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Abstract— This paper is concerned with the linear quadratic
optimal control problem for impulse controllable differential
algebraic equations on a bounded half open interval. Regarding
the cost functional, a general positive semi-definite weight
matrix is considered in the terminal cost. It is shown that for this
problem, there generally does not exist an input that minimizes
the cost functional. First it is shown that the problem can be
reduced to finding an input to an index-1 DAE that minimizes
a different quadratic cost functional. Second, necessary and
sufficient conditions in terms of matrix equations are given for
the existence of an optimal control.

I. INTRODUCTION

In this paper, we consider the problem of finding an input
u that minimizes the cost functional

J−(x, u)=

∫ tf

t0

(
[ xu ]
>
[
Q S

S> R

]
[ xu ]
)

+ x(t−f )>Px(t−f ) (1)

on a half open interval [t0, tf ) for some positive definite
R = R> and positive semi-definite Q = Q> and P = P>,
subject to a differential algebraic equation (DAE)

Eẋ = Ax+Bu, x(0−) = x0, (2)

which is assumed to be impulse controllable and where
E,A ∈ Rn×n, B ∈ Rn×m, for n,m ∈ N, x : [t0, tf )→ Rn
is the state and u : [t0, tf ) → Rm is the input. The weight
matrix in (1) is assumed to be symmetric and positive semi
definite such that it can be decomposed as[

Q S

S> R

]
=
[
C>

D>

]
[C D ] ,

Hence the running cost in (1) can be regarded as the integral
over the norm of the output y(t) = Cx(t) +Du(t). Besides
positive semi-definiteness of the weight matrix P , no further
assumptions are made on the terminal cost. This is in contrast
to the assumption commonly made in the literature that the
weight matrix only penalizes differential states, i.e., is of
the form x(tf )>E>PEx(tf ) [1]–[3] or no terminal cost is
considered with an infinite time horizon [4]–[8]. Also note
that whereas commonly a closed interval is of interest, in this
paper a half open interval is considered. Consequently, the
terminal cost penalizes x(t−f ). However the algebraic states
of (2) can possibly be controlled instantaneously and as a
result x(t−f ) is not necessarily equal to x(tf ) or even well
defined such that an optimal solution might fail to exist as
is shown by the following example.
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Example 1: Consider the DAE given by

[ 1 0
0 0 ] ẋ = [ 0 0

0 1 ]x+
[

0
−1

]
u, x(t−0 ) = [ x0

0 ] , (3)

for some x0 ∈ R and the cost functional

J−(x, u)=

∫ tf

t0

(x2
1 + x2

2 + u2) + (x1(t−f ) + x2(t−f ))2. (4)

Using the structure of the DAE and considering t0 = 0 and
tf = 1 this simplifies to

J−(x, u) = x2
0 + 2

∫ 1

0

u(τ)2dτ + (x0 + u(1−))2 > x2
0.

By choosing u(t) = 0 on [0, 1 − ε) for some ε > 0 and
u(t) = −x0 on [1− ε, 1), we obtain

J(x, u) = x2
0 + 2

∫ 1

1−ε
u(t)2 = (1 + 2ε)x2

0.

This shows that infu J(x, u) = x2
0. However for any input1

for which u(1−) = −x0 6= 0 we have that infu J(x, u) <

J(x, u), because
∫ 1

0
u2 > 0. Hence there does not exists an

optimal control.
However, in the case that the terminal cost only penalizes

the algebraic states, i.e., the cost functional is given by

J−(x, u) =

∫ 1

0

(x2
1 + x2

2 + u2) + x2(1−)2. (5)

it is obvious that the optimal input is given by u(t) = 0
for all t ∈ [0, 1). This shows that a terminal cost of the
form x(tf )>E>PEx(tf ) is only sufficient for existence of
an optimal control, but not necessary. �

The problem described above is motivated by the study
of linear quadratic optimal control of switched DAEs. By
assuming that (2) is the first mode of e.g., a single switched
DAE defined on [t0,∞) and regarding tf as the switching
time, the terminal cost represents the cost originating from
the system on the interval [tf ,∞). In that case, the weight
matrix P has no direct structural relation to the DAE (2) and
can only be assumed to be positive semi-definite.

The literature on optimal control of non-switched DAEs is
quite mature, (besides the already mentioned literature) see
e.g., [9]–[12], and several structural properties of switched
DAEs have been investigated recently [13], [14]. Also results
on optimal control of switched ordinary differential equations
have appeared e.g., [15]. However, to the best of the authors
knowledge, optimal control of switched DAEs has not been
studied yet. This paper can thus be regarded as a step

1By writing u(1−) we implicitely assume that t = 1 is a left-Lebesgue
point of u, see Section II-B



towards the optimal control of switched DAEs. The main
contributions can be summarized as follows.

The aim of this paper is to state conditions on the existence
of inputs that minimizes (1). First, by applying a preliminary
feedback, we will show that minimizing (1) subject to (2) is
equivalent to minimizing a different quadratic cost functional
subject to an index-1 DAE. Second, we will show that if
there exists an optimal control, it is a feedback. Then, using
a completion of the squares formula we show that the cost
functional can be expressed in terms of a solution to a Riccati
differential equation and is quadratic. Finally we state results
on the existence of a solution that minimizes (1) in terms of
matrix equations.

The remainder of this paper is structured as follows. The
mathematical preliminaries and the main results are given in
Section II and III, respectively. Conclusions and a discussion
on future work are given in Section IV.

II. MATHEMATICAL PRELIMINARIES

In this section we recall some notation and properties
related to the DAE (2).

A. Properties and definitions for regular matrix pairs

In the following, we call a matrix pair (E,A) and the
associated DAE (2) regular iff the polynomial det(sE −A)
is not the zero polynomial. Recall the following result on the
quasi-Weierstrass form (QWF) [16].

Proposition 2: A matrix pair (E,A) ∈ Rn×n × Rn×n is
regular if, and only if, there exists invertible matrices S, T ∈
Rn×n such that

(SET, SAT ) = ([ I 0
0 N ] , [ J 0

0 I ]) , (6)

where J ∈ Rn1×n1 , 0 6 n1 6 n, is some matrix and N ∈
Rn2×n2 , n2 := n− n1, is a nilpotent matrix.
The nilpotency index of N in the QWF (6) is called the index
of the matrix pair (E,A) (or the DAE (2)); in particular, the
DAE is called index-1 if, and only if, N = 0 in the QWF. The
matrices S and T can be calculated by using the so-called
Wong sequences [16], [17]:

V0 := Rn, Vi+1 := A−1(EVi), i = 0, 1, ...
W0 := {0}, Wi+1 := E−1(AWi), i = 0, 1, ...

(7)

The Wong sequences are nested and get stationary after
finitely many iterations. The limiting subspaces are defined
as follows:

V∗ :=
⋂
i

Vi, W∗ :=
⋃
Wi. (8)

For any full rank matrices V,W with imV = V∗ and
imW = W∗, the matrices T := [V,W ] and S :=
[EV,AW ]−1 are invertible and (6) holds.

Based on the Wong sequences we define the following
projector and selectors.

Definition 3: Consider the regular matrix pair (E,A) with
corresponding QWF (6). The consistency projector of (E,A)
is given by

Π(E,A) := T [ I 0
0 0 ]T−1.

Furthermore, the differential selector and impulse selector
are respectively given by

Πdiff
(E,A) := T [ I 0

0 0 ]S, Πimp
(E,A) := T [ 0 0

0 I ]S.

In all three cases the block structure corresponds to the block
structure of the QWF. Furthermore we define

Adiff := Πdiff
(E,A)A, Eimp := Πimp

(E,A)E,

Bdiff := Πdiff
(E,A)B, Bimp := Πimp

(E,A)B.

Note that all the above defined matrices do not depend on
the specifically chosen transformation matrices S and T ; they
are uniquely determined by the regular matrix pair (E,A).
Furthermore if a classical solution to (2) exists, it satisfies

x(t) = xdiff(t) + ximp(t) (9)

where xdiff and ximp are referred to as the differential and
algebraic states, respectively and are defined as [18]

xdiff(t) := eA
diff tΠx0 +

∫ t

0

eA
diff (t−τ)Bdiffu(τ) dτ,

ximp(t) := −
ν∑
i=0

(Eimp)iBimpu(i)(t).

B. The distributional solution framework

For studying impulsive solutions, we consider the space
of piecewise-smooth distributions DpwC∞ from [19] as the
solution space, i.e., we seek a solution (x, u) ∈ (DpwC∞)n+m

to the following initial-trajectory problem (ITP):

(Eẋ)[0,∞) = (Ax+Bu)[0,∞), x(−∞,0) = x0
(−∞,0), (10)

where x0 ∈ (DpwC∞)n is some initial trajectory, and fI
denotes the restriction of a piecewise smooth distribution f
to an interval I. The ITP (10) has a unique solution for
any initial trajectory if, and only if, the matrix pair (E,A)
is regular. Furthermore, the solution of (10) considered on
[0,∞) is uniquely determined by x0(0−) and is independent
of the whole past trajectory. Hence, (2) with initial condition
x(0−) = x0 can be interpreted as a short hand notation for
the ITP (10) for some x0 with x0(0−) = x0.

When considering distributional solutions of (2), x can not
simply be evaluated at some time t ∈ R, as x operates on
the space of test-functions. However, when restricting the
solution space to piecewise-smooth distributions, the left-
sided evaluation x(t−), right-sided evaluation x(t+) and
impulsive evaluation x[t] are well-defined for any t ∈ R.

Furthermore, for index-1 DAEs it is not necessary to
consider distributional solutions, instead any locally inte-
grable function pair (x, u) is considered a solution if Ex is
absolutely continuous and (2) is satisfied almost everywhere.
In that case, the notation x(t−f ) (or u(t−f )) implicitly assumes
that tf is a left-Lebesgue point of x (or u), i.e.,

x(t−f ) := lim
h↘0

1

h

∫ tf

tf−h
x(τ)dτ is well defined.



C. Properties of DAEs and optimal control

As for some DAEs Dirac impulses can be avoided by
means of an input, the following definition is introduced.

Definition 4 ( [20]): The DAE (2) is impulse controllable
if for any x0 ∈ Rn there exists a solution (x, u) of the ITP
(10) such that x(0−) = x0 and (x, u)[0] = 0.
If Dirac impules can be avoided, it can be done by feedback.

Lemma 5 ( [21]): The DAE (2) is impulse controllable if
and only if there exists a feedback u = Kx + v such that
the closed-loop DAE Eẋ = (A+BK)x+Bv is index-1.
In the following, consider the cost functional

JE(x, u) =

∫ tf

t0

(
[ xu ]
>
[
Q S

S> R

]
[ xu ]
)

+ x(tf )>E>PEx(tf ) (11)

where
[
Q S

S> R

]
and P are positive semidefinite and R =

R> is positive definite. Applying Pontryagin’s maximum
principle leads to the following necessary conditions.

Theorem 6 ( [2]): Consider the impulse controllable DAE
(2). Let (x∗, u∗) be a solution minimizing the cost functional
(11). Then there exits a costate function µ∗(t) such that
(x∗, u∗, µ∗) satisfies the boundary value problem[

A 0 B
Q A> S

S> B> R

] [
x
µ
u

]
=
[
E 0 0
0 −E> 0
0 0 0

] [
ẋ
µ̇
u̇

]
, (12)

Ex(t0) = Ex0, E>µ(tf ) = E>PEx(tf ). (13)
Given these results, we can recall the following result.
Theorem 7 ( [2]): Let

[
Q S

S> R

]
= [C D ]

>
[C D ] and let

U and V be matrices such that U>EV = [ I 0
0 0 ] and

V >QV = [C1 C2 ]. If (2) is impulse-controllable and [C2 D ]
has full rank, then there exists a unique solution to (12) and
(13) and hence a unique optimal control.

Finally we conclude this recapitulation by recalling that
the optimal control yields a state-feedback.

Theorem 8 ( [3]): Consider (2) with cost functional (11).
If (2) is impulse controllable and stabilizable, and (12) is
regular, impulse-free and no finite eigenvalue lies on the
imaginary axis, there exists a solution (X(t), Y (t)) to the
generalized Riccati differential equation (GRDE) given by

E>Ẋ(t) + Y (t)A+A>X(t) +Q

− (S + Y (t)B)R−1(B>X(t) + S>) = 0,

Y (t)E = E>X(t),

(14)

with terminal condition E>X(tf ) = E>PE. The optimal
cost is quadratic and given by

JE(x∗, u∗) =
1

2
x>0 E

>X(0)x0, (15)

with optimal input u∗(t) = −R−1(B>X(t) + S>)x∗(t).

III. OPTIMAL CONTROL WITH UNCONSTRAINED
TERMINAL COST

Equipped with the mathematical preliminaries, we will
return to the minimization of (1) subject to (2). Recall that (2)
is assumed to be impulse controllable. Hence by Lemma 5

there exists a preliminary feedback u = Kx + v ensuring
that the resulting closed-loop DAE is index-1 and causes the
cost functional (1) to take the form

J−(x, u) =

∫ tf

t0

(
[ x
Kx+v ]

>
[
Q S

S> R

]
[ x
Kx+v ]

)
+x(t−f )>Px(t−f )

=

∫ tf

0

(
[ xv ]
>
[
Q̄ S̄

S̄> R̄

]
[ xv ]
)

+x(t−f )>Px(t−f )=: J̄−(x, v), (16)

where Q̄ = Q + SK + K>S> + K>RK, S̄ = S + K>R,
R̄ = R. Instead of aiming to prove the existence of an
optimal input u to (2) directly, it suffices to find an input
v that minimizes (16) subject to the DAE obtained after the
preliminary feedback. This is formalized in the following
lemma.

Lemma 9: There exists an input u(·) that minimizes (1)
subject to the impulse controllable DAE (2) if and only if
there exists an optimal input v(·) that minimizes J̄−(x̄, v)
given by (16) subject to the index-1 DAE

E ˙̄x = Āx̄+Bv, x̄(0−) = x0, (17)

where Ā := A+BK.
Proof: Applying a feedback to (2) can be regarded as

a change of coordinates

[ xu ] = [ I 0
K I ] [ x̄v ] . (18)

Writing (2) as [E 0 ] [ ẋu̇ ] = [A B ] [ xu ] reveals

[E 0 ]
[

˙̄x
v̇

]
= [E 0 ] [ ẋu̇ ] = [A B ] [ I 0

K I ] [ x̄v ] = [ Ā B ] [ x̄v ] .

Hence (x, u) solves (2) if and only if, (x̄, v) satisfying (18)
solves (17). Furthermore, by (16) J−(x, u) = J̄−(x̄, v).
Next, observe that as (17) is index-1, its solution can be de-
composed as x̄(t) = x̄diff(t) + x̄imp(t) = Π̄x̄(t)− B̄impv(t)
and thus the cost functional

J̄−(x̄,v) =

∫ tf

0

(
[ x̄v ]
>
[
Q̄ S̄

S̄> R̄

]
[ x̄v ]
)

+ x̄(t−f )>Px̄(t−f )

=

∫ tf

0

([
Π̄x̄−B̄impv

v

]> [ Q̄ S̄

S̄> R̄

] [
Π̄x̄−B̄impv

v

])
+ x̄(t−f )>Px̄(t−f ), (19)

=

∫ tf

t0

(
[ x̄v ]
>
[

Π>Q̃Π Π>S̃

S̃>Π R̃

]
[ x̄v ]
)

+ x̄(t−f )>Px̄(t−f ),

where

Q̃ = Q̄, S̃ = S̄ − Q̄B̄imp,

R̃ = R̄− B̄imp>S̄ − S̄>B̄imp + B̄imp>Q̄B̄imp.

Altogether, the problem of finding an input u that minimizes
(16) subject to (2) is thus equivalent to the problem of finding
an input v that minimizes (19) subject to (17).

For analytical purposes, we will assume invertibility of R̃
throughout the remainder of the paper. This is not necessarily
the case, as the invertibility might depend on the feedback
matrix K used to reduce the index of (2). However, under
the conditions of the following lemma, which are similar to
one of the conditions of Theorem 7, positive definiteness of
R̃ is guaranteed regardless of the choice of K.



Lemma 10: Let W̄ be any full rank matrix with im W̄ =
kerE. If [CW̄ D ] has full rank, then R̃ is positive definite.

Under the assumption that R̃ is invertible, we can confine
our attention to the following simpler problem.2

Problem 1: Consider the DAE (2) and assume it is of
index-1 and with consistency projector Π. Furthermore,
consider the cost function

J−Π (x, u) =

∫ tf

t0

(
[ xu ]
>
[

Π>QΠ Π>S

S>Π R

]
[ xu ]
)

+ x(t−f )>Px(t−f ),

(20)

where R = R> is positive definite, Q = Q> and P = P>

are positive semidefinite. Find an input u(·) that minimizes
(20) subject to (2). We will call any such input an optimal
input with corresponding optimal solution x.
Due to the quadratic nature of the cost functional (20) we
can prove that if there exists an input that minimizes (20), it
is linear in the optimal differential state.

Lemma 11: If there exists a solution u(·) that solves Prob-
lem 1, then u(t) = K(t)xdiff(t) for some K(t) ∈ Rm×n.

Proof: First we will show that the map x0 7→ u is linear,
where u is minimizing (20) subject to (2); in particular, we
will show that λu is the optimal control for the initial value
λx0 and that for any optimal inputs ux, uz corresponding to
any initial values x0, z0 ∈ Rn the input ux + uz is optimal
for the initial value x0 + z0. To that extent, let V (x0, t0) be
the value function defined by

V (x0, t0) = min
u
J−Π (x, u)

i.e., the cost for the optimal input input u and the corre-
sponding trajectory x with initial condition x(t−0 ) = x0.
Applying the input λu to an initial condition λx0 results
in a trajectory λx, due to the linearity of solutions of (2).
This means that J−Π (λx, λu) = λ2J−Π (x, u) for any λ ∈ R
and we can conclude that λ2V (x0, t0) = V (λx0, t0), which
shows that λu is optimal for λx.

Furthermore, since J−Π (x+z, u+v)+J−Π (x−z, u−v) =
2J−Π (x, u) + 2J−Π (z, v) we have

V (x0 + z0, t0)+V (x0 − z0, t0) = 2J−Π (x, u) + 2J−Π (z, v).

Which means that V (x0 + z0, t0) + V (x − z, t0) 6
2V (x0, t0) + 2V (z0, t0). Conversely,

2V (x0, t0) + 2V (z0, t0) 6 2J−Π (x, u) + 2J−Π (z, v)

= J−Π (x+ z, u+ v) + J−Π (x− z, u− v)

and hence we can conclude V (x0+z0, t0)+V (x0−z0, t0) =
2V (x0, t0) + 2V (z0, t0). Furthermore, if ux is the optimal
input for x and uz is the optimal input for z then

V (x0 − z0, t0) + V (x0 + z0, t0)

= 2V (x0, t0) + 2V (z0, t0) = 2J−Π (x, ux) + 2J−Π (z, uz)

= J−Π (x+ z, ux + uz) + J−Π (x− z, ux − uz).

2Note that the matrices Q,S,R appearing in Problem 1 are not equal
to the original matrices Q,S,R appearing in (1), but need to be adjusted
according to the derivation of (16) and (19), furthermore, Π is the consis-
tence projector after the application of the possible index-reducing feedback.
However, the terminal cost matrix P is not effected by all these preliminary
transformations.

Since V (x0 + z0, t0) 6 J−Π (x + z, ux + uz) and similarly
V (x0 − z0, t0) 6 J−Π (x− z, ux − uz), it follows that

0 6 J−Π (x+ z, ux + uz)− V (x0 + z0, t0)

= V (x0 − z0, t0)− J−Π (x− z, ux − uz) 6 0,

and thus V (x0 + z0, t0) = J−Π (x+ z, ux + uz). This shows
that ux+uz is optimal for x+ z. Hence there exists a linear
map between the optimal trajectory and the optimal input.
Particularly, the map x(t−0 ) = x0 7→ u(t0) is linear, i.e., there
exists a K(t0) ∈ Rm×n such that u(t0) = K(t0)x(t−0 ).

From the dynamic programming principle [22] it follows
that u[τ,tf ) is the optimal control for the cost function (19)
considered on the interval [τ, tf ) for any τ ∈ [t0, tf ), hence
by replacing the initial time t0 in the above argumentation
by τ ∈ [t0, tf ) we can conclude that for every τ ∈ [t0, tf )
a matrix K(τ) ∈ Rm×n exists such that the optimal control
satisfies u(τ) = K(τ)x(τ−).

Noting that as Πx = xdiff and ximp = −Bimpu the cost
functional (20) can be written as a function of xdiff and u
only, i.e., J−Π (x, u) = J−Π (xdiff , u). Hence it follows that the
input u(t) = K(t)xdiff(t).

The fact that if there exists an optimal control it is linear
in xdiff , leads to the following implications.

Corollary 12: Assume that there exists an input u that
solves Problem 1. Let x = xdiff +ximp be the corresponding
optimal trajectory. If xdiff(τ−) = 0 for some τ ∈ [t0, tf )
then xdiff(t−) ≡ 0 on [t0, tf ). Consequently, xdiff(τ−) = 0
for some τ ∈ [t0, tf ) if and only if xdiff(t−0 ) = 0.

Proof: Since x(t) is a solution to (2) and the input
u = K(t)xdiff(t), in view of (9) the component xdiff solves
the homogeneous time-varying ODE

ẋdiff(t) =
(
Adiff +BdiffK(t)

)
xdiff(t), xdiff(0−) = Πx0.

Consequently, if xdiff(τ−) = 0 for some τ ∈ [t0, tf ),
xdiff(t) = 0 for all t ∈ [τ, tf ). Solving the ODE backwards
in time yields that xdiff(t−0 ) = 0 and hence xdiff ≡ 0.

Next, we show that for any p ∈ im Π there exists an initial
condition and an input such that J−Π (x, u) is minimal and
x(t−f ) = p.

Corollary 13: Assume that Problem 1 is solvable. Then
for any p ∈ im Π, there exists an initial value x0 such that
the optimal trajectory satisfies x(t−0 ) = x0 and xdiff(t−f ) = p.

Next we will derive necessary conditions on the input u.
We will show that the extension of u to [t0, tf ] by defining
u(tf ) = u(t−f ) has to solve another optimization problem.

Lemma 14: An input u solves Problem 1 if, and only if,
ū defined on [t0, tf ] as ū[t0,tf ) = u[t0,tf ) and ū(tf ) = u(t−f )
and its corresponding solution x̄ to (2) on [t0, tf ] minimizes

JΠ(x̄, ū) =

∫ tf

t0

(
[ x̄ū ]
>
[

Π>QΠ Π>S

S>Π R

]
[ x̄ū ]
)

+ x̄(tf )>Px̄(tf ),

(21)
Proof: (⇐) Let x̄ be the corresponding optimal trajec-

tory. Since x̄diff is continuous on [t0, tf ] and ū(tf ) = u(t−f )
by assumption, it follows that

x̄(tf ) = x̄diff(tf )−Bimpū(tf )

= x̄diff(t−f )−Bimpū(t−f ) = x̄(t−f ).



Consequently, given the input u = ū[t0,tf ), the corresponding
trajectory x = x̄[t0,tf ). Hence J−Π (x, u) = JΠ(x̄, ū).

Seeking a contradiction, suppose that there exists an input
v and a corresponding trajectory y for which J−Π (y, v) <
J−Π (x, u) then the input v̄(t) with v̄(t−f ) = v̄(tf ) and
v̄[t0,tf ) = v[t0,tf ) yields JΠ(ȳ, v̄) = J−Π (y, v) < J−Π (x, u) =
JΠ(x̄, ū), which contradicts the optimality of ū. Hence
for all inputs v and corresponding trajectories y we have
J−Π (x, u) 6 J−Π (y, v) and thus u minimizes (20).

(⇒) For the input ū defined as ū = u on [t0, tf ) and
ū(tf ) = u(t−f ) we obtain that J−Π (x, u) = JΠ(x̄, ū). Seeking
a contradiction, suppose that there exists an input w̄ and
a corresponding trajectory ȳ defined on [t0, tf ] for which
JΠ(ȳ, w̄) < JΠ(x̄, ū). For δ > 0 define w̄δ(t) as w̄δ(t) =
w̄(t) on [t0, tf − δ) and w̄δ(t) = w̄(tf ) on [tf − δ, tf ], then
J−Π (yδ, wδ) := J−Π ((ȳδ)[t0,tf ), (w̄δ)[t0,tf )) = JΠ(ȳδ, w̄δ),
where ȳδ is the solution corresponding to w̄δ on [t0, tf ].
Furthermore, for every ε > 0 we find δ > 0 such that
JΠ(ȳδ, w̄δ) < JΠ(ȳ, w̄) + ε. Hence for sufficiently small
ε > 0 and corresponding δ > 0, we have J−Π (yδ, wδ) =
JΠ(ȳδ, w̄δ) < JΠ(ȳ, w̄) + ε < JΠ(x̄, ū) = J−Π (x, u); a
contradiction to optimality of (x, u).

Corollary 15: If there exists an input u that solves Prob-
lem 1, then the optimal trajectory x = xdiff + ximp and
optimal input u satisfy

Bimp>Pxdiff(t−f ) = Bimp>PBimpu(t−f ).
Finally, using the completion of the squares formula the

following result can be obtained.
Lemma 16: Consider Problem 1. Then for any input u(·)

the cost (20) is given by

J−Π (x, u) = xdiff>(t−0 )X(t−0 )xdiff(t−0 )

+

∫ tf

t0

(∥∥∥R 1
2u+R−

1
2 (Bdiff>X + S>)xdiff

∥∥∥2

2

)
+ x(t−f )>Px(t−f )− xdiff>(t−f )X(t−f )xdiff(t−f ), (22)

where X(·) is a solution to the Riccati equation

Ẋ = −Adiff>X −X>Adiff −Π>QΠ

+ (Π>S +X>Bdiff)R−1(Bdiff>X + S>Π), (23)

on [t0, tf ].
Combining all auxiliary results leads to the main result.
Theorem 17: Problem 1 is solvable if, and only if, there

exist X ∈ Rn×n and K ∈ Rm×n such that

K = −R−1(Bdiff>X + S>) (24a)

Bimp>PΠ = Bimp>PBimpKΠ (24b)

X = Π>(I −K>Bimp>)P (I −BimpK)Π. (24c)
Proof: (⇒) By Lemma 11 u(t) = K(t)xdiff(t)

and thus by Corollary 15 we have Bimp>PΠxdiff(t−f ) =

BimpPBimpK(t−f )xdiff(t−f ). By Corollary 13 this needs to
hold for any xdiff(tf ) ∈ im Π, and thus

Bimp>PΠ = BimpPBimpK(t−f ). (25)

Consequently (24b) holds holds for K = K(t−f ). It follows
from Lemma 16 that if X(t) is a solution to the Riccati
equation (23) with terminal condition

X(t−f ) = Π>(I −K(t−f )>Bimp>)P (I −BimpK(t−f ))Π,

and substituting x(t−f ) = (I −BimpK(t−f ))Πxdiff(t−f ), then
the optimal cost is given by

J−Π (x, u) = xdiff>
0 X(t−0 )xdiff

0

+

∫ tf

t0

(∥∥∥(R 1
2K(·) +R−

1
2

(
Bdiff>X(·) + S> ))xdiff

∥∥∥2

2

)
.

Now we will show that this implies K(t) =
−R−1(Bdiff>X(t)+S>) and that K(t−f ) = K, X(t−f ) = X
solve (24a) and (24c). To seek a contradiction, assume that
K(t) 6= −R−1(Bdiff>X(t) + S>). Then for some M > 0

J−Π (x, u) = xdiff>
0 X(t−0 )xdiff

0 (t−0 ) +M.

Then we will show that there exists an input ū that results
in J−Π (x̄, ū) < J−Π (x, u).

Consider ε > 0 arbitrarily small. Then the input ū, defined
by ū(t) = K̄(t)xdiff(t), where

K̄(t) =

{
−R−1(Bdiff>X(·) + S>) t ∈ [t0, tf − ε)
K(t) t ∈ [tf − ε, tf )

results in the following cost

J−Π (x̄, ū) = xdiff>
0 X(t−0 )xdiff

0

+

∫ tf

tf−ε

(∥∥∥(R 1
2K(·) +R−

1
2 (Bdiff>X(·) + S>

)
x̄diff

∥∥∥2

2

)
< xdiff>

0 X(t−0 )xdiff
0 +M = J−Π (x, u).

This contradicts the optimality of the input u. Hence u(t) =
−R−1(Bdiff>X(t) + S>)xdiff(t). Consequently

−R−1(Bdiff>X(t−f ) + S>)xdiff(t−f ) = K(t−f )xdiff(t−f ),

implies that X,Y solve (24) if K = K(t−f ) and X = X(t−f ).
(⇐) For any matrix K that satisfies

Bimp>PΠ = Bimp>PBimp>KΠ, (26)

we have that for all K̄

xdiff(t−f )(I −BimpK)>P (I −BimpK)xdiff(t−f )

6 xdiff(t−f )(I −BimpK̄)>P (I −BimpK̄)xdiff(t−f ),

and that equality holds for any K that satisfies (26). Con-
sequently, for any feedback matrix K̄ we have for all
xdiff(t−f ) ∈ im Π

0 6 xdiff(t−f )>(I − K̄>Bimp>)P (I −BimpK̄)xdiff(t−f )

− xdiff(t−f )>Xxdiff(t−f ).

For the feedback matrix K(t) = R−1(Bdiff>X(t) +
S>)xdiff(t) where X(t) is a solution to (23) with terminal
condition X(tf ) = X , we have that K(tf ) = K and thus
satisfies (24b). Furthermore, as X satisfies (24c), the cost
for the feedback u(t) = K(t)x(t) is given by J−Π (x, u) =



xdiff>
0 X(t−0 )xdiff

0 . Note that for any other input ū(t) =
K̄(t)xdiff(t) the cost is given by

J−Π (x̄, ū) = xdiff>
0 X(t−0 )xdiff

0

+

∫ tf

t0

(
‖R 1

2 ū+R−
1
2 (Bdiff>X(t) + S>)x̄diff‖22

)
+ x̄(t−f )>Px̄(t−f )− x̄diff(t−f )>X(t−f )x̄diff(t−f ),

> xdiff>
0 X(t−0 )xdiff

0 − x̄diff(t−f )>X(t−f )x̄diff(t−f ),

+ xdiff(t−f )>((I − K̄>Bimp>)P (I −BimpK̄)xdiff(t−f )

> xdiff>
0 X(t−0 )xdiff

0 > J−Π (x, u),

and hence u minimizes J−Π (x, u).
Corollary 18: Consider Problem 1 and assume it has a

solution. Let X,K solve (24). Then the u that minimizes
(20) is given by

u(t) = −R−1
(
Bdiff>X(t) + S>

)
xdiff(t),

where X(t) solves (23) with terminal condition X(t−f ) = X

Corollary 19: Consider Problem 1 and let Π>PBimp =
0. Then Problem 1 is solvable if and only if

PBimpR−1(Bdiff>P + S̄>)Π = 0. (27)
Remark 20: In the case P = E>P̄E for some

positive semi-definite P̄ it follows that Π>PBimp =
Π>E>P̄EBimp = 0 as EBimp = 0. Condition (27) is
clearly satisfied and thus there exist an optimal input u.
Furthermore, the optimal input is given by

u(t) = −R−1(BdiffX(t) + S>)Πxdiff(t),

where X(t) is the solution of (23) with terminal constraint
X(tf ) = Π>PΠ.

Example 21 (Example 1 revisted): Returning to the ex-
ample in the introduction, we have for (4) that R = 1,
S = 0, P = [ 1 1

1 1 ], Π = [ I 0
0 0 ], Bimp = [ 0

1 ] and Bdiff = 0. It
follows that Π>PBimp = [ 0 1

0 0 ] 6= 0. This means that there
exist an optimal input if and only if the conditions given
in Theorem 17 are satisfied. However, according to (24a)
K = 0, whereas (24b) states that K also satisfies

[ 0 1
0 0 ] = Bimp>PΠ = Bimp>PBimpKΠ

Hence the conditions are not satisfied and there indeed does
not exist an optimal input u.

For the cost functional (5) we have R = 1, S = 0, P =
[ 0 0
0 1 ], Π = [ I 0

0 0 ], Bimp = [ 0
1 ] and Bdiff = 0.This means that

Π>PBimp = 0. However,

Bimp>PBimpR−1(Bdiff>P + S>)Π = 0,

which shows that there exists an optimal input u. �

IV. CONCLUSION

In this paper, the linear quadratic optimal control problem
for DAEs with unconstrained terminal cost has been studied.
It was shown that for a general weight matrix in the terminal
cost, optimal input might fail to exist. Necessary and suffi-
cient condition that guarantee the existence of an optimal
solution in terms of matrix equations were formulated.

As motivated already in the introduction, the next step is
now to apply our results to study optimal control of switched
DAEs.
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