
IMA Journal of Mathematical Control and Information (2022) 39, 533–563
https://doi.org/10.1093/imamci/dnab030
Advance Access publication on 2 October 2021

Quasi feedback forms for differential-algebraic systems

Thomas Berger∗
Institut für Mathematik, Universität Paderborn, Warburger Str. 100, 33098 Paderborn, Germany

∗Corresponding author. E-mail: thomas.berger@math.upb.de

Achim Ilchmann
Institut für Mathematik, Technische Universität Ilmenau, Weimarer Straße 25,

98693 Ilmenau, Germany

and

Stephan Trenn
Systems, Control and Applied Analysis – Bernoulli Institute, University of Groningen, Nijenborgh 9,

9747 AG Groningen, The Netherlands

[Received on 24 February 2021; revised on 7 July 2021; accepted on 23 August 2021]

We investigate feedback forms for linear time-invariant systems described by differential-algebraic equa-
tions. Feedback forms are representatives of certain equivalence classes. For example, state space transfor-
mations, invertible transformations from the left and proportional state feedback constitute an equivalence
relation. The representative of such an equivalence class, which we call proportional feedback form for
the above example, allows to read off relevant system theoretic properties. Our main contribution is to
derive a quasi proportional feedback form. This form is advantageous since it provides some geometric
insight and is simple to compute, but still allows to read off the relevant structural properties of the control
system. We also derive a quasi proportional and derivative feedback form. Similar advantages hold.
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Dedication We dedicate the present note to the memory of Nicos Karcanias—a friend and colleague.
Nicos has had a fundamental impact in diverse areas of systems and control theory, in particular in matrix
pencil theory of linear systems. He has had a special interest in system structure, leading to invariants
and canonical forms. See, for example, the very early paper Karcanias & Kouvaritakis (1979) and many
more. Our present note is in this spirit. Some of our results are closely related to his seminal work
(Loiseau et al., 1991). We will refer to this in due place.

1. Introduction

We study structured matrix pencils of the form s[E, 0] − [A, B] with E, A ∈ R�×n and B ∈ R�×m

for which we write [E, A, B] ∈ Σ�,n,m. Such pencils are typically associated with differential-algebraic
(DAE) control systems of the form

Eẋ(t) = Ax(t) + Bu(t). (1.1)

An essential difference between differential-algebraic systems (1.1) and ordinary differential
systems (by this we mean (1.1) with square and invertible E ∈ Rn×n) is their solution behaviour (see
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Trenn, 2013) and the different controllability concepts (see Berger & Reis, 2013). To address various
control problems of systems (1.1), the well-known (quasi) Kronecker form (cf. Berger & Trenn, 2012;
Gantmacher, 1959; Kronecker, 1890) of the augmented pencil s[E, 0] − [A, B] is not ‘good enough’. A
finer structure, which takes into account the input matrix B, is required. This is achieved by ‘(quasi)
canonical’ (feedback) forms.

A very early contribution in this spirit is by Nicos Karcanias and coworkers (Loiseau et al., 1991);
we will explain their achievements in due course. Our approach to ‘(quasi) canonical’ forms is via
augmented Wong sequences; this tool is fundamental and introduced in Section 2.

In Section 3, we allow for state space transformations of (1.1), invertible transformations from
the left and proportional state feedback, where the latter means to add the algebraic relation u(t) =
FPx(t) + v(t) to the system (1.1) for FP ∈ Rm×n and v as new input. These transformations constitute
an equivalence relation and the representatives of the equivalence classes are called P-feedback forms
(PFF). We derive a quasi PFF that, when compared to the previous form, has the advantages that it
provides some geometric insight and is simpler to compute, but still allows to read off the most relevant
structural properties of the control system.

In Section 4, we extend the class of allowed transformations by also considering derivative feedback,
i.e. u(t) = FPx(t) + FDẋ(t) + v(t). Again, we derive a quasi form for the corresponding equivalence
relation.

2. Augmented Wong sequences

Wong sequences have been introduced as a fundamental geometric tool for the analysis of matrix pencils
and the derivation of quasi canonical forms (see Berger et al., 2012; Berger & Trenn, 2012, 2013). This
approach has been extended to control systems [E, A, B] ∈ Σ�,n,m to derive a Kalman controllability
decomposition (see Berger & Reis, 2013; Berger & Trenn, 2014). Compared to matrix pencils sE − A ∈
R[s]�×n, the augmented pencil [sE − A, −B] with B ∈ R�×m contains additional independent variables,
which are typically associated with the input of the control system (1.1).1 We like to emphasize that
the augmented Wong sequences are projections of the Wong sequences corresponding to the augmented
matrix pencil s[E, 0] − [A, B] as shown in Proposition 2.2.

The augmented Wong limits are related to the concepts of reachable and controllable spaces for
the DAE control system [E, A, B] ∈ Σ�,n,m. These spaces are some of the most important notions for
(DAE) control systems and have been considered in Lewis (1986) for regular systems. Further usage
of these concepts can be found in the following: in Özçaldiran & Lewis (1989), generalized reachable
and controllable subspaces of regular systems are considered; Eliopoulou & Karcanias (1995) consider
reachable and almost reachable subspaces of general DAE systems; and Frankowska (1990) considers
the reachable subspace in terms of differential inclusions. However, to the best of our knowledge,
the interplay between the (augmented) Wong sequences and (quasi) canonical forms has not been
investigated so far and the present contribution aims to close this gap.

1 Of course, input constraints may be present, but we ignore this for purpose of motivation.
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Definition 2.1 (Augmented Wong sequences). Let [E, A, B] ∈ Σ�,n,m. The sequences (V i
[E,A,B])i∈N0

and (W i
[E,A,B])i∈N0

defined as2

V 0
[E,A,B] := Rn, V i+1

[E,A,B] := A−1(EV i
[E,A,B] + im B) ⊆ Rn,

W 0
[E,A,B] := {0}, W i+1

[E,A,B] := E−1(AW i
[E,A,B] + im B) ⊆ Rn

are called augmented Wong sequences and

V ∗
[E,A,B] :=

⋂
i∈N0

V i
[E,A,B], W ∗

[E,A,B] :=
⋃
i∈N0

W i
[E,A,B]

are called the augmented Wong limits.

We highlight some important properties of the above-defined sequences.

Proposition 2.2 (Properties of augmented Wong sequences). Consider [E, A, B] ∈ Σ�,n,m with their
augmented Wong sequences (V i

[E,A,B])i∈N0
and (W i

[E,A,B])i∈N0
. Then we have the following:

(a) The sequences are nested and terminate, i.e., there exist i∗, j∗ ≤ n such that, for all i, j ∈ N,

V 0
[E,A,B] � V 1

[E,A,B] � · · · � V i∗
[E,A,B] = V i∗+i

[E,A,B] = V ∗
[E,A,B] = A−1(EV ∗

[E,A,B] + im B), (2.1a)

W 0
[E,A,B] � W 1

[E,A,B] � · · · � W
j∗

[E,A,B] = W
j∗+j

[E,A,B] = W ∗
[E,A,B] = E−1(AW ∗

[E,A,B] + im B),
(2.1b)

and hence their limits are well defined.

(b) The augmented Wong limits V ∗
[E,A,B], W

∗
[E,A,B] ⊆ Rn are linear subspaces and satisfy

EW ∗
[E,A,B] ⊆ AW ∗

[E,A,B] + im B,

AV ∗
[E,A,B] ⊆ EV ∗

[E,A,B] + im B,
(2.2)

E(V ∗
[E,A,B] ∩ W ∗

[E,A,B]) = EV ∗
[E,A,B] ∩ (AW ∗

[E,A,B] + im B),

A(V ∗
[E,A,B] ∩ W ∗

[E,A,B]) = (EV ∗
[E,A,B] + im B) ∩ AW ∗

[E,A,B],
(2.3)

and

E(V ∗
[E,A,B] ∩ W ∗

[E,A,B]) + im B = (EV ∗
[E,A,B] + im B) ∩ (AW ∗

[E,A,B] + im B)

= A(V ∗
[E,A,B] ∩ W ∗

[E,A,B]) + im B. (2.4)

2 Note that in this work A−1 and E−1 denote the preimage of the respective space under the induced linear map, and not the
matrix inverse (whose existence is not assumed here; in fact, E and A are not even assumed to be square).
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(c) The augmented Wong limits V ∗
[E,A,B], W

∗
[E,A,B] ⊆ Rn are related to the Wong limits V ∗

[[E,0],[A,B],0],
W ∗

[[E,0],[A,B],0] ⊆ Rn+m of the augmented pencil s[E, 0] − [A, B] as follows:

V ∗
[E,A,B] = [In, 0] · V ∗

[[E,0],[A,B],0] and W ∗
[E,A,B] = [In, 0] · W ∗

[[E,0],[A,B],0]. (2.5)

Proof.

(a) The proof of this statement is straightforward and hence omitted.

(b) By (2.1) the two relations in (2.2) follow, which in turn immediately yield the subset inclusion
‘⊆’ of the equations in (2.3). To show the converse inclusions, let z ∈ EV ∗

[E,A,B] ∩ (AW ∗
[E,A,B] +

imB). Then there exist v ∈ V ∗
[E,A,B], w ∈ W ∗

[E,A,B], and u ∈ Rm such that

Ev = z = Aw + Bu.

By (2.1) we have EW ∗
[E,A,B] = (AW ∗

[E,A,B] + imB) ∩ imE and since Aw + Bu ∈ (AW ∗
[E,A,B] +

imB) ∩ imE there exists w ∈ W ∗
[E,A,B] such that Ew = Aw + Bu and hence z = Ev = Ew.

Therefore, v − w ∈ ker E ⊆ W ∗
[E,A,B], which gives v ∈ V ∗

[E,A,B] ∩ W ∗
[E,A,B], thus z = Ev ∈

E(V ∗
[E,A,B] ∩ W ∗

[E,A,B]). This shows EV ∗
[E,A,B] ∩ (AW ∗

[E,A,B] + imB) ⊆ E(V ∗
[E,A,B] ∩ W ∗

[E,A,B]). The
inclusion (EV ∗

[E,A,B] + imB) ∩ AW ∗
[E,A,B] ⊆ A(V ∗

[E,A,B] ∩ W ∗
[E,A,B]) can be shown similarly and

its proof is omitted. We show (4): For the first equality, observe that ‘⊆’ follows from (2.2).
For ‘⊇’ let x ∈ (EV ∗

[E,A,B] + imB) ∩ (AW ∗
[E,A,B] + imB), i.e., x = Ev + b1 = Aw + b2 for some

v ∈ V ∗
[E,A,B], w ∈ W ∗

[E,A,B], b1, b2 ∈ imB. Then,

v ∈ E−1{Aw + b2 − b1} ⊆ E−1(AW ∗
[E,A,B] + imB) = W ∗

[E,A,B]

and hence x ∈ E(V ∗
[E,A,B] ∩W ∗

[E,A,B])+ imB. The second equality in (4) can be proved similarly;
we omit the proof.

(c) The proof of this statement can be easily inferred from the proof of Berger (2019,
Lem. 2.1). �

3. P-feedback forms

In this section, we recall the concept of P-feedback, which allows a decoupling of the DAE (1.1). This
has been successfully used for various purposes, cf. the survey Berger & Reis (2013). After that, we
present the PFF from Loiseau et al. (1991), which is a canonical form. As a new contribution, we derive
a quasi PFF using the augmented Wong sequences. Relevant system theoretic information can be read
off this form. Apart from allowing a calculation via the simple subspace sequences, this also provides
some geometric insight in the decoupling.

Concerning applications, the new quasi PFF may be advantageous for instance in observer
design problems for differential-algebraic systems. The construction of regular and freely initializable
observers in the proof of Berger & Reis (2017, Thm. 3.8) completely relies on the PFF. However, in
order to implement this design procedure, a method with lower complexity would be favorable, for
which the new quasi PFF is predestined.

3.1. P-feedback equivalence

We recall the notion of P-feedback equivalence for systems [E, A, B] ∈ Σ�,n,m, see, e.g. Berger & Reis
(2013). Here and in the following, GLp(R) denotes the set of all invertible matrices in Rp×p, p ∈ N.
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QUASI FEEDBACK FORMS FOR DIFFERENTIAL-ALGEBRAIC SYSTEMS 537

Definition 3.1 (P-feedback equivalence). Two systems [E1, A1, B1], [E2, A2, B2] ∈ Σ�,n,m are called
P-feedback equivalent, if

∃ S ∈ GL�(R), T ∈ GLn(R), V ∈ GLm(R), FP ∈ Rm×n :[
sE1 − A1, −B1

] = S
[
sE2 − A2, −B2

] [ T 0
FP V

]
;

(3.1)

we write

[E1, A1, B1] ∼=P [E2, A2, B2] or, if necessary, [E1, A1, B1]
S,T ,V ,FP∼=P [E2, A2, B2] .

Remark 3.2 P-feedback equivalence is an equivalence relation on Σ�,n,m:

• Reflexivity: Clear with S = I, T = I, V = I, FP = 0.

• Symmetry: For [E1, A1, B1]
S,T ,V ,FP∼=P [E2, A2, B2] we have that

[E2, A2, B2]
S−1,T−1,V−1,−V−1FPT−1

∼=P [E1, A1, B1],

which can be verified by observing that[
T 0
FP V

]−1

=
[

T−1 0
−V−1FPT−1 V−1

]
.

• Transitivity: For [E1, A1, B1]
S1,T1,V1,F1∼=P [E2, A2, B2]

S2,T2,V2,F2∼=P [E3, A3, B3] we have

[E1, A1, B1]
S1S2,T2T1,V2V1,̃F∼=P [E3, A3, B3] where F̃ = F2T1 + V2F1.

The augmented Wong sequences change under P-feedback as shown in the following result.

Lemma 3.3 (Augmented Wong sequences under P-feedback). If the systems [E1, A1, B1], [E2, A2, B2] ∈
Σ�,n,m are P-feedback equivalent [E1, A1, B1]

S,T ,V ,FP∼=P [E2, A2, B2], then

∀ i ∈ N0 : V i
[E1,A1,B1] = T−1V i

[E2,A2,B2] and W i
[E1,A1,B1] = T−1W i

[E2,A2,B2].

Proof. We prove the first statement by induction. It is clear that V 0
[E1,A1,B1] = T−1V 0

[E2,A2,B2]. Assume

that V i
[E1,A1,B1] = T−1V i

[E2,A2,B2] for some i ≥ 0. Then (3.1) yields

V i+1
[E1,A1,B1] = A−1

1 (E1V
i

[E1,A1,B1] + im B1)

=
{

x ∈ Rn

∣∣∣∣∣ ∃ y ∈ V i
[E1,A1,B1] ∃ u ∈ Rm :

(SA2T + SB2FP)x = SE2Ty + SB2Vu

}

=
{

x ∈ Rn
∣∣∣ ∃ z ∈ V i

[E2,A2,B2] ∃ v ∈ Rm : A2Tx = E2z + B2v
}

= T−1
(

A−1
2 (E2V

i
[E2,A2,B2] + im B2)

)
= T−1V i+1

[E2,A2,B2].

The proof of the second statement is similar and omitted. �
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3.2. P-feedback form

For the definition of the PFF we need to introduce some further notation. For k ∈ N, consider the
matrices

where Kk = Lk = 00×1 for k = 1. We set, for some multi-index α = (α1, . . . , αk) ∈ Nk, |α| =
α1 + . . . + αk and introduce the notation

Nα := diag(Nα1
, . . . , Nαk

) ∈ R|α|×|α|,

Kα := diag(Kα1
, . . . , Kαk

) ∈ R(|α|−k)×|α|,

Lα := diag(Lα1
, . . . , Lαk

) ∈ R(|α|−k)×|α|.

By e[n]
i we denote the i-th unit vector in Rn and define

Eα := diag(e[α1]
α1

, . . . , e[αk]
αk

) ∈ R|α|×k, for α = (α1, . . . , αk) ∈ Nk.

Definition 3.4 (P-feedback form). The system [E, A, B] ∈ Σ�,n,m is said to be in PFF if

[E, A, B] =

⎡⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎣
Kα 0 0 0 0 0
0 I|β| 0 0 0 0
0 0 Inc

0 0 0
0 0 0 Nγ 0 0
0 0 0 0 K�

δ 0
0 0 0 0 0 K�

κ

⎤⎥⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎢⎣

Lα 0 0 0 0 0
0 N�

β 0 0 0 0
0 0 Ac 0 0 0
0 0 0 I|γ | 0 0
0 0 0 0 L�

δ 0
0 0 0 0 0 L�

κ

⎤⎥⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
0 0 0

Eβ 0 0
0 0 0
0 0 0
0 0 Eκ

⎤⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎥⎥⎦ , (3.2)

where α ∈ Nnα , β ∈ Nnβ , γ ∈ Nnγ , δ ∈ Nnδ , κ ∈ Nnκ are multi-indices and Ac ∈ Rnc×nc .

We like to note that the PFF of a system [E, A, B] can be viewed as a Kronecker canonical form
(KCF) of the augmented pencil s[E, 0] − [A, B] with some additional structure, as shown in Berger &
Reis (2013, Rem. 3.10). This is remarkable because P-feedback equivalence induces an equivalence
relation on R�×(n+m)[s], which is a subrelation of the system equivalence used to obtain the KCF, and
hence it is not clear whether the KCF of s[E, 0] − [A, B] is contained in each of the smaller equivalence
classes.

We use the connection between the KCF and the PFF to show that two P-feedback equivalent
systems have the same PFF up to permutation of the entries of α, β, γ , δ, κ and similarity of Ac.

Proposition 3.5 (Uniqueness of indices for PFF). Let [Ei, Ai, Bi] ∈ Σ�,n,m, i = 1, 2, be in PFF (3.2)
with corresponding multi-indices αi ∈ Nnαi , β i ∈ Nnβi , γ i ∈ Nnγ i , δi ∈ Nnδi , κ i ∈ Nnκ i and Ac,i ∈
Rnc,i×nc,i . If [E1, A1, B1] ∼=P [E2, A2, B2], then

α1 = Pαα2, β1 = Pββ2, γ 1 = Pγ γ 2, δ1 = Pδδ2, κ1 = Pκκ2
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and

nc,1 = nc,2, Ac,1 = H−1Ac,2H,

for permutation matrices Pα , Pβ , Pγ , Pδ , Pκ of appropriate sizes and H ∈ GLnc,1
(R).

Proof. This result is a consequence of Lemma 3.3 and Berger & Reis (2015, Thm. 2.2 and
Prop. 2.3). �

We are now in the position to show that any [E, A, B] ∈ Σ�,n,m is P-feedback equivalent to a system
in PFF.

Theorem 3.6 (PFF). For any system [E, A, B] ∈ Σ�,n,m there exist S ∈ GL�(R), T ∈ GLn(R), V ∈
GLm(R), FP ∈ Rm×n such that

[SET , SAT + SBFP, SBV] is in PFF (3.2).

The proof of Theorem 3.6 is omitted. It relies on subtle transformations and is proved in Loiseau
et al. (1991, Thm. 3.1)—a paper coauthored by Nicos Karcanias.

Example 3.7 (PFF). For an illustration of Theorem 3.6 we consider the system [E, A, B] ∈ Σ7,6,3 with

E =

⎡⎢⎢⎣
−2 −3 0 −1 −4 −3
1 4 3 −1 4 4
0 −4 −7 1 −3 −6
0 2 1 −2 2 1
2 5 1 −1 6 4
2 4 2 1 5 5−2 2 9 −2 0 5

⎤⎥⎥⎦ , A =

⎡⎢⎢⎣
−2 −2 4 3 1 −1
0 −3 −3 −2 −5 −3

−1 4 3 5 7 3
−1 −2 3 1 0 0
1 1 1 −2 0 3
4 0 −5 −5 −2 −2
2 −6 4 −5 −4 −4

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
1 −1 −1
0 0 2−1 2 −3
1 −1 1
0 0 2
1 −3 2
5 −9 3

⎤⎥⎥⎦ .

With

S =

⎡⎢⎢⎣
−15 2 4 5 −6 −6 4
−16 −1 2 9 −8 −5 3
−3 −1 0 3 −2 0 0
8 2 0 −5 4 2 −1

−1 0 0 1 −1 0 0
−6 0 1 3 −3 −2 1
−4 0 1 2 −2 −1 1

⎤⎥⎥⎦ , T =
⎡⎢⎣

−17 10 −13 −3 −8 6
13 −6 9 2 6 −4
−7 4 −5 −1 −3 2
6 −3 4 1 3 −2

−5 2 −3 0 −2 1
3 −2 2 0 1 −1

⎤⎥⎦ ,

V =
[

2 0 −1
1 0 −1
0 −1 −1

]
, FP =

[
3 3 −2 −2 0 2

−14 10 −12 −3 −7 6
7 −4 6 3 4 −3

]
,

it can be verified that

SET = diag(K1, I2, I1, N1, K�
2 , K�

1 ),

S(AT + BFP) = diag(L1, N�
2 , Ac, 1, L�

2 , L�
1 ),

SBV = diag(00×0, e[2]
2 , 01×0, 01×0, e[2]

2 , e[1]
1 ),

where Ac = [1]; therefore [E, A, B] is P-feedback equivalent to a system in the PFF (3.2) with α = (1),
β = (2), nc = 1, γ = (1), nδ = 0, κ = (2, 1). The details on how to obtain this transformation
as well as numerical considerations are out of the scope of this contribution. We will however revisit
this example in the next section in the context of the quasi P-feedback forms (QPFFs) and will briefly
discuss numerical issues in Remark 3.17.
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3.3. Quasi P-feedback form

We will now weaken PFFs to QPFFs. Roughly speaking, the latter is ‘less canonical’ than the former,
it contains less zeros and ones. However—and this is the important message—the relevant system
theoretic properties can be read off the QPFF and, moreover, the form provides a geometric insight
(as it is obtained via the augmented Wong sequences) and can be easily computed.

Definition 3.8 The system [E, A, B] ∈ Σ�,n,m is said to be in QPFF if

[E, A, B] =
⎡⎣⎡⎣E11 E12 E13

0 E22 E23
0 0 E33

⎤⎦ ,

⎡⎣A11 A12 A13
0 A22 A23
0 0 A33

⎤⎦ ,

⎡⎣B11 0 B13
0 0 0
0 0 B33

⎤⎦⎤⎦ , (3.3)

where

(i) [E11, A11, B11] ∈ Σ�1,n1,m1
with �1 < n1 + m1, rkE11 = rk

C
[λE11 − A11, B11] = �1 for all

λ ∈ C and rkB11 = m1;

(ii) E22, A22 ∈ R�2×n2 with �2 = n2 and E22 ∈ GLn2
(R);

(iii) [E33, A33, B33] ∈ Σ�3,n3,m3
satisfies rkC[λE33 − A33, B33] = n3 + m3 for all λ ∈ C

and the remaining matrices have suitable sizes.
Furthermore, a QPFF (3.3) with zero off-diagonal blocks (i.e. E12 = A12 = 0, E13 = A13 = 0,

B13 = 0, E23 = A23 = 0) is called decoupled QPFF.

Remark 3.9 The three conditions in Definition 3.8 describe control theoretic properties as follows
(see the survey Berger & Reis, 2013 for the different notions of controllability):

(i) The system [E11, A11, B11] in the QPFF (3.3) is completely controllable; the input is not
constrained and not redundant.

(ii) The ODE system [E22, A22, 0] is uncontrollable.

(iii) The system [E33, A33, B33] has only the trivial solution; in particular, the system is trivially
behaviorally controllable but the input corresponding to B33 is maximally constrained (because
it has to be zero).

The following result will be helpful in due course.

Proposition 3.10 Any system [E, A, B] ∈ Σ�,n,m in QPFF (3.8) is P-feedback equivalent to a system
in decoupled QPFF with identical diagonal blocks.

Proof. The proof is structurally similar to the proof of Berger & Trenn (2012, Thm. 2.6); however, due
to the presence of the input some technical adjustments are necessary. Two technical results required for
the proof are collected in the Appendix A.

To show that any QPFF can be decoupled, we prove existence of matrices GS, HS, FS and
Gx

T , Gu
T , Hx

T , Hu
T , Fx

T of appropriate sizes such that⎡⎣sE11 − A11 sE12 − A12 sE13 − A13
0 sE22 − A22 sE23 − A23
0 0 sE33 − A33

⎤⎦⎡⎣I Gx
T Hx

T
0 I Fx

T
0 0 I

⎤⎦+
⎡⎣B11 0 B13

0 0 0
0 0 B33

⎤⎦⎡⎣0 Gu
T Hu

T
0 0 0
0 0 0

⎤⎦
=
⎡⎣I −GS −HS

0 I −FS
0 0 I

⎤⎦⎡⎣sE11 − A11 0 0
0 sE22 − A22 0
0 0 sE33 − A33

⎤⎦
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and ⎡⎣B11 0 B13
0 0 0
0 0 B33

⎤⎦ =
⎡⎣I −GS −HS

0 I −FS
0 0 I

⎤⎦⎡⎣B11 0 0
0 0 0
0 0 B33

⎤⎦ .

This holds if, and only if, the following matrix equations have solutions:

0 = A12 + [A11, −B11]
[

Gx
T

Gu
T

]
+ GSA22,

0 = E12 + [E11, 0]
[

Gx
T

Gu
T

]
+ GSE22;

(3.4a)

0 = [A23, 0] + A22[Fx
T , 0] + FS[A33, −B33],

0 = [E23, 0] + E22[Fx
T , 0] + FS[E33, 0];

(3.4b)

0 = A12Fx
T + A13 + [A11, −B11]

[
Hx

T
Hu

T

]
+ HSA33,

0 = E12Fx
T + E13 + [E11, 0]

[
Hx

T
Hu

T

]
+ HSE33,

0 = −B13 − HSB33.

(3.4c)

In the following, we show that each of the sets of equations above admits a solution, where we use
Lemmas A.1 and A.3.
We show that (3.4a) has a solution. Clearly, (3.4a) has the form (A1) with A = [A11, −B11], D = A22,
C = [E11, 0] and B = E22. Since E22 is invertible, there exists λ ∈ R such that λE22 − A22 is also
invertible and hence the assumption of Lemma A.1 is satisfied. Therefore, it suffices to show solvability
of the associated generalized Sylvester equation (A2). By assumption, rank[λE11 − A11, B11] = �1 for
all λ ∈ C ∪ {∞}, i.e. no rank drop occurs at all, so all assumptions of Lemma A.3 are satisfied and

existence of a solution
[

Gx
T

Gu
T

]
and GS of (3.4a) is shown.

We show that (3.4b) has a solution. We consider first a relaxed version of (3.4b) by replacing [Fx
T , 0]

by [Fx
T , Fu

T ] in both equations of (3.4b). With A = A22, D = [A33, −B33], C = E22, B = [E33, 0] we
again see that all assumptions of Lemmas A.1 and Lemma A.3 are satisfied ensuring solvability of the
relaxed version of (3.4b). From the second relaxed equation of (3.4b) we see that, in particular,

0 = 0 + E22Fu
T + 0,

which, due to the invertibility of E22, immediately yields that Fu
T = 0. This shows solvability of the

original equations (3.4b).
We show that (3.4c) has a solution. Since by assumption [A33, −B33] has full column rank, there exists
an invertible row operation R33 ∈ R�3×�3 such that

[A33, −B33] = R33

[
Ax

33 0
0 Im3

]
, Ax

33 ∈ R(�3−m3)×n3 .

Define [Hx
S, Hu

S] := HSR33, then the last equation of (3.4c) simplifies to

0 = −B13 + Hu
S .
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This is solvable with Hu
S = B13. Let

[
Ex

33
Eu

33

]
:= R−1

33 E33 with Ex
33 ∈ R(�3−m3)×n3 and Eu

33 ∈ Rm3×n3 , then

the first two equations of (3.4c) have the form

0 = Ã13 + [A11, −B11]
[

Hx
T

Hu
T

]
+ Hx

SAx
33,

0 = Ẽ13 + [E11, 0]
[

Hx
T

Hu
T

]
+ Hx

SEx
33,

(3.5)

where Ã13 = A12Fx
T + A13 and Ẽ13 = E12Fx

T + E13 + Hu
SEu

33. Since Ax
33 has full column rank, the pencil

sEx
33 − Ax

33 has full polynomial column rank and by assumption rank(λ[E11, 0] − [A11, −B11]) = �1
for all λ ∈ C ∪ {∞}. So Lemma A.3 together with Remark A.2 is applicable to (3.5) and guarantees
existence of Hx

T , Hu
T , Hx

S satisfying (3.5). Now set HS = R−1
33 [Hx

S, Hu
S], and the proof is complete. �

A notable observation from the proof of Proposition 3.10 is that no input transformation is needed
(i.e., V = I in (3.1)) to arrive at a decoupled QPFF.

We stress some important properties of the augmented Wong limits for systems in decoupled QPFF.

Lemma 3.11 For any [E, A, B] ∈ Σ�,n,m in decoupled QPFF, the augmented Wong sequences satisfy
the following:

V ∗
[E,A,B] ∩ W ∗

[E,A,B] = Rn1 × {0}n2+n3 , V ∗
[E,A,B] = Rn1+n2 × {0}n3

and

E(V ∗
[E,A,B] ∩ W ∗

[E,A,B]) = R�1 × {0}�2+�3 , EV ∗
[E,A,B] = R�1+�2 × {0}�3 .

Furthermore, we have that m1 = m − m2 − m3, where m2 = dim ker B and

m3 = dim
(

im B ∩ ({0}�1+�2 × R�3)
)

. (3.6)

In particular (in view of Lemma 3.3 and Proposition 3.10), two QPFFs that are P-feedback equivalent
have the same block sizes in E, A and B.

Proof. Step 1: We show V ∗
[E,A,B] = Rn1+n2 × {0}n3 . Since [E, A, B] is in decoupled QPFF, V ∗

[E,A,B] =
V ∗

[E11,A11,B11] × V ∗
[E22,A22,0] × V ∗

[E33,A33,B3]. Since both E11 and E22 have full row rank, they are surjective.

It follows inductively that V i
[E11,A11,B11] = Rn1 and V i

[E22,A22,0] = Rn2 for all i ≥ 0. It remains to show
that V ∗

[E33,A33,B33] = {0}n3 . Since λ[E33, 0] − [A33, B33] has full column rank for all λ ∈ C, its quasi-
Kronecker form (Berger & Trenn, 2013) has only a nilpotent and a overdetermined part, in particular,
V ∗

[[E33,0],[A33,B33],0] = {0}n3+m3 . Now the claim follows from (2.5).
Step 2: We show Rn1 × {0}n2 × {0}n3 ⊆ W ∗

[E,A,B] ⊆ Rn1 × {0}n2 × Rn3 .
Again, since [E, A, B] is in decoupled QPFF we have W ∗

[E,A,B] = W ∗
[E11,A11,B11] × W ∗

[E22,A22,0] ×
W ∗

[E33,A33,B3]. Thus, it suffices to show that W ∗
[E11,A11,B11] = Rn1 and W ∗

[E22,A22,0] = {0}. The latter is

a simple consequence of invertibility of E22 and that W 0
[E22,A22,0] = {0}; for the former we observe that

the augmented matrix pencil s[E11, 0] − [A11, B11] is an underdetermined DAE in the sense of Berger &
Trenn (2012) and hence W ∗

[[E11,0],[A11,B11],0] = Rn1+m1 . Invoking again (2.5) we can conclude the claim.
Step 3: We conclude the claimed properties of the augmented Wong sequences in the statement of the
lemma. The first two equations follow from Steps 1 and 2. The third and fourth equations follow from
the block structure of E and full row rank of E11 and E22.
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Step 4: We show (3.6). It is easy to see that

im B ∩ ({0}�1+�2 × R�3) = {0}�1+�2 × im B33,

and the full column rank of B33 yields dim imB33 = m3. This proves (3.6). �
In the following we derive the QPFF by choosing basis matrices according to the augmented Wong

sequences. This has the advantage that the transformation provides some geometric insight. We are now
in the position to show that any system [E, A, B] is equivalent to a system in QPFF.

Theorem 3.12 (QPFF). Consider [E, A, B] ∈ Σ�,n,m with corresponding augmented Wong limits
V ∗

[E,A,B] and W ∗
[E,A,B]. Choose full column rank matrices UT ∈ Rn×n1 , RT ∈ Rn×n2 , OT ∈ Rn×n3 ,

US ∈ R�×�1 , RS ∈ R�×�2 , OS ∈ R�×�3 such that

im UT = V ∗
[E,A,B] ∩ W ∗

[E,A,B],

im RT ⊕ im UT = V ∗
[E,A,B],

im OT ⊕ im RT ⊕ im UT = Rn,

im US = EV ∗
[E,A,B] ∩ (AW ∗

[E,A,B] + im B),

im RS ⊕ im US = EV ∗
[E,A,B],

im OS ⊕ im RS ⊕ im US = R�

and, additionally,

im B ⊆ im [US, OS]. (3.7)

Let T := [UT , RT , OT ], S := [US, RS, OS]−1 and further choose (not necessarily full rank) matrices
F1 ∈ Rm×n1 , F2 ∈ Rm×n2 such that

[0, I�2+�3
]S(AUT + BF1) = 0 and [0, 0, I�3

]S(ART + BF2) = 0, (3.8)

and let FP = [F1, F2, 0]. Finally, let V = [V1, V2, V3], where V1, V2, V3 are full column rank matrices
with imV1 ⊕ imV2 ⊕ imV3 = Rm such that

im V2 = ker B, and im [V1, V2] = ker[0, 0, I�3
]SB. (3.9)

Then [SET , S(AT + BFP), SBV] is in QPFF (3.3).

Proof. Step 1: We show that the block structure of the QPFF (3.3) is achieved. The subspace inclusions
(2.2) imply that

im EUT ⊆ im US, im AUT ⊆ im US + im B,

im ERT ⊆ im [US, RS], im ART ⊆ im [US, RS] + im B,

im EOT ⊆ im [US, RS, OS] = Rn, im AOT ⊆ im[US, RS, OS] = R�;
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hence, there exists matrices E11, E12, E13, E22, E23, E33, A11, A12, A13, A22, A23, A33, F1, F2 such that

EUT = USE11, AUT = USA11 − BF1,

ERT = USE12 + RSE22, ART = USA12 + RSA22 − BF2,

EOT = USE13 + RSE23 + OSE33, AOT = USA13 + RSA23 + OSA33.

(3.10)

Note that, in particular, F1 and F2 satisfy the equations (3.8), which hence have solutions. Conversely,

for any solution F1 and F2 of (3.8), the matrices A11 := [I�1
, 0, 0]S(AUT + BF1) and

[
A12
A22

]
:=

[I�1+�2
, 0]S(ART + BF2) are suitable choices for satisfying (3.10).

Observe that (3.10) implies that SET and S(AT + BF) have the desired block structure of a QPFF
(3.3). Furthermore, since

im US ∩ im B = EV ∗
[E,A,B] ∩ im B = im[US, RS] ∩ im B,

one may always choose some OS such that (3.7) holds. Therefore, we may choose matrices B̃1, B̃2 such
that

B = USB̃1 + OSB̃2

holds, or, equivalently,

SB =
⎡⎣B̃1

0
B̃2

⎤⎦ .

Finally, by construction we have [0, 0, I�3
]SBV1 = 0 and SBV2 = 0, hence

SBV =
⎡⎣B11 0 B13

0 0 0
0 0 B33

⎤⎦ ,

which concludes Step 1. For later use we note that 0 = B33x = [0, 0, I�3
]SBV3x implies that V3x ∈

ker[0, 0, I�3
]SB ∩ imV3 = im[V1, V2] ∩ imV3 = {0}, thus B33 has full column rank. Similarly, 0 =

B11x = [I�1
, 0, 0]SBV1x implies that V1x ∈ ker[I�1

, 0, 0]SB∩ imV1 ⊆ ker[I�1
, 0, 0]SB∩ker[0, 0, I�3

]SB =
ker SB = imV2, hence V1x ∈ imV1 ∩ imV2 = {0}, which shows that B11 is also of full column rank.
Step 2: We show that [E11, A11, B11] satisfies Definition 3.8 (i).
Step 2a: We show that rkE11 = �1. Observe that USE11 = EUT yields

im USE11 = im EUT = E(V ∗
[E,A,B] ∩ W ∗

[E,A,B])
Prop. 2.2= EV ∗

[E,A,B] ∩ (AW ∗
[E,A,B] + im B) = im US.

As a consequence, the full column rank of US gives that E11 has full row rank.
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Step 2b: We show that V ∗
[E11,A11,B11] ∩ W ∗

[E11,A11,B11] = Rn1 . Set [̂E, Â, B̂] := [SET , S(AT + BFP), SBV].
Invoking Lemma 3.3 we can conclude that

V ∗
[̂E,̂A,̂B]

∩ W ∗
[̂E,̂A,̂B]

= T−1(V ∗
[E,A,B] ∩ W ∗

[E,A,B]) = T−1(imUT) = Rn1 × {0}n2+n3 .

From (4) we may further infer that

Â(V ∗
[̂E,̂A,̂B]

∩ W ∗
[̂E,̂A,̂B]

) ⊆ Ê(V ∗
[̂E,̂A,̂B]

∩ W ∗
[̂E,̂A,̂B]

) + im B̂.

Hence, for all x1 ∈ Rn1 , there exist y1, z1 ∈ Rn1 and u1, v1 ∈ Rm1 , u2, v2 ∈ Rm2 , u3, v3 ∈ Rm3 such that

Â

⎛⎝x1
0
0

⎞⎠ = Ê

⎛⎝y1
0
0

⎞⎠+ B̂

⎛⎝u1
u2
u3

⎞⎠ and Â

⎛⎝y1
0
0

⎞⎠ = Ê

⎛⎝z1
0
0

⎞⎠+ B̂

⎛⎝v1
v2
v3

⎞⎠ .

From the block diagonal structure, we can conclude that

A11x1 = E11y1 + B11u1 + B13u3,

0 = B33u3.

Since ker B33 = {0}, we find that u3 = 0, thus we may conclude that

x1 ∈ A−1
11 (E11{y1} + im B11) ⊆ V 1

[E11,A11,B11].

With the same reasoning, one may show that

y1 ∈ A−1
11 (E11{z1} + im B11) ⊆ V 1

[E11,A11,B11]

and hence x1 ∈ V 2
[E11,A11,B11]. Continuing this reasoning, it finally follows that x1 ∈ V k

[E11,A11,B11] for all
k ∈ N, and, since x1 is arbitrary, we have shown that V ∗

[E11,A11,B11] = Rn1 .

Now, let j∗, r∗ ∈ N be such that W ∗
[̂E,̂A,̂B]

= W
j∗

[̂E,̂A,̂B]
and W ∗

[E11,A11,B11] = W r∗
[E11,A11,B11] and set q∗ :=

max{j∗, r∗}. Again, take arbitrary x = (x�
1 , 0, 0)� ∈ V ∗

[̂E,̂A,̂B]
∩ W ∗

[̂E,̂A,̂B]
, then x ∈ W

q∗
[̂E,̂A,̂B]

and Definition

2.1 give that there exist yk ∈ W k
[̂E,̂A,̂B]

and uk ∈ Rm, k = 0, . . . , q∗ − 1, such that Êx = Âyq∗−1 + B̂uq∗−1

and Êyk = Âyk−1 + B̂uk−1 for all k = 0, . . . , q∗ − 1. Now we find that

Âyq∗−1 = Êx − B̂uq∗−1 ∈ Ê
(
V ∗

[̂E,̂A,̂B]
∩ W ∗

[̂E,̂A,̂B]

)+ im B̂
(2.4)= Â

(
V ∗

[̂E,̂A,̂B]
∩ W ∗

[̂E,̂A,̂B]

)+ im B̂,

hence

yq∗−1 ∈ Â−1
(

Â
(
V ∗

[̂E,̂A,̂B]
∩ W ∗

[̂E,̂A,̂B]

)+ im B̂
)

= V ∗
[̂E,̂A,̂B]

∩ W ∗
[̂E,̂A,̂B]

+ Â−1(imB̂) ⊆ V ∗
[̂E,̂A,̂B]

.
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Therefore,

yq∗−1 ∈ V ∗
[̂E,̂A,̂B]

∩ W
q∗−1

[̂E,̂A,̂B]
.

With the same reasoning, we may now conclude inductively

yk ∈ V ∗
[̂E,̂A,̂B]

∩ W k
[̂E,̂A,̂B]

, k = q∗ − 2, . . . , 0.

This implies that yk = (y�
k,1, 0, 0)� and uk = (u�

k,1, u�
k,2, u�

k,3)
� for some yk,1 ∈ Rn1 , uk,1 ∈ Rm1 ,

uk,2 ∈ Rm2 , uk,3 ∈ Rm3 , k = 0, . . . , q∗ − 1, and hence

E11y1,1 = B11u0,1 + B13u0,3, E11y2,1 = A11y1,1 + B11u1,1 + B13u1,3,

. . . , E11yq∗−1,1 = A11yq∗−2,1 + B11uq∗−2,1 + B13uq∗−2,3,

E11x1 = A11yq∗−1,1 + B11uq∗−1,1 + B13uq∗−1,3,

and

0 = B33u0,3, 0 = B33u1,3, . . . , 0 = B33uq∗−2,3, 0 = B33uq∗−1,3.

Therefore, we obtain uk,3 = 0 for all k = 0, . . . , q∗ − 1 and, as a consequence, x1 ∈ W ∗
[E11,A11,B11]. Since

x1 was arbitrary we have proved that

V ∗
[E11,A11,B11] ∩ W ∗

[E11,A11,B11] = Rn1 .

Step 2c: We show that V ∗
[[E11,0],[A11,B11],0] ∩ W ∗

[[E11,0],[A11,B11],0] = Rn1+m1 . It follows from Proposition
2.2 and Step 2b that

[In, 0]V ∗
[[E11,0],[A11,B11],0] ∩ [In, 0]W ∗

[[E11,0],[A11,B11],0] = Rn1 .

As shown in the proof of Proposition 2.2 we have that

W ∗
[[E11,0],[A11,B11],0] = [In1

, 0]W ∗
[[E11,0],[A11,B11],0] × Rm1 = Rn1 × Rm1 .

Furthermore,

V ∗
[[E11,0],[A11,B11],0] = [A11, B11]−1

(
[E11, 0]V ∗

[[E11,0],[A11,B11],0]

) = [A11, B11]−1
(
im E11

)
Step 2a= [A11, B11]−1

(
R�1

) = Rn1+m1 ,

which proves the claim.
Step 2d: Conclusion of Step 2. The result of Step 2c implies that the augmented matrix pencil
s[E11, 0] − [A11, B11] is in quasi-Kronecker form, see Berger & Trenn (2012), and consists only of
an underdetermined block. In particular, �1 < n1 +m1 and rk(λ[E11, 0]− [A11, B11]) = �1 for all λ ∈ C.
Full column rank of B11 was already shown in Step 1.
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Step 3: We show that E22 is square and invertible.
Step 3a: We show that imUS ⊕ imERT = EV ∗

[E,A,B]. Since imRT ⊆ V ∗
[E,A,B] and imUS ⊆ EV ∗

[E,A,B] it
follows that imUS + imERT ⊆ EV ∗

[E,A,B]. Furthermore,

EV ∗
[E,A,B] = E

(
(V ∗

[E,A,B] ∩ W ∗
[E,A,B]) ⊕ im RT

) ⊆ E(V ∗
[E,A,B] ∩ W ∗

[E,A,B]) + im ERT (2.3) im US + im ERT ,

hence it remains to be shown that the intersection of imUS and imERT is trivial. Towards this goal,
let x ∈ imUS ∩ imERT , then there exists y ∈ imRT with x = Ey and, in view of (2.3), there exists
z ∈ V ∗

[E,A,B] ∩ W ∗
[E,A,B] such that x = Ez. Hence, z − y ∈ ker E ⊆ W ∗

[E,A,B]. From z ∈ W ∗
[E,A,B] it then

follows that y ∈ W ∗
[E,A,B] and, therefore, y ∈ W ∗

[E,A,B] ∩ imRT = {0}. This implies x = 0 and completes
the proof of Step 3a.
Step 3b: We show �2 = n2. From Step 3a we have �2 = rkERT ≤ n2 and hence it suffices to show
that ERT has full column rank. Let v ∈ Rn2 be such that ERTv = 0, then RTv ∈ imRT ∩ ker E ⊆
imRT ∩ W ∗

[E,A,B] = {0} and due to full column rank of RT the claim follows.
Step 3c: We show full column rank of E22. Let v ∈ Rn2 be such that E22v = 0. Then by (3.10) we have
ERTv = USE12v and hence, invoking Step 3a, ERTv ∈ imERT ∩ imUS = {0}. As already shown in Step
3b, ERTv = 0 implies v = 0 and full column rank of E22 is shown.
Step 4: We show that [E33, A33, B33] satisfies Definition 3.8 (iii). Assume there exist λ ∈ C, x3 ∈ Cn3 ,
u3 ∈ Cm3 such that (λE33 − A33)x3 + B33u3 = 0. Then we have, according to (3.10), that

(λE − A)OTx3 = US(λE13 − A13)x3 + RS(λE23 − A23)x3 − OSB33u3.

Writing the complex variables in terms of their real and imaginary parts, i.e., λ = μ + iν, x3 = x3 + îx3
and u3 = u3 + îu3, we can conclude that

(μE − A)OTx3 − νEOT x̂3 + OSB33u3 ∈ im [US, RS],

(μE − A)OTx̂3 + νEOTx3 + OSB33̂u3 ∈ im [US, RS].

Furthermore,

im(OSB33 + USB13) = im [US, RS, OS]

[
B13
0

B33

]
= im BV2 ⊆ im B,

and hence

(μE − A)OTx3 − νEOT x̂3 ∈ im[US, RS] + imB = EV ∗
[E,A,B] + im B,

(μE − A)OTx̂3 + νEOTx3 ∈ im[US, RS] + imB = EV ∗
[E,A,B] + im B.

Assume now inductively that OTx3, OTx̂3 ∈ V k
[E,A,B] (which is trivially satisfied for k = 0), then

AOTx3 = μEOx3 − νEÔx3 + Ev + Bu,

AOTx̂3 = μEÔx3 + νEOx3 + Êv + B̂u,
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for some v, v̂ ∈ V ∗
[E,A,B] ⊆ V k

[E,A,B] and u, û ∈ Rm. Consequently,

OTx3 ∈ A−1(EV k
[E,A,B] + im B) = V k+1

[E,A,B] and OTx̂3 ∈ A−1(EV k
[E,A,B] + im B) = V k+1

[E,A,B].

Altogether, we can conclude that OTx3, OTx̂3 ∈ imOT ∩ V ∗
[E,A,B] = {0}, which in view of full column

rank of OT implies that x3 = 0. Therefore, also B33u3 = 0 that, due to full column rank of B33, implies
that u3 = 0. This completes the proof. �
Remark 3.13 (Geometric interpretation of QPFF). From Theorem 3.12 it becomes clear that the
subspace V ∗

[E,A,B] ∩ W ∗
[E,A,B] is the reachability/controllability space of (1.1) and V ∗

[E,A,B] is the
(augmented) consistency space of (1.1) (i.e., the set of all initial values x0 for which a (smooth) solution
(x, u) of (1.1) with x(0) = x0 exists), cf. also Berger & Reis (2013, Sec. 6). A matrix representation of
the linear system (1.1) restricted to V ∗

[E,A,B] ∩ W ∗
[E,A,B] is given by [E11, A11, B11], and a representation

(1.1) restricted to the quotient-space V ∗
[E,A,B]/(V

∗
[E,A,B] ∩ W ∗

[E,A,B]) (representing the uncontrollable but
consistent states) is given by the uncontrollable ODE system [E22, A22, 0].

We stress that condition (3.7) in Theorem 3.12 cannot be omitted in general, as the following
example shows.

Example 3.14 Consider the system

[E, A, B] =
[[

0
1

]
,

[
1
0

]
,

[
1
0

]]

and calculate that V ∗
[E,A,B] = R and W ∗

[E,A,B] = {0}. Then we may choose T = RT = [1] and

S = [RS, OS]−1 =
[

0 1
1 α

]−1

=
[−α 1

1 0

]
, α ∈ R.

Furthermore, we may choose V = [1] and FP = F2 = [α] so that (3.8) is satisfied. Then

[SET , S(AT + BFP), SBV] =
[[

1
0

]
,

[
0
0

]
,

[−α

1

]]
,

which is not in QPFF (3.3), if α �= 0. However, we obtain α = 0 under the additional condition (3.7),
by which the new system is in QPFF.

Finally, we stress that the QPFF (3.3) is unique in the following sense.

Proposition 3.15 Consider the system [E, A, B] ∈ Σ�,n,m and assume there are S1, S2 ∈ GL�(R),
T1, T2 ∈ GLn(R), V1, V2 ∈ GLm(R), F1

P, F2
P ∈ Rm×n such that for i = 1, 2

[E, A, B]
Si,Ti,Vi,Fi

P∼=P

⎡⎣⎡⎣Ei
11 Ei

12 Ei
13

0 Ei
22 Ei

23
0 0 Ei

33

⎤⎦ ,

⎡⎣Ai
11 Ai

12 Ai
13

0 Ai
22 Ai

23
0 0 Ai

33

⎤⎦ ,

⎡⎣Bi
11 0 Bi

13
0 0 0
0 0 Bi

33

⎤⎦⎤⎦ .
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Then the corresponding diagonal blocks (which have the same corresponding sizes as established
already in Lemma 3.11) are P-feedback equivalent, i.e. [E1

kk, A1
kk, B1

kk] ∼=P [E2
kk, A2

kk, B2
kk] for k = 1, 2, 3

(with Bi
22 := 0�2×m2

).

Proof. Consider any system [E, A, B] and the following P-feedback equivalent systems

[EQPFF , AQPFF , BQPFF]
S,T ,V ,F∼=P [E, A, B] and [EW

QPFF , AW
QPFF , BW

QPFF]
SW ,TW ,VW ,FW

∼=P [E, A, B],

where [EQPFF , AQPFF , BQPFF] is any decoupled QPFF (not necessarily obtained via the Wong sequence
approach, but probably utilizing Proposition 3.10), which is P-feedback equivalent to [E, A, B], and
the QPFF [EW

QPFF , AW
QPFF , BW

QPFF] is obtained from [E, A, B] via the Wong sequence approach (Theorem
3.12). We will now show that the diagonal blocks of [EQPFF , AQPFF , BQPFF] are P-feedback equivalent
to the corresponding diagonal blocks of [EW

QPFF , AW
QPFF , BW

QPFF], from which the claim of Proposition
3.15 follows.

First observe that [EQPFF , AQPFF , BQPFF]
S,T ,V ,F∼=P [EW

QPFF , AW
QPFF , BW

QPFF] with

S = S(SW)−1, T = (TW)−1T , V = (VW)−1V , F = (VW)−1(F − FWT
)
.

Denote by V ∗ and W ∗ the Wong sequences of the original system [E, A, B]. Then, by construction (cf.
Theorem 4.12),

im UW
T = V ∗ ∩ W ∗, im[UW

T , RW
T ] = V ∗,

im UW
S = E(V ∗ ∩ W ∗), im[UW

S , RW
S ] = EV ∗.

Lemma 3.11 in conjunction with Lemma 3.3 yields that the decoupled QPFF [EQPFF , AQPFF , BQPFF]
satisfies

T−1(V ∗ ∩ W ∗) = im
[

I
0
0

]
, T−1V ∗ = im

[
I 0
0 I
0 0

]
,

EQPFFT−1(V ∗ ∩ W ∗) = im
[

I
0
0

]
, EQPFFT−1V ∗ = im

[
I 0
0 I
0 0

]
.

This gives, for some invertible MT
U , MT

R , MT
O, MS

U , MS
R and MS

O,

T = [UW
T , RW

T , OW
T ]

[
MT

U ∗ ∗
0 MT

R ∗
0 0 MT

O

]
, S−1 = [UW

S , RW
S , OW

S ]

[
(MS

U)−1 ∗ ∗
0 (MS

R)−1 ∗
0 0 (MS

O)−1

]
.

Therefore,

S =
[

MS
U ∗ ∗

0 MS
R ∗

0 0 MS
O

]
, T =

[
MT

U ∗ ∗
0 MT

R ∗
0 0 MT

O

]
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and it follows from EQPFF = SEW
QPFFT that

E11 = MS
UEW

11MT
U , E22 = MS

REW
22MT

R , E33 = MS
OEW

33MT
O,

where Eii, EW
ii , i = 1, 2, 3, are the corresponding diagonal blocks of the block diagonal matrices EQPFF

and EW
QPFF . This shows the desired P-feedback equivalence for the entries of the E-matrix.

Writing V =
[

V11 V12 V13

V21 V22 V23
V31 V32 V33

]
and multiplying the equation BQPFF = SBW

QPFFV from the left by

[0, 0, I] and from the right by
[

I 0
0 I
0 0

]
gives MS

OBW
33[V31, V32] = 0. Invertibility of MS

O and full column

rank of BW
33 yields V31 = 0 and V32 = 0, i.e.

V =
[

V11 V12 V13
V21 V22 V23

0 0 V33

]
with V33 invertible.

Furthermore, from BQPFF = SBW
QPFFV we see that B11 = MS

UBW
11V11 and B33 = MS

OBW
33V33 and we

need to show that also V11 is invertible. Assuming that V11 is not invertible, we find u1 ∈ Rm1 \ {0} with
V11u1 = 0, which implies that 0 = MS

UBW
11V11u1 = B11u1 contradicting full column rank of B11.

Finally, writing F =
[

FU,1 FR,1 FO,1∗ ∗ ∗
FU,3 FR,3 FO,3

]
we will show that FU,3 and FR,3 are both zero, because then

we have

SBW
QPFFF =

[
MS

U ∗ ∗
0 MS

R ∗
0 0 MS

O

][
BW

11FU,1 ∗ ∗
0 0 0

BW
33FU,3 BW

33FR,3 BW
33FO,3.

]
=
[

MS
UBW

11FU,1 ∗ ∗
0 0 ∗
0 0 MS

OBW
33FO,3,

]
,

which then yields the desired form

AQPFF = S(AW
QPFFT + BW

QPFFF) =
[

MS
U(AW

11MT
U+BW

11FU,1) ∗ ∗
0 MS

UAW
22MT

U ∗
0 0 MS

O(AW
33MT

O+BW
33FO,3)

]
.

From the block structures of SW(ATW + BFW), S and T it follows that[ ∗ ∗ ∗
0 ∗ ∗
0 0 ∗

]
= SSW(ATW + BFW)T = SAT + SBFWT = S(AT + BF) + SB(FWT − F),

and due to the block structure of S(AT + BF) we therefore have

[ ∗ ∗ ∗
0 ∗ ∗
0 0 ∗

]
= SB(F − FWT) = SBVV

−1
F =

[
B11 0 0
0 0 0
0 0 B33

] [ ∗ ∗ ∗∗ ∗ ∗
0 0 V−1

33

] [
FU,1 FR,1 FO,1∗ ∗ ∗
FU,3 FR,3 FO,3

]
=
[ ∗ ∗ ∗

0 0 0
B33V−1

33 FU,3 B33V−1
33 FR,3 B33V−1

33 FO,3

]
.
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This shows that B33V−1
33 FU,3 = 0 and B33V−1

33 FR,3 = 0, which in view of the full column rank of B33

implies FU,3 = 0 and FR,3 = 0 as desired. �
Example 3.16 (Example 3.7 revisited). Consider the system [E, A, B] from Example 3.7. The
augmented Wong sequences can be calculated as follows:

V 1
[E,A,B] = im

⎡⎣ 5 2 0 2−2 0 −1 −2
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎦ = V ∗
[E,A,B],

W 1
[E,A,B] = im

⎡⎣ 3 −1 −2 0
−1 1 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎦ , W 2
[E,A,B] = im

⎡⎣−1 2 0 −2 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤⎦ = W ∗
[E,A,B].

Based on these subspaces, we can now easily choose, in virtue of Theorem 3.12,

T = [UT , RT , OT ] =
⎡⎣ −8 −5 2 3 1 0

4 1 −2 −1 0 0
−2 −1 0 1 0 0
1 0 0 0 −1 −1
0 1 0 1 1 −1
0 0 1 −1 0 −1

⎤⎦, S−1 = [US, RS, OS] =
⎡⎢⎣

1 0 −1 −1 −1 0 −1
0 1 −1 −1 1 −1 0
0 −1 −1 0 1 −1 1
1 1 −4 −2 0 0 0
0 1 −3 −1 1 1 0

−1 0 1 7
2 − 7

2 −1 0
1 1 0 3 −9 −1 −1

⎤⎥⎦
FP = [F1, F2, 0] =

[
9 4 −1 −5 0 0
0 0 0 0 0 0
6 4 −3 1 0 0

]
, V = [V1, V2, V3] =

[
2 −1 0
1 1 0
0 −1 1

]
,

which results in the QPFF

[SET , S(AT + BFP), SBV] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎣

3 3 −1 −5 − 29
2 33

1 0 −2 1 5
2 0

0 0 0 −1 − 3
2 1

0 0 0 0 −5 15

0 0 0 0 −3 9

0 0 0 0 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 5 1 −5 18 − 679
6

4 3 −3 −1 6 − 47
2

0 0 0 −1 −1 5
3

0 0 0 0 15 − 427
6

0 0 0 0 7 − 239
6

0 0 0 0 2 − 23
6

0 0 0 0 1 − 5
6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎣
1 13 −9
0 0 0

0 0 0

0 8 −5
0 6 −3
0 0 0
0 0 0

⎤⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In particular, we see that the original system can be decomposed into a completely controllable system
in Σ2,3,1, an uncontrollable ODE system in Σ1,1,0 and a fully constrained system in Σ4,2,2.

Remark 3.17 (Numerical considerations). The calculation of the QPFF relies on obtaining (bases
of) kernels and images of matrices, which is inherently numerically unstable because arbitrary small
disturbances in the entries of any non-full rank matrix result generically in a full rank matrix. For
moderately sized matrices this problem can be circumvented by carrying out the calculations with exact
arithmetics (e.g. by working with type sym in Matlab as we actually did in Example 3.16). For large
scale sparse systems it is possible to exploit the structural zeros in the calculation of the augmented Wong
sequences and the sparsity can be preserved in the choice of corresponding basis matrices; however,
it is a topic of future research to explore whether our approach may be utilized for the analysis of
realistic large-scale control systems or whether some adjustments or specialized calculation methods
are necessary.
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4. PD-feedback forms

In this section, we investigate proportional derivative (PD)-feedback, which allows for a simpler ‘(quasi)
canonical’ form compared to the (quasi) P-feedback form since the set of allowed transformations is
larger. However, unlike the latter, the quasi PD-feedback form (QPDFF) can be derived directly from
the Kalman controllability decomposition presented in Berger & Trenn (2014) by decomposing the first
block row.

4.1. PD-feedback equivalence

The following concept of PD-feedback equivalence enlarges the transformation class associated with
P-feedback equivalence as in Definition 3.1.

Definition 4.1 (PD-feedback equivalence). Two systems [E1, A1, B1], [E2, A2, B2] ∈ Σ�,n,m are called
PD-feedback equivalent if

∃ S ∈ GL�(R), T ∈ GLn(R), V ∈ GLm(R), FP, FD ∈ Rm×n :[
sE1 − A1, B1

] = S
[
sE2 − A2, B2

] [ T 0
sFD − FP V

]
;

(4.1)

we write

[E1, A1, B1] ∼=PD [E2, A2, B2] or, if necessary, [E1, A1, B1]
S,T ,V ,FP,FD∼=PD [E2, A2, B2] .

Remark 4.2 Similarly as for P-feedback equivalence, it can easily be shown that PD-feedback
equivalence is reflexive, symmetric and transitive, so it is indeed an equivalence relation.

For later use we show how the augmented Wong sequences change under PD-feedback.

Lemma 4.3 (Augmented Wong sequences under PD-feedback). If the systems [E1, A1, B1], [E2, A2, B2] ∈
Σ�,n,m are PD-feedback equivalent [E1, A1, B1]

S,T ,V ,FP,FD∼=PD [E2, A2, B2], then

∀ i ∈ N0 : V i
[E1,A1,B1] = T−1V i

[E2,A2,B2] and W i
[E1,A1,B1] = T−1W i

[E2,A2,B2].

Proof. We prove the statement by induction. It is clear that V 0
[E1,A1,B1] = T−1V 0

[E2,A2,B2]. Assume that

V i
[E1,A1,B1] = T−1V i

[E2,A2,B2] for some i ≥ 0. Then (4.1) yields

V i+1
[E1,A1,B1] = A−1

1 (E1V
i

[E1,A1,B1] + im B1)

=
{

x ∈ Rn

∣∣∣∣∣ ∃ y ∈ V i
[E1,A1,B1] ∃ u ∈ Rm :

(sa : 2T + sb : 2FP)x = (SE2T + sb : 2FD)y + sb : 2Vu

}

=
{

x ∈ Rn
∣∣∣ ∃ z ∈ V i

[E2,A2,B2] ∃ v ∈ Rm : A2Tx = E2z + B2v
}

= T−1
(

A−1
2 (E2V

i
[E2,A2,B2] + im B2)

)
= T−1V i+1

[E2,A2,B2].

The proof of the statements about W i
[E1,A1,B1] and W i

[E2,A2,B2] is similar and omitted. �
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4.2. PD-feedback form

Definition 4.4 (PDFF). The system [E, A, B] ∈ Σ�,n,m is said to be in PD-feedback form (PDFF) if

[E, A, B] =

⎡⎢⎢⎢⎢⎣
⎡⎢⎢⎢⎢⎣

Kα 0 0 0
0 Inc

0 0
0 0 Nβ 0
0 0 0 K�

γ

0 0 0 0

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎣
Lα 0 0 0
0 Ac 0 0
0 0 I|β| 0
0 0 0 L�

γ

0 0 0 0

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎣
0 0
0 0
0 0
0 0
0 Ir

⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦ , (4.2)

where r = rkB, α ∈ Nnα , β ∈ Nnβ , γ ∈ Nnγ denote multi-indices, and Ac ∈ Rnc×nc .

Two PD-feedback equivalent systems have the same PDFF up to permutation of the entries of α, β, γ
and similarity of Ac.

Proposition 4.5 (Uniqueness of indices for PDFF). Let [Ei, Ai, Bi] ∈ Σ�,n,m, i = 1, 2, be in PDFF (4.2)
with corresponding ri = rkBi, multi-indices αi ∈ Nnαi , β i ∈ Nnβi , γ i ∈ Nnγ i , and Ac,i ∈ Rnc,i×nc,i . If
[E1, A1, B1] ∼=PD [E2, A2, B2], then

α1 = Pαα2, β1 = Pββ2, γ 1 = Pγ γ 2,

and

r1 = r2, nc,1 = nc,2, Ac,1 = H−1Ac,2H,

for permutation matrices Pα , Pβ , Pγ of appropriate sizes and H ∈ GLnc,1
(R).

Proof. It follows from (4.1) that B1 = SB2V and hence r1 = r2. Furthermore, sE1 − A1 = S(sE2 −
A2)T + SB2(sFD − FP), which gives⎡⎢⎢⎣

sKα1−Lα1 0 0 0
0 sInc,1−Ac,1 0 0
0 0 sNβ1−I|β1| 0

0 0 0 sK�
γ 1

−L�
γ 1

0 0 0 0

⎤⎥⎥⎦ = S

⎡⎢⎢⎣
sKα2−Lα2 0 0 0

0 sInc,2−Ac,2 0 0
0 0 sNβ2−I|β2| 0

0 0 0 sK�
γ 2

−L�
γ 2

sF1−G1 sF2−G2 sF3−G3 sF4−G4

⎤⎥⎥⎦T

for some matrices Fi and Gi of appropriate sizes. Set r := r1 = r2 and write>

S =
[

S11 S12
S21 S22

]
, S22 ∈ Rr×r,

and S11, S12, S21 of appropriate size. Then B1 = SB2V yields[
0 0
0 Ir

]
=
[

S11 S12
S21 S22

] [
0 0
0 Ir

]
V =

[
0 S12
0 S22

]
V ,

and hence S22 ∈ GLr(R) and S12 = 0. Then again S11 ∈ GL�−r(R) and we have[ sKα1 − Lα1 0 0 0
0 sInc,1 − Ac,1 0 0
0 0 sNβ1

− I|β1| 0

0 0 0 sK�
γ 1

− L�
γ 1

]
= S11

[ sKα2 − Lα2 0 0 0
0 sInc,2 − Ac,2 0 0
0 0 sNβ2

− I|β2| 0

0 0 0 sK�
γ 2

− L�
γ 2

]
T ,

which in view of Berger & Trenn (2013, Rem. 2.8) implies the assertion. �
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We are now in the position to show that any [E, A, B] ∈ Σ�,n,m is PD-feedback equivalent to a
system in PDFF. This result has already been observed in the seminal work by Loiseau et al. (1991) co-
authored by Nicos Karcanias; it simply consists of a left transformation S together with an input space
transformation V , which puts the matrix B into the form SBV = [ 0 0

0 Ir

]
and an additional transformation

that puts the pencil sNE − NA, where N = [Il−r, 0]W, into KCF.

Theorem 4.6 (PDFF, Loiseau et al. (1991)). For any system [E, A, B] ∈ Σ�,n,m there exist S ∈
GL�(R), T ∈ GLn(R), V ∈ GLm(R), FP, FD ∈ Rm×n such that

[SET + SBFD, SAT + SBFP, SBV] is in PDFF (4.2).

Remark 4.7 (PDFF from PFF). We may directly derive the PDFF (4.2) from the PFF (3.2). To this end,
observe that the system [Iβi

, N�
βi

, e[βi]
βi

] can be written as

d
dt Lβi

xc[i](t) = Kβi
xc[i](t),

d
dt xc[i],βi

(t) = uc[i](t),

and hence it is, after a permutation of the states and the equations, PD-feedback equivalent to the system

[[
Kβi

0

]
,

[
Lβi

0

]
,

[
0
1

]]
.

On the other hand, the system [K�
κi

, L�
κi

, e[κi]
κi ] can be written as

d
dt Nκi−1xob[i](t) = xob[i](t),

d
dt xob[i],κi−1

(t) = uob[i](t),

and hence it is PD-feedback equivalent to the system

[[
Nκi−1

0

]
,

[
Iκi−1

0

]
,

[
0
1

]]
.

It is now easy to see that we obtain a system in the form (4.2) after some block permutations.

Example 4.8 (PDFF). We revisit Example 3.7 to illustrate Theorem 4.6 and consider again the system
[E, A, B] ∈ Σ7,6,3. Utilizing Remark 4.7 we can easily chose

S =

⎡⎢⎢⎣
−15 2 4 5 −6 −6 4
−3 −1 0 3 −2 0 0
8 2 0 −5 4 2 −1

−1 0 0 1 −1 0 0
−16 −1 2 9 −8 −5 3
−6 0 1 3 −3 −2 1
−4 0 1 2 −2 −1 1

⎤⎥⎥⎦ , T =
⎡⎢⎣

−17 10 −13 −3 −8 6
13 −6 9 2 6 −4
−7 4 −5 −1 −3 2
6 −3 4 1 3 −2

−5 2 −3 0 −2 1
3 −2 2 0 1 −1

⎤⎥⎦ ,

FP =
[

3 3 −2 −2 0 2
−14 10 −12 −3 −7 6

7 −4 6 3 4 −3

]
, FD =

[ 0 0 −2 0 0 0
0 0 −1 0 0 0
0 0 0 0 0 1

]
, V =

[
2 0 −1
1 0 −1
0 −1 −1

]
,
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which results in

S(ET + BFD) = diag(K1, K2, I1, N1, N1, 03×0),

S(AT + BFP) = diag(L1, L2, Ac, I1, I1, 03×0),

SBV = diag(04×0, I3),

with Ac = [1]. In particular, [E, A, B] is PD-feedback equivalent to a PDFF (4.2) with α = (1, 2), nc = 1,
β = (1, 1), nγ = 0, r = 3.

4.3. Quasi PD-feedback form

We will now weaken the PD-feedback form to a QPDFF, again exploiting the augmented Wong
sequences as the crucial tool to achieve the necessary geometric insight.

Definition 4.9 A system [E, A, B] ∈ Σ�,n,m is said to be in QPDFF if

[E, A, B] =

⎡⎢⎢⎣
⎡⎢⎢⎣

E11 E12 E13
0 E22 E23
0 0 E33
0 0 0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
A11 A12 A13
0 A22 A23
0 0 A33
0 0 0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0 0
0 0
0 0
0 B̂

⎤⎥⎥⎦
⎤⎥⎥⎦ , (4.3)

where

(i) E11, A11 ∈ R�1×n1 with �1 < n1 and rkE11 = rk
C

[λE11 − A11] = �1 for all λ ∈ C;

(ii) E22, A22 ∈ R�2×n2 with �2 = n2 and E22 ∈ GLn2
(R);

(iii) E33, A33 ∈ R�3×n3 satisfy rk
C
(λE33 − A33) = n3 for all λ ∈ C;

(iv) B̂ ∈ GLm2
(R) for m2 = rkB

and the remaining matrices have suitable sizes. Furthermore, we call a QPDFF decoupled, if all off-
diagonal blocks are zero.

The control theoretic interpretation of the QPDFF is that the system can be decomposed in four
parts. The first three parts contain only state variables, they form a homogeneous DAE. The first part
consists of an underdetermined DAE, which is completely controllable3; the second part is actually an
uncontrollable ODE; and the third part is a DAE, which has only the trivial solution (and is therefore
trivially behaviorally controllable). The fourth part contains only the input u = (u1, u2), where the
first component of the input is completely free (but does not influence the state) and the second input
component is maximally constrained (0 = u2).

Remark 4.10 Utilizing Sylvester equations in a very similar way as in Proposition 3.10 it can be shown
that any QPDFF is PD-feedback equivalent to a decoupled QPDFF with identical diagonal blocks. Since

3 In this context, it may be better to speak of ‘complete reachability’ instead of ‘complete controllability’, because it seems
rather unintuitive to call a system that is not affected by an input ‘controllable’; nevertheless, this naming convention also occurs
in the context of behavioral controllability, where the trivial behavior consisting of all trajectories is also called ‘controllable’.
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the input and state are completely decoupled in the QPDFF this decoupling is actually much easier to
achieve than the decoupling in the QPFF.

For later use we derive some properties of the augmented Wong limits for a system [E, A, B], which
is in decoupled QPDFF (4.3).

Lemma 4.11 Assume [E, A, B] ∈ Σ�,n,m is in decoupled QPDFF (4.3), then

V ∗
[E,A,B] ∩ W ∗

[E,A,B] = Rn1 × {0}n2+n3 , V ∗
[E,A,B] = Rn1+n2 × {0}n3 (4.4)

and

im B = {0}�1+�2+�3 × Rm2 ,
E(V ∗

[E,A,B] ∩ W ∗
[E,A,B]) + im B = R�1 × {0}�2+�3 × Rm2 ,

EV ∗
[E,A,B] + im B = R�1+�2 × {0}�3 × Rm2 .

In particular (in view of Lemma 4.3), two QPDFFs that are PD-feedback equivalent have the same
block sizes in E, A and B.

The proof utilizes the observation that

V ∗
[E,A,B] = V ∗

[E,A,0] and W ∗
[E,A,B] = W ∗

[E,A,0]

and is very similar to the proof of Lemma 3.11. It is therefore omitted.
We will now show that any system [E, A, B] is PD-feedback equivalent to a system in QPDFF and

that the transformation matrices can be obtained from the augmented Wong sequences; this provides
some geometric insight in the decoupling.

Theorem 4.12 (QPDFF). Consider [E, A, B] ∈ Σ�,n,m with corresponding augmented Wong limits
V ∗

[E,A,B] and W ∗
[E,A,B]. Choose full column rank matrices UT ∈ Rn×n1 , RT ∈ Rn×n2 , OT ∈ Rn×n3 ,

QS ∈ R�×m2 , US ∈ R�×�1 , RS ∈ R�×�2 , OS ∈ R�×�3 such that

im UT = V ∗
[E,A,B] ∩ W ∗

[E,A,B],

im RT ⊕ im UT = V ∗
[E,A,B],

im OT ⊕ im RT ⊕ im UT = Rn,

im QS = im B,

im US ⊕ im QS = E(V ∗
[E,A,B] ∩ W ∗

[E,A,B]) + imB,

im RS ⊕ im US ⊕ im QS = EV ∗
[E,A,B] + im B,

im OS ⊕ im RS ⊕ im US ⊕ im QS = R�.

Let T := [UT , RT , OT ], S := [US, RS, OS, QS]−1 and choose (not necessarily full rank) matrices
FP, FD ∈ Rm×n such that

0 = [0, Im2
]S(ET + BFD), 0 = [0, Im2

]S(AT + BFP),
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and choose V = [V1, V2] with full column rank matrices V1 ∈ Rm×m1 , V2 ∈ Rm×m2 such that

im V1 = ker B, im V1 ⊕ im V2 = Rm.

Then [S(ET + BFD), S(AT + BFP), SBV] is in QPDFF (4.3).

Proof. Step 1: We show that the block structure of the QPDFF (4.3) is achieved. The subspace
inclusions (2.2) and the equalities (4) imply that

im EUT ⊆ im [US, QS], im AUT ⊆ im [US, QS],

im ERT ⊆ im [US, RS, QS], im ART ⊆ im [US, RS, QS],

im EOT ⊆ im [US, RS, OS, QS] = Rn, im AOT ⊆ im [US, RS, OS, QS] = R�,

hence there exists matrices E11, E12, E13, E22, E23, E33, A11, A12, A13, A22, A23, A33, FE
1 , FE

2 , FE
3 , FA

1 , FA
2 ,

FA
3 such that

EUT = USE11 + QSFE
1 , AUT = USA11 + QSFA

1 ,

ERT = USE12 + RSE22 + QSFE
2 , ART = USA12 + RSA22 + QSFA

2 ,

EOT = USE13 + RSE23 + OSE33 + QSFE
3 , AOT = USA13 + RSA23 + OSA33 + QSFA

3 .

Furthermore, B = QSB̄ for some B̄ ∈ Rm2×m and B̂ := B̄V2 ∈ Rm2×m2 since rkV2 = m − dim ker B =
rkB = m2. Then 0 = B̂x = B̄V2x yields V2x ∈ ker B̄ ∩ imV2 = ker B ∩ imV2 = {0}, thus B̂ ∈ GLm2

(R).
Therefore,

SBV = S[0, BV2] = S[US, RS, OS, QS]

⎡⎢⎢⎣
0 0
0 0
0 0
0 B̄V2

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 0
0 0
0 0
0 B̂

⎤⎥⎥⎦
has the block structure as in (4.3). Set FE := [FE

1 , FE
2 , FE

3 ] and FA := [FA
1 , FA

2 , FA
3 ], then im[0, Im2

]SB =
im[0, B̂] = Rm2 and hence the equations

FE + [0, Im2
]SBFD = 0, FA + [0, Im2

]SBFP = 0

have solutions FD, FP ∈ Rm×n, which satisfy

[0, Im2
]S(ET + BFD) = FE + [0, B̂]FD = 0, [0, Im2

]S(AT + BFP) = FA + [0, B̂]FP = 0.

This proves that S(ET + BFD) and S(AT + BFP) have the block structure as in (4.3).
Step 2: We show that E11, A11 satisfy Definition 4.9 (i). Denote by V i

[E11,A11,0], W i
[E11,A11,0], V ∗

[E11,A11,0],
W ∗

[E11,A11,0] the Wong sequences and Wong limits corresponding to the matrix pencil sE11 − A11. By
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choice of UT we have

V ∗
[E,A,B] ∩ W ∗

[E,A,B] = im UT = T(Rn1 × {0}n2+n3).

It follows from Lemma 4.3 that for [Ẽ, Ã, B̃] := [S(ET + BFD), S(AT + BFP), SBV] we have

V ∗
[E,A,B] = TV ∗

[Ẽ,Ã,B̃]
, W ∗

[E,A,B] = TW ∗
[Ẽ,Ã,B̃]

,

hence

V ∗
[Ẽ,Ã,B̃]

∩ W ∗
[Ẽ,Ã,B̃]

= Rn1 × {0}n2+n3 .

Now let x ∈ V ∗
[Ẽ,Ã,B̃]

∩ W ∗
[Ẽ,Ã,B̃]

. Then x = (x�
1 , 0, 0)� for some x1 ∈ Rn1 and

Ãx ∈ Ã
(
V ∗

[Ẽ,Ã,B̃]
∩ W ∗

[Ẽ,Ã,B̃]

)+ im B̃
(2.4)= Ẽ

(
V ∗

[Ẽ,Ã,B̃]
∩ W ∗

[Ẽ,Ã,B̃]

)+ im B̃,

and thus there exist y = (y�
1 , 0, 0)� ∈ V ∗

[Ẽ,Ã,B̃]
∩ W ∗

[Ẽ,Ã,B̃]
and u2 ∈ Rm2 such that A11x1 = E11y1

and 0 = B̂u2, thus u2 = 0. This implies x1 ∈ A−1
11 (E11{y1}) ⊆ V 1

[E11,A11,0]. A similar reasoning yields

y1 ∈ V 1
[E11,A11,0], and therefore

x1 ∈ A−1
11 (E11{y1}) ⊆ A−1

11 (E11V
1

[E11,A11,0]) ⊆ V 2
[E11,A11,0].

Again, we conclude similarly that y1 ∈ V 2
[E11,A11,0] and thus x1 ∈ V 3

[E11,A11,0]. Proceeding in this way we
obtain x1 ∈ V ∗

[E11,A11,0].

Now let j∗, r∗ ∈ N be such that W ∗
[Ẽ,Ã,B̃]

= W
j∗

[Ẽ,Ã,B̃]
and W ∗

[E11,A11,0] = W r∗
[E11,A11,0] and set q∗ :=

max{j∗, r∗}. Since x ∈ W ∗
[Ẽ,Ã,B̃]

= W
q∗

[Ẽ,Ã,B̃]
, it follows from Definition 2.1 that there exist yk ∈ W k

[Ẽ,Ã,B̃]

and uk ∈ Rm, k = 0, . . . , q∗ − 1, such that Ẽx = Ãyq∗−1 + B̃uq∗−1 and Ẽyk = Ãyk−1 + B̃uk−1 for all
k = 0, . . . , q∗ − 1. We find that

Ãyq∗−1 = Ẽx − B̃uq∗−1 ∈ Ã
(
V ∗

[Ẽ,Ã,B̃]
∩ W ∗

[Ẽ,Ã,B̃]

)+ im B̃
(2.4)= Ã

(
V ∗

[Ẽ,Ã,B̃]
∩ W ∗

[Ẽ,Ã,B̃]

)+ im B̃,

thus

yq∗−1 ∈ Ã−1
(

Ã
(
V ∗

[Ẽ,Ã,B̃]
∩ W ∗

[Ẽ,Ã,B̃]

)+ im B̃
)

= V ∗
[Ẽ,Ã,B̃]

∩ W ∗
[Ẽ,Ã,B̃]

+ Ã−1(imB̃) ⊆ V ∗
[Ẽ,Ã,B̃]

.

Therefore,

yq∗−1 ∈ V ∗
[Ẽ,Ã,B̃]

∩ W
q∗−1

[Ẽ,Ã,B̃]
.

Analogously, we may show that

yk ∈ V ∗
[Ẽ,Ã,B̃]

∩ W k
[Ẽ,Ã,B̃]

, k = 0, . . . , q∗ − 2.
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This implies that yk = (y�
k,1, 0, 0)� for some yk,1 ∈ Rn1 , k = 0, . . . , q∗ − 1, and hence, in particular,

E11y1,1 = 0, E11y2,1 = A11y1,1, . . . , E11yq∗−1,1 = A11yq∗−2,1, E11x1 = A11yq∗−1,1.

Therefore, we obtain x1 ∈ W ∗
[E11,A11,0]. This proves(

V ∗
[E11,A11,0] ∩ W ∗

[E11,A11,0]

)× {0}n2+n3 = V ∗
[Ẽ,Ã,B̃]

∩ W ∗
[Ẽ,Ã,B̃]

= Rn1 × {0}n2+n3 .

To conclude Step 2, it remains to show that rkE11 = �1, then the assertion follows from Berger &
Trenn (2012, Thm. 2.3). To this end, observe that USE11 + QSFE

1 = EUT and QSB̄ = B imply that

im [US, QS]

[
E11 0
FE

1 B̄

]
= im EUT + im B = E(V ∗

[E,A,B] ∩ W ∗
[E,A,B]) + imB = im [US, QS].

As a consequence, full column rank of [US, QS] gives that
[

E11 0
FE

1 B̄

]
has full row rank, by which rkE11 =

�1.
Step 3: The proof of �2 = n2, invertibility of E22, and the property rkCλE33 − A33 = n3 for all λ ∈ C is
similar to the proof of Berger & Trenn (2014, Thm. 3.3) and omitted. �

We revisit again Example 3.7 to illustrate how Theorem 4.12 can be utilized to obtain a QPDFF.

Example 4.13 (Example 3.7 revisited). Consider again [E, A, B] ∈ Σ7,6,3 from Example 3.7. The
augmented Wong-sequences have been calculated in Example 3.16 and we can choose T and S as

T = [UT , RT , OT ] =
⎡⎣ −8 −5 2 7 −1 1

4 1 −2 −5 −1 1
−2 −1 0 1 1 −1
1 0 0 0 0 −1
0 1 0 1 0 0
0 0 1 1 1 0

⎤⎦, S−1 = [US, RS, OS, QS] =
⎡⎢⎣

0 1 −1 −1 1 0 0
1 −1 0 1 0 1 0
0 0 1 0 0 0 1
1 1 1 1 1 1 0
1 0 0 0 0 1 0
0 1 1 1 −1 − 5

2 −2
1 3 1 1 1 −4 −4

⎤⎥⎦.

Based on this choice for T and S, we can furthermore choose

FP =
[ −7 −9 0 5 − 37

2
37
2

− 42
5 − 34

5
4
5

28
5 −9 9

22
5

14
5 − 9

5 − 13
5 −1 −2

]
, FD =

[ −7 −6 4 16 −10 9
− 18

5 −3 11
5

36
5 − 13

5 2

− 2
5 0 4

5
4
5 − 7

5 −1

]
, V = I3.

This results in the following QPDFF:

[S(ET + BFD), S(AT + BFP), SBV] =

⎡⎢⎢⎢⎢⎣
⎡⎢⎢⎣

1
5 0 − 2

5
8
5 − 24

5 5

0 0 0 2 −4 4

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎣
4
5

3
5 − 3

5
4
5 0 −1

0 0 0 2 −3 1

0 0 0 0 13
2

1
2

0 0 0 0 −8 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎦,

⎡⎢⎣
0 0 0
0 0 0
0 0 0
0 0 0
1 −1 −1
0 0 2

−1 2 −3

⎤⎥⎦
⎤⎥⎥⎥⎥⎦ .
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Proposition 4.14 (Uniqueness of QPDFF). Let [E, A, B] ∈ Σ�,n,m and S1, S2 ∈ GL�(R), T1, T2 ∈
GLn(R), V1, V2 ∈ GLm(R), F1

P, F2
P, F1

D, F2
D ∈ Rm×n be such that, for i = 1, 2,

[E, A, B]
Si,Ti,Vi,Fi

P,Fi
D∼=PD [Ei, Ai, Bi] =

⎡⎢⎢⎣
⎡⎢⎢⎣

E11,i E12,i E13,i
0 E22,i E23,i
0 0 E33,i
0 0 0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
A11,i A12,i A13,i

0 A22,i A23,i
0 0 A33,i
0 0 0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0 0
0 0
0 0
0 B̂i

⎤⎥⎥⎦
⎤⎥⎥⎦ ,

where [Ei, Ai, Bi] is in QPDFF (4.3). Then the corresponding diagonal blocks (which have matching
sizes according to Lemma 4.11) are equivalent in the sense that there exist invertible matrices Sii,
i = 1, 2, 3, 4, Tii, i = 1, 2, 3, and V22 such that

Eii,1 = SiiEii,2Tii, i = 1, 2, 3, and B̂1 = S44B̂2V22.

Proof. Without loss of generality we assume that S1 = I�, T1 = In, V1 = Im and F1
P = F1

D = 0.
Step 1: By Lemma 4.3 we have

V ∗
[E1,A1,B1] = T2V

∗
[E2,A2,B2], W ∗

[E1,A1,B1] = T2W
∗

[E2,A2,B2],

and from Lemma 4.11 we obtain

V ∗
[Ei,Ai,Bi] ∩ W ∗

[Ei,Ai,Bi] = Rn1,i × {0}n2,i+n3,i for i = 1, 2.

This implies n1,1 = n1,2 and

T2 =
⎡⎣T11 T12 T13

0 T22 T23
0 T32 T33

⎤⎦ for T11 ∈ GLn1,1
(R), T22 ∈ Rn2,1×n2,2 , T33 ∈ Rn3,1×n3,2

and T12, T13, T23, T32 of appropriate sizes. Furthermore, Lemma 4.11 gives

Rn1,1+n2,1 × {0}n3,1 = V ∗
[E1,A1,B1] = T2V

∗
[E2,A2,B2] = T2(R

n1,2+n2,2 × {0}n3,2),

which, together with n1,1 = n1,2, yields n2,1 = n2,2, n3,1 = n3,2 and

T32 = 0, T22 ∈ GLn2,1
(R), T33 ∈ GLn3,1

(R).

Step 2: Partitioning

S2 =

⎡⎢⎢⎣
S11 S12 S13 S14
S21 S22 S23 S24
S31 S32 S33 S34
S41 S42 S43 S44

⎤⎥⎥⎦ for S11 ∈ R�1,2×�1,1 , S22 ∈ R�2,2×�2,1 , S33 ∈ R�3,2×�3,1 , S44 ∈ Rm2,2×m2,1
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and

V2 =
[

V11 V12
V21 V22

]
for V11 ∈ Rm1,2×m1,1 , V22 ∈ Rm2,2×m2,1

and off-diagonal block matrices of appropriate sizes, the equation S2B1V2 = B2 in conjunction with
Ŝ4 := [S�

14, S�
24, S�

34]� gives

Ŝ4B̂1V21 = 0, Ŝ4B̂1V22 = 0, S44B̂1V21 = 0, S44B̂1V22 = B̂2.

Since B̂1[V21, V22] has full row rank, it follows that S14 = 0, S24 = 0 and S34 = 0. By Definition
4.9 we have m2,1 = rkB = m2,2 and hence also m1,1 = m1,2. Since S2 is invertible, this implies that
S44 ∈ GLm2,1

(R), thus V21 = 0, V22 ∈ GLm2,1
(R) and, since V2 is invertible, V11 ∈ GLm1,1

(R).

The equation S2(E1T2 + B1F2
P) = E2 yields

[
S21
S31

]
E11,1T11 = 0 and the full row rank of E11,1

implies S21 = 0 and S31 = 0. Since S2 is invertible, it follows that �1,1 ≤ �1,2. Reversing the roles of
[E1, A1, B1] and [E2, A2, B2] gives �1,1 ≥ �1,2, hence �1,1 = �1,2. We further have the equation

S32E22,1T22 = 0,

which by invertibility of T22 and E22,1 gives that S32 = 0. This finally implies �2,1 = �2,2 = n2,1 = n2,2,
�3,1 = �3,2, S22 ∈ GL�2,1

(R), S33 ∈ GL�3,1
(R), and hence the proof of the proposition is complete. �

Remark 4.15 (Geometric interpretation of QPDFF). Since the state-space transformations T for the
QPDFF and the QPFF can be chosen to be identical (the same subspaces are used to define it), it follows
that the corresponding augmented Wong limits have the same control-theoretic geometric interpretation.
The key geometric difference between the QPDFF and the QPFF is the reinterpretations of states in the
QPFF. which are completely controllable due to the external input (represented by the subspace imB) as
underdetermined (and hence completely controllable) variables in the QPDFF.

5. Conclusion

We have presented the novel concepts of quasi P-feedback and quasi PD-feedback forms for DAE
control systems, which reveal the key structural properties of the control system under P(D)-feedback
transformations. Furthermore, the forms are easily obtained via the augmented Wong sequences, which
additionally provides a geometric insight.

Funding

The third author was funded by the NWO Vidi grant 639.032.73.

Disclosure of potential conflicts of interest

The authors declare that they have no conflict of interest.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
ci/article/39/2/533/6380450 by U

niversity of G
roningen user on 24 January 2023



562 T. BERGER ET AL.

References

Berger, T. (2019) Disturbance decoupled estimation for linear differential-algebraic systems. Int. J. Control, 92,
563–612.

Berger, T., Ilchmann, A. & Trenn, S. (2012) The quasi-Weierstraß form for regular matrix pencils. Linear
Algebra Appl., 436, 4052–4069.

Berger, T. & Reis, T. (2013) Controllability of linear differential-algebraic systems—a survey. Surveys in
Differential-Algebraic Equations I (A. Ilchmann & T. Reis eds). Berlin, Heidelberg: Springer, pp. 1–61.

Berger, T. & Reis, T. (2015) Regularization of linear time-invariant differential-algebraic systems. Syst. Control
Lett., 78, 40–46.

Berger, T. & Reis, T. (2017) Observers and dynamic controllers for linear differential-algebraic systems. SIAM J.
Control Optim., 55, 3564–3591.

Berger, T. & Trenn, S. (2012) The quasi-Kronecker form for matrix pencils. SIAM J. Matrix Anal. & Appl., 33,
336–368.

Berger, T. & Trenn, S. (2013) Addition to “The quasi-Kronecker form for matrix pencils”. SIAM J. Matrix Anal.
& Appl., 34, 94–101.

Berger, T. & Trenn, S. (2014) Kalman controllability decompositions for differential-algebraic systems. Syst.
Control Lett., 71, 54–61.

Chu, K.-W. E. (1987) The solution of the matrix equations AXB–CXD=E and (YA–DZ,YC–BZ)=(E,F). Linear
Algebra Appl., 93, 93–105.

Eliopoulou, H. & Karcanias, N. (1995) Properties of reachability and almost reachability subspaces of implicit
systems: the extension problem. Kybernetika (Prague), 31, 530–540.

Frankowska, H. (1990) On controllability and observability of implicit systems. Syst. Control Lett., 14, 219–225.
Gantmacher, F. R. (1959) The Theory of Matrices (Vol. I & II). New York: AMS Chelsea Publishing.
Hernández, V. & Gassó, M. (1989) Explicit solution of the matrix equation AXB – CXD = E. Linear Algebra

Appl., 121, 333–344.
Karcanias, N. & Kouvaritakis, B. (1979) The output zeroing problem and its relationship to the invariant zero

structure: a matrix pencil approach. Int. J. Control, 30, 395–415.
Kronecker, L. (1890) Algebraische Reduction der Schaaren bilinearer Formen. Sitzungsberichte der Königlich

Preußischen Akademie der Wissenschaften zu Berlin, 1225–1237.
Lewis, F. L. (1986) A survey of linear singular systems. Circuits Syst. Signal Process., 5, 3–36.
Loiseau, J.-J., Özçaldiran, K., Malabre, M. & Karcanias, N. (1991) Feedback canonical forms of singular

systems. Kybernetika, 27, 289–305.
Özçaldiran, K. & Lewis, F. L. (1989) Generalized reachability subspaces for singular systems. SIAM J. Control

Optim., 27, 495–510.
Trenn, S. (2013) Solution concepts for linear DAEs: a survey. Surveys in Differential-Algebraic Equations I (A.

Ilchmann & T. Reis eds). Berlin, Heidelberg: Springer, pp. 137–172.

A. Linear matrix equations

In order to prove the claim of Proposition 3.10 we recall two important results concerning the solvability
of linear matrix equations.

Lemma A.1 ((Berger & Trenn, 2012, Lem. 4.14), c.f. Chu (1987)). Consider the the two matrix
equations

0 = E + AY + ZD

0 = F + CY + ZB
(A.1)
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for some A, C ∈ Rm×n, B, D ∈ Rp×q, E, F ∈ Rm×q. Assume that the pencil sB − D has full polynomial
column rank, i.e. there exists λ ∈ R such that (λB − D) has a left inverse (λB − D)†. Then (A.1) is
solvable, if the generalized Sylvester equation

AXB − CXD = −E + (λE − F)(λB − D)†D

is solvable.

Remark A.2 By considering the transposed version of (A.1), the same solvability reduction to a
generalized Sylvester equation is feasible, provided that the matrix pencil sC − A has full polynomial
row rank. In fact, in this case (A.1) is solvable, if

AXB − CXD = −F + C(λC − A)†(λF − E)

is solvable.

Lemma A.3 (Hernández & Gassó, 1989, Thm. 2). Consider the generalized Sylvester equation

AXB − CXD = E (A.2)

for some matrices A, C ∈ Rm×n, B, D ∈ Rp×q, E ∈ Rm×q. Assume that the matrix pencils sC − A and
sB − D have full polynomial rank and assume furthermore that there is no λ ∈ C ∪ {∞} such that both
matrices λC − A and λB − D have a simultaneous rank drop.4 Then the generalized Sylvester equation
(A.2) has a solution X ∈ Rn×p.

4 Here we use the convention that rank(∞M − N) = rankM.
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