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Abstract: Switches in electrical circuits may lead to Dirac impulses in the solution; a real word
example utilizing this effect is the spark plug. Treating these Dirac impulses in a mathematically
rigorous way is surprisingly challenging. This is in particular true for arguments made in the
frequency domain in connection with the Laplace transform. A survey will be given on how
inconsistent initials values have been treated in the past and how these approaches can be
justified in view of the now available solution theory based on piecewise-smooth distributions.
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1. INTRODUCTION

Modeling electrical circuits containing (ideal) switches
naturally leads to a description via switched differential-
algebraic equations (DAESs) of the form

E,1ya(t) = Aoyz(t) + Byyu(t)

where z is the state (including algebraic variables), u is
the input and o is the switching signal (Trenn, 2012).
The reason why it is in general not possible to find
a more classical model in terms of ordinary differential
equations (ODEs) is the fact, that the changing position
of the switches changes the algebraic constraints; without
including algebraic constraints in the model it would not
be possible to incorporate changing algebraic constraints.
Furthermore, the effect of inconsistent initial values can
not be studied in a model already in the form of an ODE
(because ODEs do not have inconsistent initial values).
For a given switching signal o the switched DAE can be
viewed as a repeated initial value problem for the DAE
Ei = Ax+ Bu (1)
with initial condition z(0) = =z, € R™. As mentioned
above, at a switching time the algebraic constraints may
change, hence the initial value from the past may not be
consistent anymore and the meaning of “x(0) = z¢” has
to be made precise. In the context of electrical circuit
this is a long standing question and can be traced back
at least to Verghese et al. (1981). There have been dif-
ferent approaches to deal with inconsistent initial values,
e.g. Sincovec et al. (1981); Cobb (1982); Opal and Vlach
(1990); Rabier and Rheinboldt (1996); Reiflig et al. (2002);
Frasca et al. (2010), some of which will be discussed later.
All have in common that jumps as well as Dirac impulses
may occur in the solutions. The Dirac impulse is a distri-
bution (a generalized function) hence one must enlarge the
considered solution space to also include distributions.

This extended abstract is a revisitation of Trenn (2013)
and will discuss the mathematical and conceptional diffi-
culties arising from the notion of inconsistent initial values,
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in particular, when the Laplace transform is applied to
the equation and arguments from the frequency domain
are used. First some required notation from distribution
theory is recalled, then a Laplace transform approach is
presented on how to deal with inconsistent initial values
and finally an alternative approach in the time domain is
presented.

2. PRELIMINARIES ON DISTRIBUTION THEORY

The classical distribution theory by Schwartz (1957, 1959)
is revised in the following. The space of test functions
is C° == { ¢ : R = R | ¢ € C* has compact support },
which is equipped with a certain topology ! . The space of
distributions, denoted by D), is then the dual of the space
of test functions, i.e.

D:={D:C5° — R | D is linear and continuous }.

A large class of ordinary functions, namely locally inte-
grable functions, can be embedded into D via the following
injective? homomorphism f — fp with fp(p) := [; fe.

The main feature of distributions is the ability to take
derivatives for any distribution D € D via D'(p) :=
—D(¢"), which is consistent with the classical derivative,
i.e. if f is differentiable, then (fp)’ = (f')p. In particular,
the Heaviside unit step 1|y o) has a distributional deriva-
tive which can easily be calculated to be
(T10,00)p) () = 9(0) =: (),

hence it results in the well known Dirac impulse ¢ (at
t = 0). In general, the Dirac impulse §; at time t € R is
given by 0;(¢) := ¢(t). Furthermore, if g is a piecewise
differentiable function with one jump at ¢t = ¢, then

(gp)" = (¢ )p + (9(ts+) — g(ts—))oy;, (2)
where ¢ is the derivative of g on R\ {0}.

1 The topology is such that a sequence (¢x)ren of test functions
converges to zero if, and only if, 1) the supports of all @) are
contained within one common compact set K C R and 2) for all
1 €N, gog) converges uniformly to zero as k — oo

2 Two locally integrable functions which only differ on a set of

measure zero are identified with each other.



Now it is no problem to consider the DAE (1) (without
the initial condition) in a distributional solution space;
instead of x and u being vectors of functions they are now
vectors of distributions, i.e. z € D™ and f € D™ where
n X n and n X m are the size of the matrices £, A and
B. The definition of the matrix vector product remains
unchanged® so that (1) reads as m equations in D.

Considering distributional solutions, however, does not
help to treat inconsistent initial value; au contraire, dis-
tributions cannot be evaluated at a certain time because
they are not functions of time, so writing z(0) = z¢ makes
no sense. Even when assuming that a pointwise evaluation
is well defined for certain distributions, the DAE (1) will
still not exhibit (distributional) solution with arbitrary
initial values. This is easily seen when considering, e.g.,
the DAE (1) with (E, A, B) = (0,1, 0), which simply reads
as 0 = x.

So what does it then mean to speak of a solution of (1) with
inconsistent initial value? The motivation for inconsistent
initial values is the situation that the system descriptions
gets active at the initial time ¢ = 0 and before that the
system was governed by different (maybe unknown) rules.
This viewpoint was already expressed by Doetsch (1974)
in the context of distributional solutions for ODEs:

The concept of “initial value” in the physical science
can be understood only when the past, that is the
interval ¢ < 0, has been included in our considerations.
This occurs naturally for distributions which, without
exception, are defined on the entire t-axis.

So mathematically, there is some given past trajectory z
for z up to the initial time and the DAE (1) only holds
on the interval [0, 00). This means that a solution of the
following initial trajectory problem (ITP) is sought:

T(—00,0) = x(()—oo,O) 3)
(E‘:.U)[O,OO) = (Al’ + Bu)[O,oo)a

where 20 € D" is an arbitrary past trajectory and Dj for
some interval I C R and D € D denotes a distributional
restriction generalizing the restrictions of functions given
by fr(t) = f(t) for t € I and f(t) = 0 otherwise.

A fundamental problem is the fact (Trenn, 2013, Lem. 5.1)
that such a distributional restriction does not exist!

This problem was resolved especially in older publication
(Campbell, 1980, 1982; Verghese et al., 1981) by ignoring
it and/or by arguing with the Laplace transform (see the
next section). Cobb (1984) seems to be the first to be
aware of this problem and he resolved it by introducing
the space of piecewise-continuous distributions; Geerts
(1993b,a) was the first to use the space of impulsive-
smooth distributions (introduced by Hautus and Silver-
man (1983)) as a solution space for DAEs. Seemingly
unaware of these two approaches, Tolsa and Salichs (1993)
developed a distributional solution framework which can
be seen as a mixture between the approaches of Cobb

3 Some authors (Rabier and Rheinboldt, 2002; Kunkel and
Mehrmann, 2006) use a different definition for the matrix vector
product which is due to the different viewpoint of a distributional
vector = as a map from (C§°)™ to R instead of a map from C3° to
R™. The latter seems the more natural approach in view of applying
it to (1), but it seems that both approaches are equivalent at least
with respect to the solution theory of DAEs.

and Geerts. The more comprehensive space of piecewise-
smooth distributions was later introduced (Trenn, 2009) to
combine the advantages of the piecewise-continuous and
impulsive-smooth distributional solution spaces. Further
details are discussed in Section 4.

Cobb (1982) also presented another approach by justifying
the impulsive response due to inconsistent initial values
via his notion of limiting solutions. The idea is to replace
the singular matrix E in (1) by a “disturbed” version
E. which is invertible for all ¢ > 0 and E. — FE as
e — 0. If the solutions of the corresponding initial value
ODE problem & = E-!'Ax, 2(0) = x¢ converges to a
distribution, then Cobb calls this the limiting solution. He
is then able to show that the limiting solution is unique
and equal to the one obtained via the Laplace-transform
approach. Campbell (1982) extends this result also to the
inhomogeneous case.

3. LAPLACE TRANSFORM APPROACHES

Especially in the signal theory community it is common to
study systems like (1) in the so called frequency domain
(in contrast to the time domain). The transformation
between time and frequency domain is given by the Laplace
transform defined via the Laplace integral:

i(s) = / T emtg(t) dt (4)

for some function g and s € C. Note that in general
the Laplace integral is not well defined for all s € C
and a suitable domain for § must be chosen (Doetsch,
1974). If a suitable domain exists, then ¢ = L{g} is
called the Laplace transform of g and, in general, £{-}
denotes the Laplace transform operator. Again note that
it is not specified at this point which class of functions
have a Laplace transform and which class of functions are
obtained as the image of £{-}. The main feature of the
Laplace transform is the following property, where ¢ is
a differentiable function for which g and ¢’ have Laplace

transforms,

L{g'}(s) = sL{g}(s) — 9(0), (5)
which is a direct consequence of the definition of the
Laplace integral invoking partial differentiation. If g is not
continuous at ¢ = 0 but g(0") exists and ¢’ denotes the
derivative of g on R\ {0}, then (5) still holds in a slightly

altered form:

L{g'}(s) = sL{g}(s) — g(0T). (6)
In particular, the Laplace transform does not take into
account at all how g behaved for ¢t < 0 which is a trivial
consequence of the definition of the Laplace integral. This
observation will play an important role when studying
inconsistent initial values.

Taking into account the linearity of the Laplace transform
the DAE (1) is transformed into

sEi(s) = Az(s) + Bi(s) + Ez(07) (7)
If the matrix pair (E, A) is regular? and z(0%) = 0, the
latter can be solved easily algebraically:

i(s) = (sE — A)"'Ba(s) =: G(s)a(s), (8)
where G(s) is a matrix over the field of rational functions
and is usually called transfer function.

4 (E, A) is called regular, if det(sE — A) is not identically zero.



A first systematic treatment of descriptor systems in the
frequency domain was carried out by Rosenbrock (1970).
He, however, only considered zero initial values and the
input-output behavior. In particular, he was not concerned
with a solution theory for general DAEs (1) with possible
inconsistent values. Furthermore, he restricted attention
to inputs which are exponentially bounded (guarantee-
ing existence of the Laplace transform), hence formally
his framework could not deal with arbitrary (sufficiently
smooth) inputs.

The definition of the Laplace transform can be extended to
be well defined for certain distributions as well (Doetsch,
1974), therefore consider the following class of distribu-
tions:

D>,k = {D:(QD)(k)

where g : R — R is continuous
and g(t) = 0 on (—o0,0)

For D € Dsgy with D = (gp)® the (distributional)
Laplace transform is now given by

Lp{D}(s) == s"L{g}(s)
on a suitable domain in C. Note that 6 € D> 2 and it is
easily seen that o
Lp{d} =1. (9)
Furthermore, for every locally integrable function g for
which £{g} is defined on a suitable domain it holds

eotoe) =se{ [ o} =516t = 200, (0

i.e. the distributional Laplace transform coincides with the
classical Laplace transform defined by (4).

A direct consequence of the definition of L is the following
derivative rule for all D € [J, D>q :

Lp{D'}(s) = sLp{D} (11)
which seems to be in contrast to the derivative rule (6),
because no initial value occurs. The latter can actually
not be expected because general distributions do not have
a well defined function evaluation at a certain time t.
However, the derivative rule (11) is consistent with (6);
to see this let g be a function being zero on (—o0,0),
differentiable on (0,00) with well defined value g(0%).
Denote with ¢’ the (classical) derivative of g on R\ {0},
then (invoking linearity of Lp)

Lof(gn)'} € Lo{(g)n + 9(07)5}

= Lo{(9)o} +9(0) o {s} VLY (g} + g(0),
which shows equivalence of (11) and (6). The key observa-
tion is that the distributional derivative takes into account
the jump at ¢ = 0 whereas the classical derivates ignores
it, i.e. in the above context

(9p)" # (9')p-

As it is common to identify g with gp (even in Doetsch
(1974)), the above distinction is difficult to grasp, in
particular for inexperienced readers. As this problem plays
an important role when dealing with inconsistent initial
values, it is not surprising that researchers from the DAE
community who are simply using the Laplace transform as
a tool, struggle with the treatment of inconsistent initial
values, c.f. Lundberg et al. (2007).

Revisiting the treatment of the DAE (1) in the frequency
domain one has now to decide wether to use the usual

Laplace transform resulting in (7) or the distributional
Laplace transform resulting in

sE%(s) = Az(s) + Bi(s), (12)
where the initial value z(0") does not occur anymore. In
particular, if « = 0 the only solution of (12) is Z(s) = 0,
which implies x = 0. Altogether, the following dilemma
occurs:

Dilemma. Consider the regular DAE (1) with zero input
but non-zero initial value, then the following conflicting
observations can be made:

e An adhoc analysis calls for distributional solutions in
response to inconsistent initial values. For consistent initial
value there exist classical (nonzero) solutions.

e Using the distributional Laplace transform to analyze
the (distributional) solutions of (1) reveals that the only
solution is the trivial one. In particular, no initial values
(neither inconsistent nor consistent ones) are taken into
account at all.

This problem was already observed by Doetsch (1974) and
is based on the definition of the distributional Laplace
transform which is only defined for distributions vanishing

on (—00,0). The following “solution” to this Dilemma was
suggested (Doetsch, 1974, p. 129): Define for D € (J,, D>o

. d_
the “past-aware” derivative operator —;:

d_ -
GD:=D"—dyo (13)

where d; € R is interpreted as a “virtual” initial value for
D(07). Note however, that, by definition D(0~) = 0 for
every D € |J, D01 hence at this stage it is not clear why
this definition makes sense. This problem was also pointed
out by Cobb (1982).

Using now the past-aware derivative in the distributional
formulation of (1) one obtains:

Ez' = Az + Bu+ Exj 6 (14)

where x; € R" is the virtual (possible inconsistent) initial
value for z(07) and solutions are sought in the space
(U Do), ie. o is assumed to be zero on (—oc,0).
Applying the distributional Laplace transform to (14)
yields

sE%(s) = Az(s) + Bu(s) + Exq (15)

In contrast to (7), z; is not the initial value for z(0%)
but is the virtual initial value for 2(07). If the matrix pair
(E, A) is regular, the solution of (15) can now be obtained
via 2(s) = (sE—A)~}(Bi(s)+ Ez, ) and using the inverse
Laplace transform; there are however the following major
drawbacks:

(i) Within the frequency domain it is not possible to
motivate the incorporation of the (inconsistent) initial
values as in (14); in fact, Doetsch (1974) who seems to
have introduced this notion needs to argue with the help
of the distributional derivative and (13) within the time
domain!

(ii) The Laplace transform ignores everything what was
in the past, i.e. on the interval (—o0,0); this is true
for the classical Laplace transform (by definition of the
Laplace integral) as well as for the distributional Laplace
transform (by only considering distributions which vanish
for t < 0). Hence the natural viewpoint of an initial
trajectory problem (3) as also informally advocated by
Doetsch is not possible to treat with the Laplace transform



approach.

(iii) Making statements about existence and uniqueness
of solution with the help of the frequency domain heavily
depends on an isomorphism between the time-domain and
the frequency domain; there are, however, only a few
special isomorphisms between certain special subspaces of
the frequency and time domain, no general isomorphismus
is available.

4. PIECEWISE-SMOOTH DISTRIBUTIONS

In order to rigorously analyse switched DAEs it was
suggested in Trenn (2009) to use as an underlying solution
space the space of piecewise-smooth distributions

fecC, T CR locally

pw?

Dpweee :=4 D=fp + Z Dy | finite, Vt € T': ,
teT Dy € span{6,8;,67,...}
where C3, is the space of piecewise-smooth functions (with

locally finitely many discontinuities). This space is closed
under differentiation and therefore removes one short-
coming of Cobb’s space of piecewise-continuous distribu-
tions and generalized the space of impulsive-smooth dis-
tributions, which only considers Dirac impulses at ¢t = 0° .

A key result for the ITP (3) is then the following equiva-
lence:

Theorem 1. (cf. Thm. 5.3 in Trenn (2013)). Consider the
ITP (3) within the piecewise-smooth distributional solu-
tion framework with fixed initial trajectory z° € W
and inhomogeneity u € Dy . Then 2 € DY oo solves
the ITP (3) if, and only if, z := = — x(()foo’o)

solves

= T[0,00)

Z(—00,0) = 0
(EZ)[O,m) = (AZ + BU)[O,oo) =+ EmO(O—)&
Corollary 2. Consider a (possible inconsistent) initial value
xg € R™ for the regular DAE (1). Then for any trajectory
2% € D oo with 2°(07) = 20 and any input u, the solu-
tion of the ITP (3) restricted the interval [0, c0) equals the
solution obtained via the Laplace transform approach (15).

(16)

5. CONCLUSION

Inconsistent initial values cannot be treated in a mean-
ingful way when studying DAEs in the frequency do-
main. However, arguments in the time-domain based on
piecewise-smooth distribution justify why adding the term
Exq to the right-hand side of the distributionally Laplace
transformed DAE has something to do with the solution
for an inconsistent initial value.

REFERENCES

Campbell, S.L. (1980). Singular Systems of Differential Equations
I. Pitman, New York.

Campbell, S.L. (1982). Singular Systems of Differential Equations
II. Pitman, New York.

5 Rabier and Rheinboldt (1996) seem to be aware of this re-
striction and they introduce the space Cimp(R \ S), where S =
{t; €R | i €Z }is astrictly ordered set with t; — too as i — Foo
and D € Cimp(R\ S) is such that D, 4, ,) is induced by the
corresponding restriction of a smooth function. A similar idea is
proposed in Geerts and Schumacher (1996), however in both cases
the resulting distributional space is not studied in detail.

Cobb, J.D. (1982). On the solution of linear differential equations
with singular coefficients. J. Diff. Egns., 46, 310-323. doi:10.
1016,/0022-0396(82)90097-3.

Cobb, J.D. (1984). Controllability, observability and duality in
singular systems. IEEE Trans. Autom. Control, 29, 1076-1082.
doi:10.1109/TAC.1984.1103451.

Doetsch, G. (1974). Introduction to the Theory and Application of
the Laplace Transformation. Springer-Verlag, Berlin.

Frasca, R., Camhibel, M.K., Goknar, I.C., Iannelli, L., and Vasca, F.
(2010). Linear passive networks with ideal switches: Consistent
initial conditions and state discontinuities. IEEE Trans. Circuits
Syst., I: Fundam. Theory Appl., 57(12), 3138-3151.

Geerts, A HW.T. (1993a). Invariant subspaces and invertibility
properties for singular systems: the general case. Linear Algebra
Appl., 183, 61-88. doi:10.1016,/0024-3795(93)90424- M.

Geerts, A.H.W.T. (1993b). Solvability conditions, consistency and
weak consistency for linear differential-algebraic equations and
time-invariant linear systems: The general case. Linear Algebra
Appl., 181, 111-130. doi:10.1016,/0024-3795(93)90027-L.

Geerts, A.H.W.T. and Schumacher, JM.H. (1996). Impulsive-
smooth behavior in multimode systems. Part I: State-space and
polynomial representations. Automatica, 32(5), 747-758.

Hautus, M.L.J. and Silverman, L.M. (1983). System structure and
singular control. Linear Algebra Appl., 50, 369-402.

Kunkel, P. and Mehrmann, V. (2006). Differential-Algebraic Equa-
tions. Analysis and Numerical Solution. EMS Publishing House,
Zirich, Switzerland. doi:10.4171/017.

Lundberg, K.H., Miller, H.R., and Trumper, D.L. (2007). Initial
conditions, generalized functions, and the Laplace transform.
IEEE Control Systems Magazine, 27(1), 22-35. doi:10.1109/MCS.
2007.284506.

Opal, A. and Vlach, J. (1990). Consistent initial conditions of linear
switched networks. IEEE Trans. Circuits Syst., 37(3), 364-372.
Rabier, P.J. and Rheinboldt, W.C. (1996). Time-dependent linear

DAEs with discontinuous inputs. Linear Algebra Appl., 247, 1-29.

Rabier, P.J. and Rheinboldt, W.C. (2002). Theoretical and numerical
analysis of differential-algebraic equations. In P.G. Ciarlet and
J.L. Lions (eds.), Handbook of Numerical Analysis, volume VIII,
183-537. Elsevier Science, Amsterdam, The Netherlands.

ReiBig, G., Boche, H., and Barton, P.I. (2002). On inconsistent
initial conditions for linear time-invariant differential-algebraic
equations. IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.,
49(11), 1646-1648.

Rosenbrock, H.H. (1970). State Space and Multivariable Theory.
John Wiley and Sons Inc., New York, NY.

Schwartz, L. (1957, 1959). Théorie des Distributions.
Paris.

Sincovec, R.F., Erisman, A.M., Yip, E.L., and Epton, M.A. (1981).
Analysis of descriptor systems using numerical algorithms. IEEE
Trans. Autom. Control, 26, 139-147.

Tolsa, J. and Salichs, M. (1993). Analysis of linear networks with
inconsistent initial conditions. IEEE Trans. Circuits Syst., 40(12),
885 — 894. do0i:10.1109/81.269029.

Trenn, S. (2009). Distributional differential algebraic equations.
Ph.D. thesis, Institut fiir Mathematik, Technische Universitat
Ilmenau, Universitatsverlag [lmenau, Germany. URL http://www.
db-thueringen.de/servlets/DocumentServlet?id=13581.

Trenn, S. (2012). Switched differential algebraic equations. In
F. Vasca and L. Iannelli (eds.), Dynamics and Control of Switched
Electronic Systems - Advanced Perspectives for Modeling, Sim-
ulation and Control of Power Conwverters, chapter 6, 189-216.
Springer-Verlag, London. doi:10.1007,/978-1-4471-2885-4_6.

Trenn, S. (2013). Solution concepts for linear DAEs: a survey.
In A. Ilchmann and T. Reis (eds.), Surveys in Differential-
Algebraic Equations I, Differential-Algebraic Equations Fo-
rum, 137-172. Springer-Verlag, Berlin-Heidelberg. doi:10.1007/
978-3-642-34928-7_4.

Verghese, G.C., Levy, B.C., and Kailath, T. (1981). A generalized
state-space for singular systems. IEEE Trans. Autom. Control,
26(4), 811-831.

Hermann,



