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a b s t r a c t

Linear switched impulsive systems (SIS) are characterized by ordinary differential equations as modes
dynamics and state jumps at the switching time instants. The presence of possible jumps in the state
makes nontrivial the application of classical averaging techniques. In this paper we consider SIS with
pulse width modulation (PWM) and we propose an averaged model whose solution approximates the
moving average of the SIS solution with an error which decreases with the multiple of the switching
period and by decreasing the PWM period. The averaging result requires milder assumptions on the
system matrices with respect to those needed by the previous averaging techniques for SIS. The interest
of the proposed model is strengthened by the fact that it reduces to the classical averaged model
for PWM systems when there are no jumps in the state. The theoretical results are verified through
simulations obtained by considering a switched capacitor electrical circuit.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Switching represents the natural behavior of many systems of
ractical interest, e.g., mechanical systems (Sajja, Corless, Zeheb,
Shorten, 2019), electronic circuits (Vasca & Iannelli, 2012),

iecewise affine systems (Almér & Jönsson, 2009; Iervolino, Trenn,
Vasca, 2017; Iervolino & Vasca, 2014). In particular, switched

ystems with pulse width modulation (PWM) are character-
zed by a sequence of modes which repeats periodically in time
Sanders, Noworolski, Liu, & Verghese, 1991). The ‘‘fast’’ switching
ehavior determines oscillations, i.e., the so called ripple, of the
tate variables around a smooth trajectory whose dynamics are
ypically much slower than the switching period. The main goal
f the averaging theory consists of obtaining a smooth model
hose solution is able to capture the averaged behavior of the
witched system. The corresponding theoretical objective consists
f proving that the error between the solutions of the switched
nd the averaged systems is of order of the switching period.
Averaging theory has been extensively studied for PWM sys-

ems with Lipschitz continuous solutions, see among others (Ian-
elli, Johansson, Jönsson, & Vasca, 2008; Pedicini, Iannelli, Vasca,
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publication in revised form by Associate Editor Paolo Frasca under the direction
of Editor Sophie Tarbouriech.

∗ Corresponding author.
E-mail addresses: emostac@unisannio.it (E. Mostacciuolo), s.trenn@rug.nl

S. Trenn), vasca@unisannio.it (F. Vasca).
ttps://doi.org/10.1016/j.automatica.2023.111447
005-1098/© 2023 The Authors. Published by Elsevier Ltd. This is an open access art
& Jönsson, 2011; Teel, Moreau, & Nešić, 2004; Wang & Nešić,
2010; Wang, Nešić, & Teel, 2012; Zhu & Fridman, 2022). Recently
a new approach for periodic averaging based on time delays
has been proposed for fastly varying system (Caiazzo, Fridman,
& Yang, 2023; Fridman & Zhang, 2020). However, the class of
solutions considered therein is absolutely continuous. Indeed, the
model structure considered therein does not allow the presence
of state jumps at the switching time instants. On the other hand,
there exist practical PWM systems, such as switched capacitor
DC/DC converters, which exhibit state jumps at the switching
time instants and they still present a sort of averaging behav-
ior (Loxton, Teo, Rehbock, & Ling, 2009; Mostacciuolo, Vasca, &
Baccari, 2017). These circuits can be modeled within the class
of linear switched impulsive systems (SIS) where each mode is
characterized by a set of linear ordinary differential equations
and algebraic constraints which determine the rule of the state
jumps at the switching time instants (Slyn’ko & Tunç, 2019). In
this paper we study the application of averaging theory to SIS
with PWM.

The presence of state discontinuities makes nontrivial the
formal study of switched systems (Feketa, Klinshov, & Lücken,
2021) and two aspects are specifically critical for the averaging
analysis of SIS. The first issue is related to the fact that the
amplitudes of the state discontinuities usually do not reduce
by decreasing the switching period. The approach we propose
for overcoming this obstacle consists of comparing the averaged
solution with the moving average of the SIS solution. Another
theoretical challenge is due to the dependence of the SIS solution

on the matrices which characterize the state jumps which one

icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ould then expect should be included in the averaged model
oo. This dependence introduces several problems for the analysis
hich requires nontrivial theoretical arguments in order to be
olved.
The averaging analysis for switched systems with state jumps

s still at its infancy. An averaged model for homogeneous SIS
ith two modes was presented in Iannelli, Pedicini, Trenn, and
asca (2013b) where strict algebraic conditions (commutativity)
n the matrices characterizing the state jumps and those de-
cribing the modes dynamics were required. These conditions
re not assumed in the analysis of this paper. The averaging
esult in Iannelli et al. (2013b) was extended to more than two
odes in Iannelli, Pedicini, Trenn, and Vasca (2013a), to the non-
utonomous case in Mostacciuolo, Trenn, and Vasca (2015a) and
o partial averaging in Mostacciuolo, Trenn, and Vasca (2015b),
owever the corresponding theoretical findings were still based
n the algebraic assumptions on the SIS matrices introduced
n Iannelli et al. (2013b). The commutativity condition was re-
axed in Mostacciuolo, Trenn, and Vasca (2017) by using condi-
ions on the kernel and the image of the matrices of the modes.
owever, there exist practical SIS for which these conditions are
ot satisfied (Mostacciuolo & Vasca, 2016; Mostacciuolo, Vasca, &
accari, 2017).
In this paper we propose a continuous-time averaged model

or SIS under milder assumptions with respect to those formerly
sed. The averaging property was conjectured by the authors
n Mostacciuolo, Trenn, and Vasca (2022a) without providing any
ormal proof and by taking inspiration from the application of
heoretical findings in Mostacciuolo, Trenn, and Vasca (2022b)
pplied to discrete-time models. In this paper we provide a formal
roof for the averaging result by showing that the error between
he solution of the averaged model and the moving average of
he solution of the SIS decreases exponentially with the number
f switching periods and linearly with respect to the period
uration. The proposed averaged model is a generalization of
he classical averaged model adopted for PWM systems with
ipschitz solution, in the sense that if there are no state jumps the
atrices of the proposed model reduce to those of the classical
ne. A switched capacitor electrical circuit is considered as a
otivating practical example and numerical simulations validate

he effectiveness of the proposed model.
The rest of the paper is organized as follows. In Section 2

ome preliminary definitions and properties of SIS are recalled.
otivating examples for the proposed analysis are presented

n Section 3. Section 4 describes the structure of the proposed
veraged model and Section 5 our main theoretical result (all
roofs are reported in the Appendix). In Section 6 numerical
erification of the theoretical results is proposed. The synthesis
n Section 7 summarizes conclusions and future work.

. Switched impulsive systems

In this section we present some preliminaries on notation,
he definition of the class of SIS of interest and a resume of the
xisting results on averaging for SIS.

.1. Notation

The following notation is adopted throughout the paper: R
is the set of real numbers, R+ (R+

0 ) is the set of positive (non-
negative) real numbers, Rn is the set of n-dimensional vectors
of real numbers, C is the set of complex numbers, F ∈ Rm×n

indicates a real matrix with m rows and n columns, N0 (N) is the
set of (positive) natural numbers; ∥ · ∥ indicates the Euclidean
norm on Rn and also the corresponding induced matrix norm;

⌊x⌋ is the largest integer less than or equal to x ∈ R. A matrix

2

Fig. 1. Illustration of the switching times notation for k ≥ 1.

∈ Rn×n is idempotent if F k
= F for any k ∈ N; it is Schur

if all its eigenvalues have magnitude smaller than 1. A pair of
matrices Fi, Fj ∈ Rn×n is commutative if FiFj = FjFi with i, j ∈ N.
The product of q matrices Fi, i = 1, . . . , q is defined as (note
the order)

∏q
i=1 Fi = FqFq−1 · · · F2F1. The following notation is

used: Gi(ξ ) = eFiξ for all ξ ∈ R and Gi,p = Gi(dip) = eFidip for
some di ∈ D = [0, 1), Σ = {1, . . . q} with q ∈ N. A function
u : R+

0 → Rn is a Bohl function if it is a linear combination
of terms of the form tkeλt where k ∈ N0 and λ ∈ C. A matrix
function Gp : R+ → Rn×n is said to be an O(pr ) function as p → 0
for any r ∈ N0, (Gp = O(pr ) for short), if there exist constants
α ∈ R+ and p̄ ∈ R+ such that ∥Gp∥ ≤ αpr for all p ∈ (0, p̄].

2.2. SIS with pulse width modulation

The class of SIS considered in our analysis is now introduced.
It is characterized by a PWM with q ∈ N modes and a switching
period p ∈ R+. The sequence of modes is assumed to be fixed. At
each tk = kp, k ∈ N0, the mode i = 1 is activated and it remains
active since tk + d1p where d1 ∈ D is the duty cycle of the first
mode. Then the system commutes from the mode (i−1)-th to the
mode ith, i = 2, . . . , q, at the time instants sk,i := tk +

∑i−1
j=1 djp,

k ∈ N0 where di ∈ D, is the duty cycle of the ith mode; in
particular,

∑q
i=1 di = 1, see Fig. 1.

The continuous-time switched impulsive system can be rep-
resented as follows

x(s+k,i) = Πix(s−k,i) (1a)

ẋ(t) = Fix(t), t ∈ (sk,i, sk,i+1) (1b)

with x(0−) = x0 ∈ Rn initial condition, for k ∈ N0, i ∈ Σ ,
where sk,q+1 := tk+1 = sk+1,1, the state variable is the same for
each mode and x(s−k,i) (x(s

+

k,i)) is the state at the end (beginning)
of the (i − 1)-th (ith) mode at the kth period. The nonzero flow
matrix Fi ∈ Rn×n, i ∈ Σ , characterizes the dynamics of the ith
mode and the jump matrix Πi ∈ Rn×n, i ∈ Σ , (called consistency
projector in the differential algebraic equations terminology) de-
termines the possible jumps of the state variables at the switching
time instants. Note that in contrast to earlier works, we do not
assume that Πi is a project (i.e. an idempotent matrix). The
switched impulsive system (1) includes several practical systems
and, among them, switched descriptor systems which can be
represented in the form of homogeneous switched differential
algebraic equations with regular matrix pairs (Mostacciuolo et al.,
2022b).

The solution of (1) can be written by cascading the solutions of
the different modes and by considering the jumps at the switch-
ing time instants. In particular, at the switching time instants one
can write

x(s+k,i) = Πix(s−k,i) (2a)

x(s−k,i+1) = Gi,px(s+k,i), (2b)

where Gi,p = eFidip, for k ∈ N0, i ∈ Σ . By combining (2), one
obtains that the left solution of (1) at the time instants multiple of
the switching period must satisfy the following iterative equation

x−
= Θ x− (3)
k+1 p k
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or all k ∈ N0 where x−

k := x(t−k ), x−

0 = x0 and

Θp =

q∏
j=1

Gj,pΠj. (4)

By iteratively applying (3), the left solution of (1) at the time
instants multiple of p can be written as

x−

k = Θk
px

−

0 (5)

for all k ∈ N0.

Remark 1. The model (1) is autonomous, however the analy-
sis presented below can be easily applied to the case of non-
autonomous systems whose inputs are Bohl functions by extend-
ing the state space.

2.3. Basics on averaging for SIS

Averaging theory has been already studied for SIS. In what
follows we briefly recall the existing theoretical results in order
to motivate the proposed analysis and to highlight the novelties
of our results.

In Iannelli et al. (2013b) a SIS model (1) with q = 2 was
considered and the following averaged model

ξ̇ (t) = Aavξ (t), t ∈ R+

0 (6)

with ξ (0) = Πx0, Aav = Π (F1d1 + F2d2)Π , Π = Π2Π1, was
introduced. In particular, it was proved that if the matrices Π1
and Π2 are commutative and idempotent, and the conditions

ΠiFi = FiΠi = Fi (7)

hold for all i ∈ Σ then for any finite t̄ ∈ R+ the error between the
solution of (1) and that of (6) is decreasing with the same order
of the switching period, i.e.

x(t) − ξ (t) = O(p) (8)

for all t ∈ (0, t̄]. This result was extended to more than two
modes in Iannelli et al. (2013a), to the non autonomous case
in Mostacciuolo et al. (2015a) and to partial averaging in Mostac-
ciuolo et al. (2015b).

The commutativity condition was relaxed in Mostacciuolo,
Trenn, and Vasca (2017) by introducing the following conditions
on the kernel and the image of the matrices of the system (1):

imΠ ⊆ imΠi, (9a)

kerΠ ⊇ kerΠi, (9b)

for all i ∈ Σ , where the matrix Π ∈ Rn×n is given by

Π =

q∏
i=1

Πi. (10)

Note that in the case of SIS with two modes with Π idempotent,
the averaging result (8) holds even if condition (9b) does not
hold. Condition (7) and the assumption that Πi, i ∈ Σ , are
idempotent were still required in order to obtain the averaging
result in Mostacciuolo, Trenn, and Vasca (2017). It should be
noticed that the commutativity conditions imply (9) also if Πi,
i ∈ Σ , are not idempotent. In general, if the matrices Πi, i ∈ Σ ,
are idempotent, the matrix Π may not be. However, if (9) holds
and Πi, i ∈ Σ , are idempotent then Π is idempotent.

Unfortunately, it arises that several practical electrical circuits
do not satisfy (9), even if they present a sort of averaging behav-
ior (Mostacciuolo, Vasca, & Baccari, 2017). The averaging result
presented in this paper considers SIS (1) where the matrices Πi,
i ∈ Σ , do not commute, are not necessarily idempotent and the
conditions (7) and (9) are not required.
 r

3

Fig. 2. Elementary cell of a ladder step-up switched capacitor converter.

. Motivations

In this section we motivate the interest of our study by con-
idering two examples of switched systems. Firstly, the SIS model
f a switched capacitor circuit is described by highlighting the
ignificance and relevance of state jumps occurring at switching
ime-instants. Then we show the applicability of the proposed
pproach to switched systems which can be viewed as periodic
ingularly perturbed systems with fast and slow modes.

.1. A circuital example

Let us consider the switched capacitor electrical circuit shown
n Fig. 2. The circuit represents the typical elementary cell of
ladder step-up switched capacitor and it consists of two ca-
acitors and four electronic switches that are controlled in a
omplementary way. Then the modes of the system are two. It
s assumed i = 1 in (1) when the pair {S1, S2} are turned on
ogether with the pair {S3, S4} turned off and i = 2 in (1) for the
everse conduction of the switches pairs. By considering as input
constant voltage source u = x1, the circuit can be modeled with
2 and x3 being the state variables corresponding to the voltages
n the capacitors C1 and C2, respectively. Then the matrices pairs
f (1) are:

1 =

[1 0 0
0 C2ρ C1ρ

0 C2ρ C1ρ

]
, F1 = −

ρ

R

[0 0 0
1 1 0
1 0 1

]
(11a)

Π2 =

[1 0 0
0 1 0
1 0 0

]
, F2 = −

1
RC2

[0 0 0
1 1 0
0 0 0

]
(11b)

where ρ =
1

C1+C2
.

It is easy to verify that Π1 and Π2 are not commutative and
lso (9) are not satisfied by (11).
In this paper we propose a continuous-time averaged model

or the switched impulsive system (1) under milder assumptions
ith respect to (9). The averaging property was conjectured by
he authors in Mostacciuolo et al. (2022a) without providing
ny formal proof and by taking inspiration from the application
f theoretical findings in Mostacciuolo et al. (2022b) applied to
iscrete-time models. In next section we provide a formal proof
or the averaging result based on new conditions on the system
atrices which can be easily checked and are satisfied by (11).

.2. A singularly perturbed system

The proposed averaging approach can be also applied to pe-
iodic continuous-time switched systems which do not present
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Fig. 3. Illustration of q modes with fast and slow dynamics.

tate discontinuities at the switching time instants but exhibit
n alternate sequence of fast and slow modes. Since there are no
umps, the system can be modeled as a SIS in the form (1) where
ll theΠi are identity matrices. The resulting singularly perturbed
witched system can be described by the following equations[
ẋs(t)
ẋf (t)

]
=

1
ηp

Ai

[
xs(t)
xf (t)

]
, t ∈ [sk,i, sk,i + δip] (12a)[

ẋs(t)
ẋf (t)

]
= Fi

[
xs(t)
xf (t)

]
, t ∈ [sk,i + δip, sk,i+1] (12b)

here ηp is a small parameter that depends on the switching
eriod p and it characterizes the time scale separation between
he slow dynamics of xs and the fast dynamics of xf , Ai and Fi are
he slow and fast dynamic matrices of the ith mode which can be
xpressed in the following block forms

i =

[
0 0
Ai,1 Ai,2

]
, Fi =

[
Fi,1 Fi,2
0 0

]
(13)

with Ai,2 a non singular matrix. The fast ith mode is active during
he interval (sk,i, sk,i + δ1pp], δip ≪ di, i ∈ Σ , and at the time
nstant sk,i + δip the slow mode is activated and it remains active
ntil sk,i+1, see Fig. 3. Under the hypothesis that the parameter ηp
oes to zero faster than p, we can approximate the fast dynamics
f the ith mode by a matrix with an error of order p2, as described
y the following equation

Ai
δipp
ηp = Πi + O(p2) (14)

with

Πi =

[
I 0

A−1
i,2 Ai,1 0.

]
. (15)

Then the singularly perturbed switched system (12) can be
pproximated with a SIS in the form (1) where the matrices Πi,
∈ Σ are given by (15).

. Continuous-time averaged model

In this section we first introduce the proposed averaged model
y motivating the structure of its matrices. Then the main aver-
ging result is claimed and the assumptions required for its proof
re discussed.

.1. Averaged model

The proposed continuous-time averaged model has the follow-
ng structure

ξ̇ (t) = Apξ (t), t ∈ R+

0 , (16a)

(t) = Γ ξ (t) (16b)

with initial condition ξ (0) = x0 ∈ Rn; the dynamic matrix
function Ap is given by

A =
1 (Φ − I

)
(17)
p p p

4

with

Φp = Π +Λp, (18a)

Γ =

q∑
j=1

( j∏
h=1

Πh

)
dj, (18b)

where Π ∈ Rn×n is given by (10) and the matrix Λ ∈ Rn×n is
given by

Λ =

q∑
j=1

⎛⎝ q∏
h=j+1

ΠhFj
j∏

h=1

Πh

⎞⎠ dj. (19)

where
∏q

h=j+1Πh for j = q is assumed to be the identity matrix.
The output µ ∈ Rn of the model (16) is intended to be

an approximation of the moving average of the solution of the
impulsive systems (1). The dependence of (17) on the switching
period is a crucial aspect in order to obtain a good approxima-
tion (Mostacciuolo et al., 2022b), which is an analogous depen-
dence used in the well known result for the classical averaging
technique applied to switched systems with modes represented
by ordinary differential equations, i.e., by excluding jumps in the
state (Lehman & Bass, 1996).

It should be noticed that in the case of a switched ordinary
differential equations, the matrices Πi, i ∈ Σ , are equal to the
identity matrix and the matrixΛ reduces to the dynamic matrices
of the classical continuous-time averaged model of pulse width
modulated systems with q modes, i.e.

∑q
j=1 Fjdj.

A further motivation for the choice of the matrices in (16) can
be obtained by discretizing the model (16) with the forward Euler
method and a sampling period p. By indicating with zk the state
variable at the time-step k ∈ N0 of the resulting discrete-time
state–space model, from (16a) one obtains zk+1 = zk + pApzk.
Then, by using (17) the following discrete-time model can be
written as

zk+1 =Φpzk, k ∈ N0 (20a)

µk =Γ zk (20b)

with z0 = x0. The solution of (20) can be written as

zk = Φk
pz0 (21)

for all k ∈ N0. In the sequel we will show that x−

k = zk +O(p) for
any k, which motivates the choice (17) with (18a).

The choice of the matrix Γ in the output equation (16b) can be
motivated by considering the continuous-time moving average of
the solution of (1), which is defined as

m(t) =
1
p

∫ t+p

t
x(τ )dτ (22)

or any t ∈ (0, t̄ − p] with t̄ > p, where x(t) is the solution of (1).
We will show that the m(tk) = µk + O(p) which motivates the
choice (16b) with (18b).

In next section it is proved that, under some assumptions
which are discussed in the sequel, there exist constants α ∈ R+,

∈ R+

0 , ε ∈ (0, 1), pε ∈ R+ such that the following condition

∥m(t) − µ(t)∥ ≤ αp + βεk (23)

ith k = ⌊t/p⌋, holds for all p ∈ (0, pε] and t ∈ (0, t̄ − p], for any
t̄ ∈ R+. In (23) the moving average m(t) is given by (22) with
x(t) being a solution of the SIS (1), and µ(t) is the output of the
averaged model (16).
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.2. Assumptions

The main result is proved starting from two basic assumptions.
he first one can be expressed as follows.

ssumption 1. Given the matrix function Φp expressed by (18a),
there exist a constant α ∈ R+

0 and an induced matrix norm ||| · |||

uch that

||Φp||| ≤ 1 + αp. (24)

Assumption 1 can be verified through the feasibility of a suit-
ble set of linear matrix inequalities (Mostacciuolo et al., 2022a,
emma 4). Note that Assumption 1 may be satisfied, while (24) is
ot satisfied w.r.t. to the standard (induced) Euclidian norm. As
n example consider Φp =

[ 1+p 0.5
0 0.5+p

]
. It is easily seen that for

he norm ||| · ||| : R2
→ R≥0 given by |||x||| := ∥Tx∥ for T =

[
1 1
0 1

]
e have that |||Φp||| = ∥TΦpT−1

∥ = 1 + p, i.e. (24) is satisfied for
= 1. However, ∥Φ0∥ ≈ 1.14 > 0, so that (24) does not hold
.r.t. the Euclidian norm.

emark 2. Under the situation that allΠi, i ∈ Σ , are idempotent,
onditions (9) imply thatΠ is idempotent and then Assumption 1
olds. On the other hand, Assumption 1 is also verified if all
owers of the matrix Π given by (10) are bounded, i.e. there
xists a constant M > 0 such that ∥Π k

i ∥ ≤ M for all k, without
equiring that Π is idempotent. This fact can be easily proved
y using the Barabanov norm (Trenn & Wirth, 2012). Therefore,
he results presented in next section which are based only on
ssumption 1 are proved under milder conditions with respect
o the former averaging results which start from (9).

An important result related to Assumption 1 is the following
emma which has been proved in Mostacciuolo et al. (2022a).

emma 3. Consider a Lipschitz continuous matrix function p ↦→ Φp
∈ Rn×n. Assume there exists a constant α ∈ R+

0 such that (24) holds.
hen, for any Lipschitz continuous matrix function p ↦→ Mp ∈ Rn×n

uch that Mp = O(p2), it is

Φk
p = O(1) (25a)

Φp + Mp)k = Φk
p + O(p). (25b)

or all k ∈ {0, . . . , ℓp} with ℓp = ⌊t̄/p⌋ and any finite t̄ ∈ R+.

Note that the asymptotic bounds (25) are valid no matter
hich matrix norm is used, because all matrix norms are equiva-

ent and hence the norm-choice only effects the constants within
he big-O notation. In the following we will only utilize Assump-
ion 1 via Lemma 3 and therefore we can use in the remainder
f this work always the standard Euclidian norm when bounding
rrors; in particular, knowledge of the specific (non-standard)
orm satisfying (24) is not required.
A further technical assumption required in order to obtain our

veraging results is the following.

ssumption 2. Given the matrices Π and Λ expressed by (10)
nd (19), respectively, there exists a coordinate transformation T ∈
n×n such that

ΠT−1
=

[
I 0
0 V

]
(26a)

TΛT−1
=

[
Λ1 0
Λ3 Λ2

]
(26b)

where V is Schur, with V and Λ2 square matrices of the same
dimension.
 d

5

Consider the case that Πi, i ∈ Σ , are idempotent. It can
be easily shown that (9) implies (26a), with V = 0 but the
opposite is not true in general. Indeed, (11) do not satisfy (9) but
Assumption 2 holds for these matrices as it can be verified by
considering, for instance, the following coordinate transformation

T =

⎡⎣ 1 0 0
−

C1+C2
C2

1 C1
C2

−1 0 1

⎤⎦ . (27)

Note that (26a) together with the Schur condition of ma-
rix V , also if Πi, i ∈ Σ , are not idempotent, implies that
imk→∞[(TΠT−1)k+1

− (TΠT−1)k] = 0 which means that the
ransformed matrix TΠT−1 converges to an idempotent matrix
hen k goes to infinity.

emark 4. Assumption 2 allows one to obtain a useful transfor-
ation for the matrix function Φp. Indeed, by using Assumption 2
ne can write

ΦpT−1
=

[
I +Λ1p 0
Λ3p V +Λ2p

]
. (28)

or sufficiently small p the matrices I+Λ1p and V +Λ2p have no
ommon eigenvalues, hence there is a unique solution Rp of the
ylvester equation

p(I +Λ1p) − (V +Λ2p)Rp = −Λ3p (29)

uch that

pΦpT−1
p =

[
I +Λ1p 0

0 V +Λ2p

]
(30)

ith

p :=

[
I 0
Rp I

]
T . (31)

ote that Rp = 0 is the solution of (29) for p = 0 and (29) can be
ritten as

M + pM)vec(Rp) = −p vec(Λ3)

here vec(·) : Rr×r
→ Rr2 is the standard vectorization operator,

M := I ⊗ V − I ⊗ I and M := I ⊗Λ2 −Λ⊤

1 ⊗ I . Hence a standard
perturbation analysis shows that

∥Rp∥ ≤
∥M−1

∥∥Λ3∥

1 − ∥M−1∥∥M∥p
p = O(p).

Remark 4 will be used for obtaining the main result of the
paper which shows that if Assumptions 1 and 2 hold then (23)
is satisfied.

It is interesting to compare (8) and (23) in the light of the
required assumptions. First of all the approximation result (8) in-
volves the solution x(t) of the impulsive system while in (23) the
corresponding moving average m(t) is considered. The variables
ξ (t) and µ(t) do not present jumps, so as m(t). The reason why
(t) can be used in (8), is that the amplitudes of the state jumps
onverge to zero with p if (9) holds, which is not assumed in our
ain averaging result. Instead, if Assumptions 1 and 2 hold it

s still possible to have nontrivial jumps when p decreases. On
he other hand, the inequality (23) says that the error m(t) −

(t) decreases with the multiple of the switching period and by
ecreasing the PWM period.

. Averaging results

In this section the averaging result (23) is proved. To this
im, some preliminary steps are required. We first prove that
he difference between the solution of the SIS (1) evaluated at
he multiple of the switching period and the solution of the

iscrete-time system (20), is of order of the switching period.
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emma 5. Consider the continuous-time SIS (1) with initial con-
ition x0, over a time interval t ∈ [0, t̄] with some t̄ ∈ R+ and
he discrete-time model (20) with k = ⌊t/p⌋ and initial condition
0 = x0. If Assumption 1 is satisfied, then the following condition
−

k = zk + O(p) (32)

here x−

k is given by (5) and zk is given by (21), holds for all
∈ {0, . . . , ℓp}, ℓp = ⌊t̄/p⌋.

By using Lemma 5 one can prove that the difference between
he moving average (22) evaluated at the multiples of the switch-
ng period and the output of the discrete-time model (20), is of
rder of the switching period. As for Lemma 5, also the following
esult requires Assumption 1 but not Assumption 2.

emma 6. Consider the continuous-time SIS (1) with initial con-
ition x0, over a time interval t ∈ [0, t̄] with some t̄ ∈ R+, the

moving average of its solution given by (22) evaluated at tk for
∈ {0, . . . , ℓp − 1}, ℓp = ⌊t̄/p⌋, and the discrete time model (20)
ith k = ⌊t/p⌋ and initial condition z0 = x0. If Assumption 1 is

satisfied then the following condition

m(tk) = µk + O(p) (33)

holds for all k ∈ {0, . . . , ℓp − 1}.

A further step towards the proof of our main result consists
of considering the error between the moving average m(t) ex-
ressed by (22) and the values obtained by sampling m(t) at
he multiple of p, i.e., m(tk) where tk = kp and k = ⌊t/p⌋. In
articular, by using Assumption 2 one can prove the following
esult.

emma 7. Consider the continuous-time SIS (1) with initial condi-
ion x0, over a time interval t ∈ [0, t̄] with some t̄ ∈ R+, the moving
verage m(t) of its solution given by (22). If Assumptions 1 and 2 are
atisfied then there exist constants α ∈ R+, β ∈ R+

0 , ε ∈ (0, 1) and
p̄ε ∈ R+ such that the following condition

∥m(t) − m(tk)∥ ≤ αp + βεk (34)

ith tk = kp, k = ⌊t/p⌋, holds for any t ∈ (0, t̄ − p] and any
∈ (0, p̄ε].

Lemma 7 allows one to conclude that the approximation result
s valid for any backward ∆-shifted version of (22) defined as

∆(t) =
1
p

∫ t−∆+p

t−∆
x(τ )dτ (35)

ith ∆ ∈ [0, p), where x(t) is the solution of (1). Indeed,
since (22) is defined as a p-forward moving average, it is easy to
verify that a condition similar to (34) holds for m∆, i.e., ∥m∆(t)−
(tk)∥ ≤ αp + βεk for any ∆ ∈ [0, p), t ∈ (∆, t̄ + ∆ − p] with

t̄ > p. In the following for the sake of simplicity we consider the
case ∆ = 0.

By using the lemmas above, we can prove the following theo-
em which synthesizes our main result.

heorem 8. Consider the continuous-time SIS (1) with initial
ondition x0, over a time interval t ∈ [0, t̄] with some t̄ ∈ R+, the
corresponding moving average m(t) given by (22) and the output
µ(t) of the continuous-time model (16) with initial condition ξ (0) =

0. If Assumptions 1 and 2 hold, then there exist constants α ∈ R+,
β ∈ R+

0 , ε ∈ (0, 1), and pε ∈ R+ such that (23) with k = ⌊t/p⌋
olds for all p ∈ (0, pε] and t ∈ (0, t̄ − p].

The averaging approximation expressed by (23) and proved in
Theorem 8 shows that the error between the moving averagem(t)
of the SIS solution and the output of the averaged model depends
6

on p and k too. In other words, it is not enough to let the switching
period going to zero in order to reduce the error of the averaging
process, but some periods must elapse too. This is due to the fact
that the algebraic conditions on the modes matrices have been
relaxed. The following remark shows that under more restrictive
conditions on the modes matrices, one can recover the classical
O(p) averaging result.

Remark 9. It is easy to show by checking the proof of Theorem 8
that, under Assumptions 1 and 2, if all Πi, i ∈ Σ , are idempotent
and (9) hold then there exist constants αm, αµ ∈ R+ and p ∈ R+

uch that

m(t) − m(tk)∥ ≤ αmp, (36a)

∥m(t) − µ(t)∥ ≤ αµp, (36b)

ith tk = kp, k = ⌊t/p⌋ holds for all p ∈ (0, p] and t ∈ (0, t̄ − p].
t should be noticed that in the case of a SIS with two modes
nder Assumptions 1 and 2, if all Πi, i = 1, 2 and the product Π

are idempotent then (36) is still valid even if (9a) holds and (9b)
does not.

6. Simulation results

In this section three examples with their respective simula-
tions are analyzed to validate the effectiveness of the results
presented in the previous section. The first example describes
the proposed averaged model (16) and its effectiveness for the
electronic circuit shown in Fig. 2. The second example compares
the results obtained with the proposed averaged model and the
classical one (6) in a case where the jump matrices are projectors
and satisfy conditions (9), in particular, it is highlighted that in
general the average models differ. The last example shows the
application of our technique for an unstable system and it also
illustrates that in some cases the newly proposed average model
coincides with the previously proposed averaged model.

Example 10. Let us go back to the motivating example of
our analysis whose equivalent circuit is shown in Fig. 2. By
considering (11) it follows that

Π = Π2Π1 =

[1 0 0
0 C2ρ C1ρ

1 0 0

]
(37)

being ρ =
1

C1+C2
. It can be easily verified that the matrix Π

s product bounded, i.e. Π k is bounded for all k, and then
ssumption 1 holds independently of the circuit parameters.
oreover, Assumption 2 holds by considering the transformation
atrix (27). The matrix (19) can be written as

= Π2F1Π1d1 + F2Π2Π1d2 =

⎡⎣ 0 0 0
−

1
RC2

d2 −
ρ

R 0
0 0 0

⎤⎦
and the matrix (18b) is given by

Γ = Π1d1 +Π2Π1d2 =

[ 1 0 0
0 C2ρ C1ρ

d2 C2ρd1 C1ρd1

]
where we used the condition d1 + d2 = 1.

We now compare the solutions of the SIS (1), the averaged
model
(16) proposed in this paper and the discrete-time model (20)
together with the moving average (22). Let us consider C1 =

C2 = 120µF, R = 10 k�, u = 12 V, d1 = d2 = 0.5 and
null initial conditions. Figs. 4 and 5 show the dynamics of the
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Fig. 4. Time evolution of the state variable x2 of Example 10 with p = 0.05 s
top) and p = 0.1 s (bottom): SIS (1) (blue lines), averaged model (16) (green
ines), discrete-time model (20) (red stars), moving average (22) (black lines).
For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

Fig. 5. Time evolution of the state variable x3 of Example 10 with p = 0.05 s
top) and p = 0.1 s (bottom): SIS (1) (blue lines), averaged model (16) (green
ines), discrete-time model (20) (red stars), moving average (22) (black lines).
For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

tate variables x2 and x3, respectively, for different values of the
witching period, over a time interval of 1 s.
Figs. 6 and 7 show the left hand side of (23) computed for

he state variable x3 in logarithmic scale as a function of time
nd as a function of the multiple of the switching period (steps),
espectively, for different values of the switching period.

Clearly, the intersections among the different curves in Fig. 6
how that the initial error is not of order p, but it quickly de-
reases with an increasing number of steps and from Fig. 7 it
s visible that the rate of convergence with respect to the step
ounter k is independent of p, which is related to the βεk term
n (23) and is due to the fact that matrices Πi, i ∈ Σ , are neither
dempotent nor commutative.

Note that the matrix Π k, with Π given by (37), converges
o the idempotent matrix

[
1 0 0
1 0 0
1 0 0

]
when k goes to infinity. This

roperty, together with the stable averaged matrix Ap allows
ne to motivate the behavior shown in Fig. 4 in the sense that
he jumps do not influence the stability of the slow dynamics
aptured by the trajectories of the averaged model. After a suf-
icient number of steps (k ≥ 17), the error settles to a value
7

Fig. 6. Time evolution of the error ∥m(tk) − µ(tk)∥ computed for the state
ariable x3 of Example 10 (the vertical axis is in logarithmic scale) for different
alues of the switching period: p = 0.5 s (blue line), p = 0.25 s (orange line),
= 0.1 s (green line), p = 0.05 s (purple line), p = 0.01 s (red line) and
= 0.005 s (cyan line). (For interpretation of the references to color in this

igure legend, the reader is referred to the web version of this article.)

Fig. 7. The error ∥m(tk)−µ(tk)∥ computed for the state variable x3 of Example 10
(the vertical axis is in logarithmic scale) versus the multiples of p for different
values of the switching period: p = 0.5 s (blue line), p = 0.25 s (orange line),
p = 0.1 s (green line), p = 0.05 s (purple line), p = 0.01 s (red line) and

= 0.005 s (cyan line). (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)

hich is of order p, which is related to the αp term in (23).
Note that the intermediate lower values for the error are due
to the intersections of the solution of the averaged model and
the moving average in this specific example (visible in Fig. 5,
where the green curve is initially below the black curve, but later
is above). The error of the left hand side of (23) computed for
the whole state has an analogous behavior as the one plotted in
Fig.s 6 and 7 and a corresponding plot is therefore omitted.

Example 11. Let us consider the system (1) with q = 2 and the
following matrices

Π1 =

[1 0 0
0 1 0
0 −1 0

]
, F1 =

[ 0 −2 0
1 −3 0

−1 3 0

]

Π2 =

[0 −1 0
0 1 0
0 1 0

]
, F2 =

[0 2 0
0 −2 0
0 −1 1

]
ote that for this example the matrices Π1 and Π2 are idem-
otent and satisfy the condition (9), hence Π := Π2Π1 is
dempotent as well. Nevertheless, it is easy to verify that the
roposed averaged model (16) is different from (6). In Fig. 8 the
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Fig. 8. Time evolution of the state variable x1 (top) and x2 (bottom) of
xample 11 with p = 0.1 s: SIS (1) (blue lines), averaged model (6) (orange
ines), averaged model (16) (green lines), discrete-time model (20) (red stars),
oving average (22) (black lines). (For interpretation of the references to color

n this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Time evolution of the error ∥m(tk) − µ(tk)∥ of Example 11 (the vertical
axis is in logarithmic scale) for different values of the switching period: p = 0.1 s
(blue line), p = 0.08 s (red line), p = 0.06 s (yellow line), p = 0.05 s (purple
line), p = 0.03 s (green line) and p = 0.01 s (cyan line). (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

time evolution of the state variables x1 and x2 for p = 0.1 s are
reported by showing the solutions of the SIS (1), the averaged
model (16), and other solutions of interest.

A significant difference is clearly the choice of the initial
conditions. The averaged model (6) exploits the fact that Π is
a projector and chooses an initial value in the subspace imΠ ,
thereby matching very well the moving average after one period.
The reason is that after one period the solution of the switched
systems has distance of order p from the subspace imΠ . Our
newly proposed averaged model does not assume this property
and instead chooses an initial value which is consistent with the
moving average over the first interval which is still very far away
from the subspace imΠ . Furthermore, the dynamics of our newly
proposed averaged model approximate the jump towards the
common consistency space by introducing an eigenvalue −1/p
in the matrix Ap and it takes some steps until the initial error
vanishes. This is also clearly visible in Fig. 9 which shows the error
of the proposed averaged model, i.e., the left hand side of (23), for
different switching periods. For each p the error decreases over
 i

8

time and for any time instant the error decreases with decreasing
p. The continued exponential decay is due to the fact, that all
solutions (switched and averaged) converge exponentially to zero
and hence trivially the error also converges exponentially to zero.

Note that the matrix F2 is not Hurwitz but the dynamic matrix
Ap of the resulting averaged model is Hurwitz for all p > 0.
Looking at Fig. 8 the interpretation is that the fast dynamics char-
acterized by the idempotent jump matrices allow the trajectory
of the SIS to get closer to the trajectory of the averaged model
when the number of elapsed periods increases.

Example 12. Let us consider the following numerical example
where the matrices Fi and Πi, with i ∈ {1, 2} are given by

Π1 =

[1 0 1
0 1 0
0 0 0

]
, F1 =

[
−4 −1 −4
−1 4 −1
0 0 0

]

Π2 =

[1 0 0
0 1 0
0 0 0

]
, F2 =

[
−10 −1 0
−1 0 0
0 0 0

]
.

The matrices Π1 and Π2 do not satisfy conditions (9b), how-
ever the products Π2Π1 and Π1Π2 are idempotent. Then ac-
cording to Remark 9 the error between the moving average m(t)
of the solution of this system and its samples m(tk) is O(p). By
considering d1 = d2 = 0.5 and the following matrices

Λ =

[
−7 −1 −7
−1 2 −1
0 0 0

]
, Γ =

[1 0 1
0 1 0
0 0 0

]
the dynamic matrix (17) is given by

Ap =

[
−7 −1 −(7p − 1)/p
−1 2 −1
0 0 −1/p

]
where p is the switching period. Let us compare the solutions
of the SIS (1), the averaged model (16) and the discrete-time
model (20) together with the moving average (22). Figs. 10 and 11
show the dynamics of the state variables x1 and x2, respectively,
for different values of the switching period, over a time interval of
0.5 s. It is evident that the error between the output µ(t) and the
moving average m(t) is O(p), i.e., it is enough to let the switching
period going to zero without needing some periods to elapse.

It is remarkable to make a comparison between the averaged
model (6) presented in our previous studies and the proposed
model (16). Let us consider the averaged dynamic matrix of the
continuous averaged model (6) which is given by

Aav = Π (F1d1 + F2d2)Π =

[
−7 −1 −7
−1 2 −1
0 0 0

]
.

It is easy to see that Γ Ap = Aav. Moreover the initial condition
for (6) and (17) are the same, indeed Γ x0 = Πx0. Then the
olutions of (6) and (17) keep very close to each other.

. Conclusion

A new averaged model for SIS which exhibits state jumps at
he switching time instants has been presented. The proposed
odel generalizes the classical averaged model widely adopted

or the analysis of switched PWM systems with Lipschitz continu-
us solution. The averaging result requires milder assumptions on
he system matrices with respect to previous averaging analyses
or SIS. A switched capacitor electrical circuit has been used to
alidate the results and to motivate their practical usefulness.
Future work will be dedicated to the study of scenarios with

ime-varying and state-dependent duty cycles. Furthermore,
ther directions of future research are the application of the
roposed averaging approach for the stability analysis of switched

mpulsive systems and singularly perturbed systems.
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Fig. 10. Time evolution of the state variable x1 of Example 12 with p = 0.05 s
top) and p = 0.1 s (bottom): SIS (1) (blue lines), averaged model (16) (green
ines), discrete-time model (20) (red stars), moving average (35) with δ = p/2
black lines). (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

Fig. 11. Time evolution of the state variable x2 of Example 12 with p = 0.05 s
top) and p = 0.1 s (bottom): SIS (1) (blue lines), averaged model (16) (green
ines), discrete-time model (20) (red stars), moving average (35) with δ = p/2
black lines). (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

ppendix A

.1. Proof of Lemma 5

roof. Consider (3)–(4). By using the Taylor approximation one
an write

j,p = eFjdjp = I + Fjdjp + O(p2) = I + O(p) (38)

or all j ∈ Σ , where I is the identity matrix. By using (38) in (4)
ne obtains

p =

q∏
j=1

Gj,pΠj = Π +Λp + O(p2) = Φp + O(p2) (39)

here Π is given by (10), Λ by (19) and Φp by (18a). By applying
Lemma 3 with Assumption 1, from (25b) it follows

Θk
= Φk

+ O(p) (40)
p p

9

for all k ∈ {0, . . . , ℓp}. By subtracting (21) to (5) one obtains

x−

k = zk +Θk
px

−

0 −Φk
pz0

a
= zk +Φk

p (x
−

0 − z0) + O(p)

= zk + O(p) (41)

where in a
= we used (40). ■

A.2. Proof of Lemma 6

Proof. Consider (22). By solving (1) and by using (2) one can
write

pm(tk) =

∫ (k+1)p

kp
x(t)dt

=

q∑
i=1

∫ dip

0
Gi(ψ)Πix(s−k,i)dψ

=

q∑
i=1

∫ dip

0
Gi(ψ)Πi

i−1∏
h=1

Gh,pΠhx−

k dψ (42)

for all k ∈ {0, . . . , ℓp − 1}. Then, from (42) by using (38) and by
noticing the presence of the integral one can write:

pm(tk) =

q∑
i=1

Πi

i−1∏
h=1

Πhx−

k dip + O(p2)

=

q∑
i=1

i∏
h=1

Πhx−

k dip + O(p2)

= Γ px−

k + O(p2) a
= Γ pzk + O(p2)

= µkp + O(p2) (43)

where Γ is given by (18b), in a
= we used Lemma 5 with Assump-

tion 1 and µk is defined by (20b). By dividing both sides of (43)
by p it follows that (33) holds. ■

A.3. Proof of Lemma 7

Proof. By definition it is m(t) = m(tk) for any t = tk = kp,
k ∈ {0, . . . , ℓp − 1} and then in the time instants multiple of the
switching period the condition (34) is trivially satisfied.

Let us consider the moving average over a time interval of
length p which starts in ith mode. For any t ∈ [sk,i, sk,i+1], k ∈

{0, . . . , ℓp − 1}, τi = t − sk,i, i.e. τi ∈ [0, dip], by substituting the
solution of SIS (1) in (22) and by reminding that the duty cycles
are constant, one can write

pm(t) =pm(sk,i + τi) =

∫ dip

τi

Gi(ψ)Πix(s−k,i)dψ

+

q∑
j=i+1

∫ djp

0
Gj(ψ)Πjx(s−k,j)dψ

+

i−1∑
j=1

∫ djp

0
Gj(ψ)Πjx(s−k+1,j)dψ

+

∫ τi

Gi(ψ)Πix(s−k+1,i)dψ.

0
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B

p

y using (2)–(4) it follows

m(t) =

∫ dip

τi

Gi(ψ)Πi

i−1∏
w=1

Gw,pΠwx−

k dψ

+

q∑
j=i+1

∫ djp

0
Gj(ψ)Πj

j−1∏
w=1

Gw,pΠwx−

k dψ

+

i−1∑
j=1

∫ djp

0
Gj(ψ)Πj

j−1∏
w=1

Gw,pΠwx−

k+1dψ

+

∫ τi

0
Gi(ψ)Πi

i−1∏
w=1

Gw,pΠwx−

k+1dψ. (44)

Let us rewrite (42) as follows

pm(tk) =

q∑
j=1

∫ djp

0
Gj(ψ)Πj

j−1∏
w=1

Gw,pΠwx−

k dψ

=

∫ dip

0
Gi(ψ)Πi

i−1∏
w=1

Gw,pΠwx−

k dψ

+

i−1∑
j=1

∫ djp

0
Gj(ψ)Πj

j−1∏
w=1

Gw,pΠwx−

k dψ

+

q∑
j=i+1

∫ djp

0
Gj(ψ)Πj

j−1∏
w=1

Gw,pΠwx−

k dψ. (45)

By taking the difference between (44) and (45) one obtains

p(m(t) − m(tk)) =

∫ τi

0
Gi(ψ)Πi

i−1∏
w=1

Gw,pΠw(x−

k+1 − x−

k )dψ

+

i−1∑
j=1

∫ djp

0
Gj(ψ)Πj

j−1∏
w=1

Gw,pΠw(x−

k+1 − x−

k )dψ. (46)

By using (3)–(4)

x−

k+1 = Θpx−

k =

q∏
i=1

Πix−

k + O(p) = Πx−

k + O(p), (47)

together with Gi(ψ) = I + O(p) and Gw,p = I + O(p), from (46)
one can write

p(m(t) − m(tk)) = τi

i∏
w=1

Πw(Π − I)x−

k

+

i−1∑
j=1

djp
j∏

w=1

Πw(Π − I)x−

k + O(p2). (48)

By using (5) and (40) in Lemma 5, the expression (48) can be
rewritten as

p(m(t) − m(tk)) =⎛⎝τi i∏
w=1

Πw +

i−1∑
j=1

djp
j∏

w=1

Πw

⎞⎠ (Π − I)Φk
px

−

0 + O(p2). (49)

where τi = t − sk,i and k = ⌊t/p⌋.
From Assumption 2 and Remark 4 there exists a matrix Tp such

that (30) holds and then one has

Tp(Π − I)Φk
pT

−1
p = Tp(Π − I)T−1

p TpΦk
pT

−1
p

=

([
I 0

]
TΠT−1

[
I 0

]
− TpT−1

p

)
TpΦk

pT
−1
p
Rp I −Rp I

10
=

([
I 0
Rp I

][
I 0
0 V

][
I 0

−Rp I

]
−

[
I 0
0 I

])
TpΦk

pT
−1
p

=

[
0 0

V − I

][
(I +Λ1p)k 0

0 (V +Λ2p)k

]
=

[
0 0
0 (V − I)(V +Λ2p)k

]
. (50)

Since V is Schur it follows there exist constants β1 ∈ R+

0 ,
ε ∈ (0, 1) and p̄ε ∈ R+ such that, by taking the norms on both
sides of (50) it is

∥Tp(Π − I)Φk
pT

−1
p ∥ ≤ β1ε

k (51)

for all p ∈ (0, p̄ε]. Moreover one can write

∥(Π − I)Φk
p∥ = ∥T−1

p Tp(Π − I)Φk
pT

−1
p Tp∥

≤ ∥T−1
p ∥∥Tp(Π − I)Φk

pT
−1
p ∥∥Tp∥

≤ β0∥Tp(Π − I)Φk
pT

−1
p ∥ ≤ β0β1ε

k, (52)

where β0 ∈ R+ is such that

∥Tp∥∥T−1
p ∥ ≤ β0 (53)

which exists for sufficiently small p because Rp in (31) is O(p).
Then, by dividing both sides of (49) by p, by considering that

τi = O(p), by taking the norms on both sides, given the initial
condition x−

0 and by using (52), it follows that there exists an
αi ∈ R+ such that the following condition

∥m(t) − m(tk)∥ ≤∥

⎛⎝τi
p

i∏
w=1

Πw +

i−1∑
j=1

dj
j∏

w=1

Πw

⎞⎠
(Π − I)Φk

px
−

0 ∥ + αip

≤

⎛⎝∥

i∏
w=1

Πw∥ +

i−1∑
j=1

∥

j∏
w=1

Πw∥

⎞⎠
∥(Π − I)Φk

p∥∥x
−

0 ∥ + αip

≤

i∑
j=1

∥

j∏
w=1

Πw∥β0β1ε
k
∥x−

0 ∥ + αip

≤βεk + αip (54)

is satisfied for any t ∈ [sk,i, sk,i+1), τi = t − sk,i, for all k ∈

{0, . . . , ℓp − 1} and p ∈ (0, p̄ε], where

β = β0β1∥x−

0 ∥

q∑
j=1

∥

j∏
w=1

Πw∥.

By considering (54) for all i ∈ Σ it follows that (34) holds for
all t ∈ (0, t̄ − p] and any p ∈ (0, p̄ε] with α = maxi∈Σ αi. ■

A.4. Proof of Theorem 8

Proof. Let us consider (16) and (22). By taking the norm of the
difference one can write

∥m(t) − µ(t)∥ = ∥m(t) − m(tk) + m(tk) − µ(t)∥
(a)
≤ α1p + β1ε

k
1 + ∥m(tk) − µk + µk − µ(t)∥

(b)
≤ α3p + β1ε

k
1 + ∥µk − µ(t)∥

(c)
≤ α3p + β1ε

k
1 + ∥Γ ∥ ∥zk − ξ (t)∥

≤ α3p + β1ε
k
1 + ∥Γ ∥ ∥zk − ξ (kp)∥

+ ∥Γ ∥ ∥ξ (kp) − ξ (t)∥ (55)
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h

a

T

∥

w
i

∥

w
t

w
ε

olds for all p ∈ (0, pε1 ], t ∈ (0, t̄], k = ⌊t/p⌋, where in (a)
we used Lemma 7 with α called α1, β called β1 and ε called
ε1, in (b) we used Lemma 6 which allows one to write (33) as
∥m(tk) − µk∥ ≤ α2p and we defined α3 = 2max{α1, α2}, in (c)
we used (16b) and (20b).

Let us consider the term ∥zk − ξ (kp)∥ in (55). By solving (16a)
and by using (21) one can write

ξ (kp) − zk =

(
e(Φp−I)k −Φk

p

)
x0. (56)

From (56) and by using arguments similar to (52) it follows

∥ξ (kp) − zk∥ ≤ ∥

(
e(Φp−I)k −Φk

p

)
∥∥x0∥

≤ β0∥Tp
(
e(Φp−I)k −Φk

p

)
T−1
p ∥∥x0∥ (57)

where Tp is given by (31) and we used (53). From Remark 4 one
can write

Tp(Φp − I)T−1
p =

[
Λ1p 0
0 V−I+Λ2p

]
, (58)

nd then

p

(
e(Φp−I)k −Φk

p

)
T−1
p

= eTp(Φp−I)T−1
p k

− (TpΦpT−1
p )k

= e
([
Λ1p 0
0 V−I+Λ2p

])
k
−

[
I+Λ1p 0

0 V+Λ2p

]k
=

[
(eΛ1p)k 0

0 (eV−I+Λ2p)k

]
−

[
(I+Λ1p)k 0

0 (V+Λ2p)k

]
. (59)

Considering the Taylor expansion of the exponential function,
we have eΛ1p = I +Λ1p + O(p2) and hence being k = ⌊t/p⌋,

(eΛ1p)k = (I +Λ1p)k + O(p). (60)

By using (60) in (59) one has

Tp
(
e(Φp−I)k −Φk

p

)
T−1
p =

[
O(p) 0
0 (eV−I+Λ2p)k−(V+Λ2p)k

]
. (61)

Since the matrix V is Schur by hypothesis, for sufficiently small p
the eigenvalues of V + Λ2p have magnitude smaller than 1 and
V − I + Λ2p is Hurwitz (and hence the eigenvalues of eV−I+Λ2p

also have magnitude smaller than 1). Consequently, there exist
constants β2, β3 ∈ R+

0 , ε2 ∈ (0, 1) and pε2 ∈ R+ such that

∥(eV−I+Λ2p)k∥ ≤ β2ε
k
2 (62a)

(V +Λ2p)∥k
≤ β3ε

k
2 (62b)

for all p ∈ (0, p̄ε2 ]. By taking the norms on both sides of (61) and
by using (62) it follows that there exists a constant α4 ∈ R+, such
that

∥Tp
(
e(Φp−I)k −Φk

p

)
T−1
p ∥ ≤ α4p + β4ε

k
2. (63)

here β4 = 2max{β2, β3}. Then from (57) with (63) the follow-
ng inequality

ξ (kp) − zk∥ ≤ α5p + β5ε
k
2 (64)

ith α5 = α4β0∥x0∥, β5 = β0β4∥x0∥, holds for all p ∈ (0, pε2 ],
∈ (0, t̄], k = ⌊t/p⌋.
By substituting (64) in (55) it follows

∥m(t) − µ(t)∥ ≤ α6p + β6ε
k
3 + ∥Γ ∥ ∥ξ (kp) − ξ (t)∥ (65)

ith α6 = 2max{α3, α5}, β6 = 2max{β1, β5} and ε3 = max{ε1,
2} and for all p ∈ (0, p̄ε3 ] with p̄ε3 = min{p̄ε1 , p̄ε2}.
By considering the last term in (65) and the solution of (16a),

for any t ∈ [kp, kp + p) one can write

ξ (t) − ξ (kp) =

(
e

1
p (Φp−I)(t−kp)

− I
)
ξ (kp)
11
=

(
e(Φp−I)( tp −k)

− I
)
ξ (kp). (66)

By using (53) in (66) it follows

∥ξ (t) − ξ (kp)∥ = ∥

(
e(Φp−I)( tp −k)

− I
)
e(Φp−I)kx0∥

= ∥

(
e(Φp−I) t

p − e(Φp−I)k
)
x0∥

≤ β0∥Tp
(
e(Φp−I) t

p − e(Φp−I)k
)
T−1
p ∥∥x0∥

(a)
= β0∥

[
(eΛ1p)

t
p −(eΛ1p)k 0

0 (eV−I+Λ2p)
t
p −(eV−I+Λ2p)k

]
∥ ∥x0∥

= β0∥

[
eΛ1t−eΛ1kp 0

0 (eV−I+Λ2p)
t
p −(eV−I+Λ2p)k

]
∥ ∥x0∥ (67)

where in (a) we used arguments similar to those used for (59).
By taking the Taylor series one can write

eΛ1t − eΛ1kp = Λ1(t − kp) + O(p2) = O(p). (68)

Since V is Schur then V − I is Hurwitz and there exists a
sufficiently small p such that V − I+Λ2p is Hurwitz and eV−I+Λ2p

is Schur. Then there exists a constant β7 ∈ R+

0 such that

∥(eV−I+Λ2p)
t
p − (eV−I+Λ2p)k∥

≤ ∥(eV−I+Λ2p)∥
t
p + ∥(eV−I+Λ2p)∥k

≤ β7ε
k
2 + β2ε

k
2. (69)

By using (68) and (69) in (67) it follows that there exists a
constant α7 ∈ R+ such that

∥ξ (t) − ξ (kp)∥ ≤ α7p + β8ε
k
2 (70)

with β8 = 2β0∥x0∥max{β2, β7}. By substituting (70) in (65), it
follows that (23) holds with α = 2max{α6, α7}, β = 2max{β6, β8}

and ε = max{ε2, ε3} and for all p ∈ (0, p̄ε] with p̄ε = min{p̄ε2 ,
p̄ε3}. ■
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