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The differentiation index of nonlinear differential-algebraic equations
versus the relative degree of nonlinear control systems
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It is claimed in [1] that the notion of the relative degree in nonlinear control theory is closely related to that of the differen-
tiation index for nonlinear differential-algebraic equations (DAEs). In this paper, we give more insights on this claim via a
recent proposed concept (see [2]) called the explicitation of DAEs. The explicitation attaches a class of control systems to a
given DAE, we show that the relative degree of the systems in the explicitation class is invariant in some sense and that the
differentiation index of the original DAE coincides with the maximum of the relative degree of the explicitation systems.
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1 Introduction

In the present paper, we study nonlinear differential-algebraic equations (DAEs) of the following form

Ξ : E(x)ẋ = F (x), (1)

where x ∈ X ⊆ Rn is called the generalized state, E : X → Rn×n and F : X → Rn are C∞-smooth maps, we denote DAE
(1) by Ξn,n = (E,F ), or simply Ξ. Various notions of DAE index serving as measures for different purposes were proposed
in the DAE literatures, see the surveys in [1,3,4]. In particular, the notion of the differentiation index plays a significant role in
the numerical solution theory of nonlinear DAEs [1,5,6], which is the least number of differentiations such that the differential
array of (3) could recover x′ as a function of x and t only (see its formal definition in Section 3 below). On the other hand,
we study nonlinear control systems of form (2), the relative degree (see Definition 3.1 below) of (2) is, roughly speaking, the
number of differentiations of the outputs y such that the inputs u can be recovered. The relative degree is a widely used notion
by the system and control community for some problems as input-output decoupling and linearization, see e.g., [7, 8].

Apart from the similarities in the definitions and initiatives of the differentiation index and the relative degree, we show
one simple case that the two notions are related: For a SISO control system Σ of form (2), by setting the output y = 0, we get
a DAE with the generalized state (x, v) ∈ Rn+1. Then it is easy to understand that the differentiation index νd of the defined
DAE is the relative degree ρ of Σ plus one since after ρ times of differentiations of y, we need one more to let v′ show up. A
general result of the former case is stated as Proposition 1 of [5] and some discussions on comparing the two notions could
be consulted in [9]. In the present paper, we use a recent proposed method called the explicitation which attaches a class of
control systems to a DAE, then we study the relations of the relative degree of the control systems in the explicitation class
and the differentiation index of the DAE.

2 Explicitation of nonlinear differential-algebraic equations

To make connections between DAEs and control systems such that the results from classic control theory could applied to
DAEs, a method called the explicitation of DAEs is studied in the thesis [2]. Note the explicitation is firstly proposed in [10]
for linear DAEs and used in [11] for the linearization problems of semi-explicit DAEs, we now recall its formal definition
for nonlinear DAEs of form (1). We assume throughout that rankE(x) = const. = r for all x around a nominal point x0
and note that x0 could be an admissible/consistent point or not, and here being admissible means that there always exists a
solution of Ξ passing through x0.

Definition 2.1 For a DAE Ξn,n = (E,F ), by a (Q, v)-explicitation, we will call a control system Σ = Σn,m,m = (f, g, h),
where m = n− r, given by

Σ :

{
ẋ = f(x) + g(x)v
y = h(x),

(2)

with f(x) = E†1(x)F1(x), Im g(x) = kerE(x), h(x) = F2(x), where Q(x)E(x) =

[
E1(x)

0

]
, Q(x)F (x) =

[
F1(x)
F2(x)

]
and

E†1 denotes the right inverse of E1. The class of all (Q, v)-explicitations will be called the explicitation class. If a particular
control system Σ belongs to the explicitation class of Ξ, we will write Σ ∈ Expl(Ξ).
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Remark 2.2 The explicitation preserves C1-solutions of DAEs in the following way: for a DAE Ξ and any control system
Σ ∈ Expl(Ξ), a C1-curve x(·) is a solution of Ξ if and only if there exists a C0-control v(·) such that x(·) is a solution of Σ
satisfying y = h(x(·)) = 0.

Notice that a given DAE Ξ has many (Q, v)-explicitations since the construction of Σ ∈ Expl(Ξ) is not unique: there
is a freedom in choosing Q(x), E†1(x), and g(x). The following proposition illustrates that as a consequence of this non-
uniqueness of construction, the explicitation Σ of Ξ is a system defined up to a feedback transformation v = α(x) + β(x)ṽ,
an output multiplication ỹ = η(x)y and a generalized output injection given by γ(x)y = γ(x)h(x), or in other words, a class
of control systems.

Proposition 2.3 Consider a DAE Ξl,n = (E,F ), then two control systems Σn,m,m = (f, g, h) and Σ̃n,m,m = (f̃ , g̃, h̃)
both belong to the same explicitation class Expl(Ξ) if and only if ∃ smooth matrix-valued functions α, γ and invertible smooth
matrix-valued functions β, η, mapping f 7→ f̃ = f + γh+ gα, g 7→ g̃ = gβ and h 7→ h̃ = ηh.

3 The differentiation index and the relative degree

The differential index is originally proposed for DAEs of the general form Ξgen : H(t, x, x′) = 0: define the differential array
of Ξgen by

Hk(t, x, x′, w)=




H

DtH + DxHx′ + D
x′Hx′′

.

.

.
dk

dtk
H


 (t, x, x′, w)=0, (3)

where w =
[
x(2), . . . , x(k+1)

]
, the differentiation index νd is the least integer k such that equation (3) uniquely determines

x′ as a function of (x, t), i.e., x′ = a(x, t). We may also define the differential index for DAE Ξ of form (1) by writing
H(x, x′) = E(x)ẋ− F (x). Now recall the following definition of the (vector) relative degree for nonlinear control systems.

Definition 3.1 ( [7]) A control system Σn,m,m = (f, g, h) has a (vector) relative degree ρ = (ρ1, . . . , ρm) at a point x0 if
(i) LgLkfh(x) = 0, for all 1 ≤ j ≤ m, for all k < ρi − 1, for all 1 ≤ i ≤ m, and for all x in a neighborhood of x0; (ii) The

m×m decoupling matrix: D(x) =
(
LgjL

ρi−1
f hi(x)

)
i,j=1,...,m

is invertible at x0.

Now we are ready to make a connection for the two defined notions.

Theorem 3.2 Consider a DAE Ξm,m = (E,F ) and an admissible point x0 ∈ X . Assume that there exists a control system
Σ ∈ Expl(Ξ) such that Σ has a well-defined relative degree ρ = (ρ1, . . . , ρm) at x0, then

(i) any other control system Σ̃ ∈ Expl(Ξ) has either the same relative degree ρ with Σ or no well-defined relative degree
at x0;

(ii) the differentiation index νd of Ξ exists and satisfies that νd = max {ρ1, . . . , ρm}.

Remark 3.3 (i) Recall from Proposition 2.3 that the two control systems Σ and Σ̃ in Expl(Ξ) can be transformed into
each other by the transformations defined by α, β, γ, η. It is known that the relative degree is invariant under feedback
transformations defined by α, β but may change under general output injections η(x)y and output multiplications γ(x)y.
However, item (i) of Theorem 3.2 shows that if ρ and ρ̃ are the relative degrees of Σ and Σ̃, respectively, then ρ = ρ̃, i.e., for
those systems in the same explicitation class and have a well-defined relative degree, the later notion is invariant.

(ii) It is sometimes difficult to check the differentiation index of a given DAE since higher order terms as x′′, x(3), . . . of the
differential array Hk could also show up when we try to express x′ in terms of (x, t). But now by the result of Theorem 3.2, if
we can find one control system Σ ∈ Expl(Ξ) such that its relative degree is well-defined, then we can immediately conclude
that the differentiation index of Ξ exists and equals to the maximum of the relative degree of Σ.
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