0) = z0, (6b)

where y : R≥0 → R represents the output of the controlled
system, u : R → R denotes the control input and z : R →
≥0 ≥0 (

3

Rn−1 is the internal state of order n − 1 ∈ N. The functions f , g:
Rd

× R × Rn−1
→ R and h: Rd

× R × Rn−1
→ Rn−1 are assumed

to be locally Lipschitz continuous; pf , pg , ph : R≥0 → Rd are
locally integrable perturbations (and/or unknown d-dimensional,
time-varying parameters).

Furthermore, we make the following additional assumptions
for (6).

(A1) Relative degree one with positive ‘‘high frequency gain’’:
g(pg , y, z) > 0 for all pg , y and z.

(A2) Bounded perturbations: pf , pg and ph are assumed to be
globally bounded on R≥0 and we assume knowledge of
these (not necessarily tight) bounds, say pmax

f , pmax
g , pmax

h ,
respectively.

(A3) BIBO-stability of internal dynamics: There exists a contin-
uous function bz : R≥0 × R≥0 × R≥0 → R≥0 such that for
all continuous ph, y the solutions of (6b) satisfy

∥z(t)∥ ≤ bz
(
∥ph[0,t)∥∞, ∥y[0,t)∥∞, ∥z0∥

)
.

Furthermore, assume z0 ∈ Z0 for some bounded Z0 ⊂ Rn−1.

Remark 1. Our controller design actually works without change
for systems of the general form

ẋ = G(pG, x, u), y = H(pH , x), (7)

with G : Rd
× Rn

× R → Rn and H : Rd
× Rn

→ R as long
as there is a (nonlinear) coordinate transformation x ↦→ (y, z)
which transforms (7) into (6). The existence of such a coordinate
transformation is strongly related to the property that (7) has
relative degree one [15]. However, we need knowledge about
some system bounds, see Lemma 2, which are formulated in
terms of the system description (6), hence we only consider the
latter instead of the original form (7).

The overall control objective is to ensure that the output y of
(6) follows a given reference output yref : R≥0 → R in such a way
that the error e := y − yref satisfies the time-varying error bound
ψ−(t) ≤ e(t) ≤ ψ+(t) for some given functions ψ± : R≥0 → R.
In other words, we want to achieve that the error evolves in the
(possibly unsymmetric) funnel

Fψ±
:=

{
(t, e) ∈ R≥0 × R

⏐⏐ ψ−(t) ≤ e ≤ ψ+(t)
}
. (8)

We will make the following assumptions for the funnel bound-
aries and the reference signal.

PR1) The funnel boundaries ψ+ : R≥0 → (0,∞), ψ− : R≥0 →

(−∞, 0) are continuously differentiable and bounded with
bounded derivative. Furthermore, we assume that ψ+(−) is
convex (concave).

PR2) The reference signal yref : R≥0 → R is continuously
differentiable, bounded and with bounded derivative.

PR3) The initial tracking error e0 := y0−yref(0) satisfies ψ−(0) ≤

e0 ≤ ψ+(0).

Note that the convexity/concavity assumption in (PR1) (to-
gether with boundedness of ψ±) implies that

∀t ≥ 0 : ψ̇+(t) ≤ 0 and ψ̇−(t) ≥ 0 (9)

and consequently

∀t ≥ 0 : 0 < ψ+(t) ≤ ψ+(0) and 0 > ψ−(t) ≥ ψ0(0).

consequence of the above assumptions is the existence of
ertain bounds which we will later use in the controller design
nd analysis of the closed loop.

emma 2. Consider a nonlinear system (6) satisfying assumptions

A1)-(A3) together with funnel boundaries and a reference signal
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atisfying (PR1)-(PR3). Then there exist constants Ymax, Ymin, Zmax,
min, Fmax, Fmin ∈ R such that

Ymax > sup
t≥0

yref(t) + ψ+(0),

Ymin < inf
t≥0

yref(t) + ψ−(0),

Zmax > max
∥ph∥≤pmax

h ,y∈[Ymin,Ymax],z0∈Z0
bz(∥ph∥, |y|, ∥z0∥),

< Gmin ≤ min
∥pg∥≤pmax

g ,y∈[Ymin,Ymax],|z|≤Zmax
g
(
pg , y, z

)
,

Fmax ≥ max
∥pf ∥≤pmax

f ,y∈[Ymin,Ymax],|z|≤Zmax
f
(
pf , y, z

)
,

Fmin ≤ min
∥pf ∥≤pmax

f ,y∈[Ymin,Ymax],|z|≤Zmax
f
(
pf , y, z

)
.

roof. This is a direct consequence of the boundedness of yref and
he properties of continuous functions considered on compact
omains. □

The utility of the above Lemma is that as long as e(t) remains
n the funnel, it can be concluded (utilizing monotonicity of the
unnel boundaries) that y(t) ∈ (Ymin, Ymax), which then can be
sed to conclude that |z(t)| < Zmax, g(pg (t), y(t), z(t)) ≥ Gmin and
(pf (t), y(t), z(t)) ∈ [Fmin, Fmax]. Furthermore, the bounds can be

sharpened by choosing Ymax and Ymin as follows:

Ymax > sup
t≥0

(yref(t) + ψ+(t)),

Ymin < inf
t≥0

(yref(t) + ψ−(t)).

However, the more conservative bounds in Lemma 2 are required
when considering input saturations in Section 6.

Remark 3. Existence of a solution of (6) considered on the
open domain D := (Ymin, Ymax) × { z | ∥z∥ < Zmax } is guar-
anteed by standard ODE theory for any (continuously defined)
feedback rule; this solution is in general only defined on a finite
time interval [0, ω). Furthermore, it is also well known that if
ω < ∞ then the maximal solution leaves any compact sub-
set of the domain D; in particular, by considering the compact
set [Y ∗

min, Ymax∗] ×
{
z

⏐⏐ ∥z∥ ≤ Z∗
max

}
⊆ D, where Y ∗

max :=

supt≥0 yref(t) + ψ+(0), Y ∗

min := supt≥0 yref(t) + ψ−(0), Zmax :=

max∥ph∥≤pmax
h ,y∈[Ymin,Ymax],z0∈Z0 bz(∥ph∥, |y|, ∥z0∥), we can then con-

clude that there exists t ∈ [0, ω) such that e(t) = y(t) − yref(t) /∈
[ψ−(t), ψ+(t)]. Consequently, a maximal solution which remains
within the funnel for all t ∈ [0, ω) implies that ω = ∞. Note
that this is in contrast to classical funnel control theory, where
the domain of the ODE is usually restricted to the interior of the
funnel (because the classical funnel feedback rule is undefined
on the boundary), and hence necessarily any maximal solution
evolves within the funnel and showing ω = ∞ requires some
extra effort.

3. Optimal converging rate

As motivated in the introduction our approach is based on
designing a desired rate of the change of the error signal such
that the error remains in the funnel but at the same time the
error derivative is not unnecessarily large. In particular, when
the error is already in a (possibly time-varying) neighborhood
of zero then the error derivative should ideally be zero. On the
other hand, closer to the funnel boundary, the desired error
derivative should in magnitude be at least so large to prevent
crossing the funnel boundary, but not much larger. These intuitive
requirements are formalized by the following definition of the

‘‘optimal’’ convergence rate.

4

Definition 1. Consider a funnel with boundaries ψ± satisfying
(PR1) and a desired ‘‘zero error derivative region’’

F0 :=
{
(e, t) ∈ R × R≥0

⏐⏐ λ−(t) ≤ e ≤ λ+(t)
}

⊆ Fψ±

for some λ−, λ+ : R≥0 → R with ψ−(t) < λ−(t) < 0 < λ+(t) <
ψ+(t), for all t ≥ 0. Any function eop : R × R≥0, (e, t) ↦→ eop(e, t)
is a suitable desired optimal convergence rate if it satisfies the
following properties:

EO1) eop is locally Lipschitz continuous.
EO2) eop(e, t) = 0 for all (e, t) ∈ F0, i.e. eop(e, t) = 0 if λ−(t) ≤

e ≤ λ+(t).
EO3) For any continuous non-negative e : [a, b] → R≥0 on

some interval [a, b] ⊆ R≥0 with e(a) ≤ ψ+(a) the solution
η : [a, b] → R of

η̇(t) = eop(e(t), t), η(a) = e(a)

satisfies η(t) ≤ ψ+(t) for all t ∈ [a, b]. Analogously, for
any continuous non-positive e : [a, b] → R≤0 with e(a) ≥

ψ−(a) the solution η : [a, b] → R of

η̇(t) = eop(e(t), t), η(a) = e(a)

satisfies η(t) ≥ ψ−(t) for all t ∈ [a, b].

A possible choice for eop satisfying the above properties is the
following:

eop(e, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e − λ+(t)

ψ+(t) − λ+(t)
ψ̇+(t), e ≥ λ+(t),

0, λ−(t) < e < λ+(t),
e − λ−(t)

ψ−(t) − λ−(t)
ψ̇−(t), e ≤ λ−(t).

(10)

The key idea is now to construct a controller which ensures
hat in the closed loop the following implications are true:

(t) ≥ λ+(t) H⇒ ė(t) ≤ eop(e(t), t),
(t) ≤ λ−(t) H⇒ ė(t) ≥ eop(e(t), t),

(11)

ecause then property (EO3) ensures that the error remains in-
ide the funnel. This intuition is formalized in the following
heorem.

heorem 4. Consider the nonlinear system (6), an output reference
ignal yref : R≥0 → R and a funnel Fψ±

as in (8) satisfying (PR1)-
PR3). For a given optimal convergence rate eop as in Definition 1
ssume that there exists a controller which ensures that in the
orresponding closed loop the implications (11) are satisfied on the
omain [0, ω) of a solution, then

−(t) ≤ e(t) ≤ ψ+(t), ∀t ∈ [0, ω),

.e. the objective of funnel control is achieved on [0, ω).

roof. Let e : [0, ω) → R be a maximal solution of the closed
oop. By assumption, e0 ∈ [ψ−(0), ψ+(0)]. Seeking a contradic-
ion, assume there exists t1 > 0 such that e(t1) /∈ [ψ−(t1), ψ+(t1)].
e consider only the case e(t1) > ψ+(t1), the case e(t1) < ψ−(t1)

s completely analogous and omitted. Then there exists t0 ∈ [0, t1)
uch that e(t0) = ψ+(t0) and e(t) > ψ+(t) for all t ∈ (t0, t1].
onsequently, e(t) > λ+(t) > 0 for all t ∈ [t0, t1] and by (EO3) the
olution η : [t0, t1] → R of η̇ = eop(e, t), η(t0) = e(t0) = ψ+(t0)
atisfies η(t) ≤ ψ+(t) for all t ∈ [t0, t1]. Furthermore, implication
11) yields that ė(t) ≤ eop(e(t), t) for all t ∈ [t0, t1]. Hence (since
(t0) = η(t0)) it follows that e(t) ≤ η(t) for all t ∈ [t0, t1], which
eads to the contradiction ψ+(t1) < e(t1) ≤ η(t1) ≤ ψ+(t1). □

emark 5. Under the assumptions of Theorem 4, we concluded
hat ψ (t) ≤ e(t) ≤ ψ (t) for all t ∈ [0, ω) if implications (11)
− +
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re satisfied on the domain [0, ω). Based on Remark 3, the funnel
ψ±

is positively invariant, and finite escape time cannot occur;
onsequently, ω = ∞, i.e. the existence of the solution of the
losed loop is guaranteed on the whole positive time axis [0,∞).

Remark 6.

(i) Validity of Theorem 4 does not explicitly rely on the as-
sumptions (A1)-(A3) for the nonlinear system (6). How-
ever, the existence of a controller which ensures the impli-
cations (11) can only be guaranteed when these assump-
tions are satisfied, see Section 4.

(ii) The conclusion of Theorem 4 is independent of the con-
trol action carried out when e(t) ∈ [λ−(t), λ+(t)]. This
freedom allows to ‘‘switch’’ to a different controller, when-
ever the error is sufficiently close to the origin, e.g. using
some form of PI-controller to reduce the steady state error.
However, this ‘‘switching’’ must be carefully designed to
avoid discontinuities in the resulting overall control law,
otherwise, some sliding solutions may occur along the
switching boundary, which could lead to chattering when
implemented.

(iii) If e0 > λ+(0) or e0 < λ−(0), then the closed loop error
satisfies

e(t) ≤ (≥)η(t, e0), for all t ≥ 0, (12)

where η is the solution of

η̇(t, e0) = eop(η(t, e0), t), η(0, e0) = e0, (13)

see Fig. 4. The proof closely resembles that of Theorem 4
and is omitted.

4. Oriented funnel controller

Consider the nonlinear system (6) with an output reference
signal yref. Then the tracking error e := y − yref satisfies

ė = ẏ − ẏref = f (pf , y, z) − ẏref + g(pg , y, z) · u. (14)

If we had full knowledge of the system dynamics (including the
internal states and perturbations), we could simply choose u =

uideal with

uideal(t) =
eop(e(t), t) − f (pf (t), y(t), z(t)) + ẏref(t)

g(pg (t), y(t), z(t))
,

ecause then the implication (11) would be satisfied with equal-
ty ė(t) = eop(e(t), t) (and, in fact, independently of e(t)). Of
course, such detailed knowledge of the system (including the
perturbations and internal state) is unrealistic, instead, we will
assume knowledge of the (not necessarily tight) bounds from
Lemma 2 guaranteed by the structural assumptions (A1)-(A3).
Since we will use different constants depending on the sign of
the error, we call this approach orientated funnel controller. In
fact, we define

u+(e, t, ẏref) := min
{
0,

eop(e, t) + ẏref − Fmax

Gmin

}
≤ 0,

−(e, t, ẏref) := max
{
0,

eop(e, t) + ẏref − Fmin

Gmin

}
≥ 0,

nd

(t) :=

⎧⎨⎩
u+

(
e(t), t, ẏref(t)

)
, if e(t) ≥ λ+(t),

u−

(
e(t), t, ẏref(t)

)
, if e(t) ≤ λ−(t),

arbitrary, otherwise.
(15)
p

5

Fig. 4. Illustration of η(t, e0), e0 > λ+ .

Remark 7.
Our proposed oriented funnel controller assumes knowledge

of ẏref(t) at any current time t (in addition to the value yref(t)
needed to calculate the tracking error). Differentiation of a given
signal may not be feasible in all situations; however, the reference
signal is often produced via a filter ẏref(t) = ayref(t) + vref(t)
for some known a and know vref(t) (to ensure the required
boundedness of ẏref), in which case ẏref can be assumed to be
available for the controller design. In case ẏref(t) is not available
o the controller, our approach can easily be adopted by replacing
˙ref(t) by constants Ẏmin

ref and Ẏmax
ref in u+(e, t, ẏref) and u−(e, t, ẏref),

respectively, where

Ẏmin
ref ≤ inf

τ≥0
ẏref(τ ), Ẏmax

ref ≥ sup
τ≥0

ẏref(τ ).

The key property of the proposed controller (15) is that indeed
mplication (11) is guaranteed:

emma 8. Consider the closed loop of (6) with a continuous
error feedback (15) based on an optimal convergence rate eop as
in Definition 1 and under the assumptions (A1)-(A3), (PR1)-(PR3).
Furthermore, we consider solutions only on the domain D as in
Remark 3. Then every maximal solution e : [0, ω) → R satisfies
implication (11).

Proof. By considering the closed loop on the domain D with
continuous error feedback, we know from classical ODE theory
that there exists a maximal solution on some interval [0, ω), for
which y(t) ∈ (Ymin, Ymax) and ∥z(t)∥ < Zmax for all t ∈ [0, ω).
Consequently, for all t ∈ [0, ω),

Fmin ≤ f
(
pf (t), y(t), z(t)

)
≤ Fmax,

nd

min ≤ g
(
pg (t), y(t), z(t)

)
.

he latter implies that (omitting most time dependencies)

(pg , y, z) · u+(e, t, ẏref)

=
g(pg ,y,z)
Gmin

min{0, eop(e, t) + ẏref − Fmax}

≤ min{0, eop(e, t) + ẏref − Fmax}

≤ eop(e, t) + ẏref − Fmax.

ote that above we used g(pg ,y,z)
Gmin

≥ 1, which (because it is mul-
iplied with a non-positive number) results in an upper bound. If
+(e, t, ẏref) would not be sign-semidefinite we could not make
his conclusion, which is the reason we have to truncate all
ossible positive values occurring in the definition of u (e, t, ẏ )
+ ref
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o zero. Hence if e(t) ≥ λ+(t) we have

ė(t) = f (pf , y, z) + g(pg , y, z)u(t)
= f (pf , y, z) + g(pg , y, z)u+(e, t, ẏref)
≤ Fmax − ẏref + eop(e, t) + ẏref − Fmax

= eop(e, t).

Analogously, if e(t) ≤ λ−(t), we have

ė(t) = f (pf , y, z) + g(pg , y, z)u(t)
= f (pf , y, z) + g(pg , y, z)u−(e, t, ẏref)
≥ Fmin − ẏref + eop(e, t) + ẏref − Fmin

= eop(e, t).

his concludes the proof. □

In order to ensure the existence and uniqueness of solutions it
s crucial to define the oriented funnel controller as a continuous
unction of e(t); this can easily be achieved by e.g. just linearly
nterpolating the values in (15) for e(t) ∈ [λ−(t), λ+(t)] as
ollows:

(t) = uλ
−
(t) +

e(t)−λ−(t)
λ+(t)−λ−(t)

(
uλ

+
(t) − uλ

−
(t)

)
, (16)

here (using eop(λ±(t), t) = 0)

uλ
−
(t) := u−(λ−(t), t, ẏref(t)) = max

{
0, ẏref(t)−Fmin

Gmin

}
,

λ
+
(t) := u+(λ+(t), t, ẏref(t)) = min

{
0, ẏref(t)−Fmax

Gmin

}
.

Combining Lemma 8, Theorem 4 and Remark 3 we arrive at
ur desired main result of the section:

orollary 9. Under the assumptions of Lemma 8, we have that the
riented funnel controller (15) (with continuization (16)) based on
given desired convergence rate eop as in Definition 1 ensures that

all solutions of the closed loop are defined on [0,∞) and that the
tracking error evolves within the funnel for all times. Furthermore,
if eop is chosen to be bounded (e.g. as in (10)), then the input is
uniformly bounded.

Remark 10.

(i) Our framework covers asymptotic tracking because the as-
sumptions do not exclude that ψ±(t) → 0 as t → ∞. In
that case, a feasible choice for F0 is e.g. λ±(t) =

1
2ψ±(t);

note that eop given by (10) remains bounded for t → ∞

(because |
e−λ±(t)

ψ±(t)−λ±(t) | ≤ 1 as long as e is in the funnel) and
hence also the control input u remains bounded.

(ii) In case only practical tracking is desired, i.e. limt→∞ ψ±(t)
̸= 0, it is possible to choose a constant zero error derivative
region F0 via sufficiently small constants λ+(t) := λc

+
> 0

and λ−(t) := λc
−
< 0. In that case we see that implication

(11) results in

e(t) = λc
+

H⇒ ė(t) ≤ eop(λc+, t) = 0,
e(t) = λc

−
H⇒ ė(t) ≥ eop(λc−, t) = 0,

i.e. the region F0 is positively invariant. In particular, the
bouncing behavior in the transient phase seen in Fig. 1 is
avoided.

We illustrate the theoretical result of this section by revisiting
he example from the introduction.

xample 1. Consider again the scalar example (1) with an
dditional bounded disturbance term and specific constants a
nd b:

˙(t) = 2 + 0.9 sin(t) + u(t), y0 = 1. (17)
 e

6

s a reference signal, we consider yref(t) = sin(20t), which we
ant to track with an accuracy given by the funnel boundaries
+(t) = e−4t

+ 0.02, ψ−(t) = −ψ+(t). With λ+(t) = 0.02,
−(t) = −0.02, it is easily seen that all assumptions of the
DL funnel controller approach are satisfied and we can choose
min = 1.1, Fmax = 2.9, Gmin = Gmax = 1. Simulation results for
he classical funnel controller (3) and the EDL funnel controller
15) with eop given by (10) and with the input interpolation (16)
re shown in Fig. 5. As expected both controllers ensure that the
rror evolves within the funnel, however, clearly the EDL funnel
ontroller avoids a strong bouncing behavior. The simulations
lso clearly show that the magnitude of the error derivative is
ignificantly reduced and the input signal is much smoother.

xample 2. As a second example we revisit an example from
16], given by

ẏ(t) =pf (t) + |y(t)|y(t) + z(t) + sat[u,u] u(t),

ż(t) = − z(t) − z3(t) + [1 + z2(t)]y(t),

y(0) =y0, z(0) = z0,

with reference signal yref(t) = ξ1(t) and perturbation pf (t) =

−ξ2(t) given by the solution of the chaotic Lorenz system

ξ̇1(t) =ξ2(t) − ξ1(t),

ξ̇2(t) =

(28ξ1(t)
10

)
−

(ξ2(t)
10

)
− ξ1(t)ξ3(t),

ξ̇3(t) =ξ1(t)ξ2(t) −

(8ξ3(t)
30

)
,

ξ1(0) =1, ξ2(0) = 0, ξ3(0) = 3.

he reference signal and perturbation satisfy ∥yref∥∞

≤ 2, ∥ẏref∥∞ ≤ 1 and ∥pf ∥∞ ≤ 2.4. The prescribed funnel
oundaries are chosen as ψ+(t) = 2e−0.1t

+ 0.1, and ψ−(t) =

−ψ+(t). y0 = 2, z0 = 1. Suitable bounds for Lemma 2 are given
by Fmax = −Fmin = 27, Gmin = Gmax = 1. The simulation results
are shown in Fig. 6.

5. Bounds for error derivatives

As explained above the idea of the EDL funnel controller is
to design a feedback controller in such a way that (in addition
to keeping the error within the funnel) the error derivative is
close to a prespecified ‘‘optimal’’ error convergence rate eop(e, t).
Lemma 8 shows that the oriented funnel controller given by (15)
indeed ensures that the error derivate near the funnel boundary
is upper/lower bounded by eop(e, t). This section will provide
further bounds on the error derivatives, first (implicitly) in terms
of eop and then explicitly by defining a suitable error derivative
funnel

F
e0
ψd

±

:=
{
(t, ė) ∈ R≥0 × R

⏐⏐ ψd
−
(t) ≤ ė ≤ ψd

+
(t)

}
,

whose boundaries will depend on the initial error e(0) = e0.
The first result provides a bound for ė in terms of eop in the

form of a ‘‘band’’ around the desired value eop; this band for ė is
illustrated in Fig. 7.

Corollary 11. Under the assumption of Lemma 8 and with Gmax >

0 being an upper bound of g(pg , y, z) analogously defined as Gmin,
the error derivative ė(t) in the closed loop satisfies (omitting the time
dependencies)

Fmin − ẏref + Gmax
Gmin

min{0, eop + ẏref − Fmax} ≤ ė ≤ eop

f e(t) ≥ λ+(t), and

≤ ė ≤ F − ẏ +
Gmax max{0, e + ẏ − F }
op max ref Gmin op ref min
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Fig. 5. Simulation results for Example 1.
Fig. 6. Simulations for Example 2.
Fig. 7. Band of ė with certain u (e ≥ λ+).

f e(t) ≤ λ+(t). In particular, if g is constant and known (i.e. Gmax =

min) and u(t) ̸= 0, then either

op − (Fmax − Fmin) ≤ ė ≤ eop

r

op ≤ ė ≤ eop + Fmax − Fmin.

In the following, we provide explicit constant bounds on ė
for the situation that e0 ∈ [λ−(0), λ+(0)] and that the zero
error derivative region F0 has constant boundaries. In that case,
by Remark 10(ii), the region [λc

−
, λc

+
] is positively invariant for

the error signal and the input defined by (16) satisfies u(t) ∈

[uλ
−
(t), uλ

+
(t)], from which the following constant bounds for the

error derivative can easily be derived.

Corollary 12. Consider a constant region F0 for eop, i.e. λ±(t) =

λc
±

∈ R in Definition 1, and assume that e0 ∈ [λc
−
, λc

+
]. Then under

the assumptions as in Corollary 11 together with the continuation
(16) of the input we have

ψ
d,c

≤ ė(t) ≤ ψ
d,c
, ∀t ≥ 0, (18)
− +

7

where ψd,c
+ := Ψ−(0) and ψ

d,c
− := Ψ+(0) with

Ψ d
+
(eop) :=Fmax − inf

τ≥0
ẏref(τ )

+ Gmax max
{
0,

eop + supτ≥0 ẏref(τ ) − Fmin

Gmin

}
,

Ψ d
−
(eop) :=Fmin − sup

τ≥0
ẏref(τ )

+ Gmax min
{
0,

eop + infτ≥0 ẏref(τ ) − Fmax

Gmin

}
.

Utilizing the error bound from Remark 6(iii) in terms of η(t, e0)
given by (13) and using the specific choice (10) for eop, we can
conclude that

eop
(
e(t), t

)
≥ eop(η(t, e0), t) ∀t ≥ 0

if e0 > λc
+

and

eop
(
e(t), t

)
≤ eop

(
η(t, e0), t

)
∀t ≥ 0

if e0 < λc
−
. Hence, we can derive an explicit bound (not depending

on the error signal) for the error derivative from the previous two
corollaries as follows.

Corollary 13. Consider the setup and notation of Corollary 12 and
for e0 > λc

+
or e0 < λc

−
let η(t, e0) be the solution of (13). Then the

error derivative satisfies

ψd
−
(t) ≤ ė(t) ≤ ψd

+
(t) ∀t ≥ 0,

where

ψd
+
(t, e0) =

{
Ψ d

+
(0) = ψ

d,c
+ , e0 > λc

+
,

Ψ d
+

(
eop

(
η(t, e0), t

))
, e0 < λc

+
,

ψd
−
(t, e0) =

{
Ψ d

−

(
eop

(
η(t, e0), t

))
, e0 > λc

−
,

Ψ d
−
(0) = ψ

d,c
− , e0 < λc

−
.

The final result concerning the bounding of the error deriva-

tive is illustrated in Fig. 8.
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Fig. 9. Error signal (in black) leaves the funnel (blue) due to input saturations.
roposed safety functions σ+ and σ− (dashed red) and outer funnel given by
out
+

(dashed green). (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

. Input saturations

Consider now nonlinear system (6) with input saturation

↦→ sat[u,u](u) =

⎧⎨⎩
u, u < u,
u, u ∈ [u, u],
u, u > u,

(19)

here the threshold values satisfy u < 0 < u.
For the feasibility of the tracking problem, the following im-

lications concerning the maximal control inputs should hold for
he error dynamics given by (14):

(t) = u H⇒ ė(t) < 0,
(t) = u H⇒ ė(t) > 0.

In view of input saturation, sufficient conditions to ensure
he validity of the above implications are the following two
ssumptions

(T1) 0 > d(u) := Fmax − infτ≥0 ẏref(τ ) + Gminu,
(T2) 0 < d(u) := Fmin − supτ≥0 ẏref(τ ) + Gminu.

Clearly, these two assumptions are satisfied if the input bounds
re sufficiently large in magnitude.
Even with assumptions (T1) and (T2) satisfied it cannot be

expected that the error can be kept in an arbitrary funnel, be-
cause if the funnel boundaries are shrinking too rapidly the input
saturation may limit the ability of the error to shrink sufficiently
fast to stay in the funnel, see Fig. 9.

There are three ways to deal with this problem:
 f

8

(1) Funnel is strict. Ensure that the input is powerful enough
to keep the error within the desired funnel shape, which is
the case if d(u) ≤ inft≥0 ψ̇+(t) and d(u) ≥ supt≥0 ψ̇−(t).

(2) Input constraints are strict. Choose a funnel shape that is
sufficiently slowly shrinking, which is the case if inft≥0
ψ̇+(t) ≥ d(u) and supt≥0 ψ̇−(t) ≤ d(u).

(3) Given funnel shape is desired and input saturations are strict.
If possible, the error should be kept within the funnel,
however, temporarily leaving the funnel is allowed.

In the remainder of this section, we will focus on the third
situation as this is in many practical applications the most re-
alistic and least conservative approach. There are actually two
aspects: a) stay in the funnel if possible, and b) return to funnel as
quickly as possible. The latter can easily be achieved by applying
the maximal input whenever outside the funnel, whereas the first
property is not so straightforward. For example, just applying the
maximum available input whenever the error is very close to the
funnel boundary may not be enough, because at that moment
the funnel boundary may shrink too quickly for the error to stay
within the funnel. However, by looking ahead one could have
applied a more aggressive control action earlier to prevent the
error from getting too close to the funnel boundary in the first
place. This idea is formalized by the notion of a safety function
defined as follows.

Definition 2. Consider a nonlinear system (6) satisfying assump-
tions (A1)-(A3), prescribed funnel boundary and reference signal
satisfying (PR1)-(PR3). Furthermore, consider input saturations
that satisfy (T1) and (T2). Let

t+d := min
{
t ≥ 0

⏐⏐ ψ̇+(t) ≥ d
}
,

t−d := min
{
t ≥ 0

⏐⏐ ψ̇−(t) ≤ d
}
,

which are well defined since by assumption (PR1) limt→∞ ψ̇±(t)
= 0. Then the safety function is defined as

σ+(t) :=

{
d(u) · (t − t+d ) + ψ+(t+d ), t ∈ [0, t+d ],

ψ+(t), t ∈ [t+d ,∞),

−(t) :=

{
d(u) · (t − t−d ) + ψ−(t−d ), t ∈ [0, t−d ],

ψ−(t), t ∈ [t−d ,∞).

(20)

The safety functions are illustrated in Fig. 9. Based on the
afety region we can now define a saturation-aware optimal
onvergence rate as follows.

efinition 3. For prescribed funnel satisfying (PR1), input satura-
ion values satisfy (T1) and (T2), let the saturation aware optimal
onverging rate be given as

sat
op (e, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d(u), e > σ+(t),
e(t) − λ+(t)
σ+(t) − λ+(t)

σ̇+(t), σ+(t) ≥ e ≥ λ+(t),

0, λ+(t) > e > λ−(t),
e(t) − λ−(t)
σ−(t) − λ−(t)

σ̇−(t), λ−(t) ≥ e ≥ σ−(t),

d(u), σ−(t) > e.

(21)

The intuition behind (21) is that within the safety region, we
imply replace the original funnel boundaries in (10) by the safety
oundaries and outside the safety region the optimal convergence
ate is set to the guaranteed decrease/increase rate in view of
he input saturations. With this choice we immediately have the
ollowing result:
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orollary 14. Consider a nonlinear system (6) satisfying assump-
ions (A1)-(A3), prescribed funnel boundary and reference signal
atisfying (PR1)-(PR3). Furthermore, consider input saturations that
atisfy (T1) and (T2) with corresponding safety functions (20). Then
he EDL funnel controller (15) (with continuation (16)) based on
he saturation aware optimal convergence rate esatop given by (21)
chieves the following properties in closed loop:

1. The solution of the closed loop exists on [0,∞).
2. The safety region is positively invariant for the error signal; in

particular, if e(0) ∈ [σ−(0), σ+(0)] then the error will remain
within the funnel for all times.

3. The input (before saturation) satisfies u(t) ∈ [u, u] for all
t ≥ 0.

If the initial error is not in the safety region, we cannot guar-
antee that the error evolves within the originally given funnel,
however, we are able to define the following ‘‘outer’’ funnel
(depending on e0) for which it can be guaranteed that the error
remains within:

F e0
out :=

{
(t, e) ∈ R≥0 × R

⏐⏐ ψout
−

(t) ≤ e(t) ≤ ψout
+

(t)
}
, (22)

here
out
+

(t) = max{e0 + d · t, ψ+(t)},
out
−

(t) = min{e0 + d · t, ψ−(t)}.

Note that ψout
+

(t) = ψ+(t) for all t ≥ 0 if e0 ≤ σ+(0) and
out
−

(t) = ψ−(t) if e0 ≥ σ−(0). The case e0 > σ+(0) is illustrated
n Fig. 9.

Note that from e0 ∈ [ψ−(0), ψ+(0)] and monotonicity of ψ± it
ollows that

+(t) ≤ ψout
+

(t) ≤ ψ+(0) and

−(t) ≥ ψout
−

(t) ≤ ψ−(0).

n particular, as long as e(t) ∈ [ψout
−

(t), ψout
+

(t)] we can still
onclude that y(t) ∈ [Ymin, Ymax] and hence the same bounds for
z, g and f hold as before. Furthermore, the choice of esatop satisfies
the properties (EO1)-(EO3) w.r.t. the outer funnel F e0

out, hence we
arrive at the following result:

Corollary 15. Under the same assumptions as in Corollary 14, we
have that the closed loop satisfies

ψout
−

(t) ≤ e(t) ≤ ψout
+

(t), ∀t ≥ 0.

Remark 16. It should be noted that eop(e(t), t) = d(u) does
ot in general imply that u(t) = u, this is because in general,
f e(t) > λ+,

(t) = u+(e, t, ẏref(t)) ≥
d(u) + ẏref(t) − Fmax

Gmin

= u + ẏref(t) − inf
τ≥0

ẏref(τ ) > u.

n particular, if e(t) is outside the funnel, our approach is not using
the full force to push the error back into the funnel. This can easily
fixed by redefining the control input in such a way that (t) = u
whenever e(t) > ψ+(t) (or even if e(t) > σ+(t)). In order to keep
continuous input rule (to guarantee existence of solutions in

he closed loop) it is then however necessary to add an additional
‘buffer’’ region, which in principle is easily done but adds another
evel of technicality and therefore is not presented here.

. Conclusion

To avoid the error bouncing between prescribed funnel bound-
ries, a novel funnel control scheme has been proposed in this
9

paper. In addition, to keep to error within the funnel, we have
proposed the error derivative limiting (EDL) funnel controller as
a two stages controller, where we first introduced the concept
of the desired optimal convergence rate and then the oriented
funnel controller which is defined in such a way that it tries to
match the error derivative as close as possible to the desired
convergence rate. We prove that this approach indeed achieves
the desired control objectives: The error evolves within the funnel
and the error derivative is limited to a band whose width is
expressed in terms of uncertainty about the system. Furthermore,
we exploit the structure of this EDL funnel controller to handle
input saturation. In case the input saturations are too restrictive,
our controller allows the error to temporarily leave the funnel
and the return to the inside of the funnel is guaranteed.

Future work is concerned with extending these ideas to the
multi-input multi-output setting as well as to higher relative
degree systems.
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