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Abstract

In this paper, we investigate solutions and stability properties of switched nonlinear differential-algebraic equations (DAEs). We
introduce a novel concept of solutions, referred to as impulse-free (jump-flow) solutions, and provide a geometric characterization
that establishes their existence and uniqueness. This characterization builds upon the impulse-free condition utilized in previous
works such as [27, 28], which focused on linear DAEs. However, our formulation extends this condition to nonlinear DAEs.
Subsequently, we demonstrate that the stability conditions based on common Lyapunov functions, previously proposed in
our work [16] (distinct from those in [28]), can be effectively applied to switched nonlinear DAEs with high-index models.
It is important to note that these models do not conform to the nonlinear Weierstrass form. Additionally, we extend the
commutativity stability conditions presented in [32] from switched nonlinear ordinary differential equations to the case of
switched nonlinear DAEs. To illustrate the efficacy of the proposed stability conditions, we present simulation results involving
switching electrical circuits and provide numerical examples. These examples serve to demonstrate the practical utility of the
developed stability criteria in analyzing and understanding the behavior of switched nonlinear DAEs.

Key words: switched systems; nonlinear differential-algebraic equations; impulse-freeness; stability; common Lyapunov
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1 Introduction

We consider a switched nonlinear differential-algebraic
equation (DAE) of the form

Ξσ : Eσ(x)ẋ = Fσ(x), (1)

where x ∈ X is called the generalized state and (x, ẋ) ∈
TX, where TX is the tangent bundle of an open subset
X of Rn (or more general, X is an n-dimensional mani-
fold), the function σ : R → N is a switching signal and
we assume throughout that σ is right continuous with
a locally finite number of jumps and N := {1, . . . , N},
where N ∈ N is the number of DAE models. For each
p ∈ N , the maps Ep : TX → Rn and Fp : X → Rn are
C∞-smooth. The non-switching case of (1), i.e., equation
(4) below, is also called an implicit, singular or descrip-
tor system, which, due to its special features, is useful
for modeling e.g., constrained mechanics [39], chemical
processes [22], power systems [49, 37]. In particular, the
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DAEs are conventional tools to model electrical circuits
[45, 43] as the use of Kirchhoff’s laws results in con-
straints that are algebraic equations. As a consequence,
switched DAEs of the form (1) emerge naturally in mod-
eling electrical circuits with switching devices. Note that
the switching devices which we consider in the paper are
ideal switches but not ideal diodes, the latter lead to
complementarity systems [6, 7].

For each x ∈ X, the map Ep(x) : TxX → Rn of each
model Ξp is a linear map. If Ep(x) is invertible for all x ∈
X, then the switched DAE (1) can be seen as a switched
ordinary differential equation (ODE) ẋ = fσ(x), where
fp := E−1

p Fp is a vector field. Switched linear and non-
linear ODEs and more specifically, the stability analysis
of such systems, have drawn attentions from researchers
for decades, there is a rich literature devoted to them,
see e.g. the book by Liberzon [24], the reviews [26, 46, 30]
and the references therein. In this paper, we will be
particularly interested in generalizing classical switched
ODE results like common Lyapunov functions stability
conditions [24], commutativity and Lie-algebraic condi-
tions [32, 33, 25] as well as converse Lyapunov theorems
[19, 31, 56].
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A special case of (1) is a switched linear DAE of the form

∆σ : Eσẋ = Hσx, (2)

whereEp : R
n → Rn andHp : R

n → Rn are linear maps,
which received increased interests in the recent past, see
e.g., [27, 59, 61, 55, 44] for its stability analysis using
Lyapunov method and dwell time technique, and [29, 60,
41] for commutativity and Lie-algebraic conditions, and
[34, 35] for averaging methods. Compared to the linear
case, much less results on switched nonlinear DAEs can
be found. The first comprehensive paper to discuss the
nonlinear case is [28], in which both common Lyapunov
function conditions and average dwell time conditions
for checking the stability of switched nonlinear DAEs are
proposed, such results are inspirations for the present
paper, but we will take a different approach to define
solutions and to obtain our stability conditions.

One main challenge of studying (switched) DAEs is their
discontinuous behavior, i.e., jumps and impulses. Unlike
ODEs, the C1-solutions of a DAE (see section 2.1) exist
only on a subset of the generalized state space X, which
we will call the consistency space C of the DAE. Even for
a non-switching DAE, it is possible that a given initial
point x−0 ∈ X is not consistent, i.e., x−0 /∈ C. The problem
of finding a consistent point x+0 ∈ C from x−0 is called
the consistent initialization of DAEs. In assumption A4
of [28], the consistent point x+0 is given by the following
jump rule (a similar jump rule can be found in [38] for
linear time-varying DAEs)

x+0 − x−0 ∈ kerE(x+0 ). (3)

However, we have shown in our recent works [13, 15]
that nonlinear coordinate transformations do not pre-
serve the jump rule (3), namely, we may get different
consistent points x+0 from (3) depending on which coor-
dinates are chosen for the DAE Ξ (see also Remark 2.6
below). To have a coordinates-free jump rule, the notion
of impulse-free jump solution is proposed in [15] (see also
Definition 2.4 below). Because inconsistent initialization
can be frequently triggered by switching behaviors in
switched DAEs, the main purpose of the present paper
is to extend the impulse-free jump rule to switched non-
linear DAEs and to discuss their solutions and stability.
Some other works related to inconsistent initial value
problems can be found in [48] discussing nonsmooth
DAEs and their applications on chemical processes [47],
in [7] for linear complementarity DAEs (in particular,
state-dependent switching DAEs) of semi-explicit form,
and in [50] for impact mechanics.

There are three main contributions of this paper: Firstly,
we define the notion of impulse-free jump-flow solution
for (switched) nonlinear DAEs (see Definition 3.1); a ge-
ometric characterization of the impulse-free consistent
space, i.e., the space on which impulse-free (jump-flow)

solutions exist (see Definition 3.2), is given for non-
switching DAEs in Theorem 3.3; the extension of such a
characterisation to the case of switched nonlinear DAEs
results in an existence and uniqueness condition (see
Corollary 3.5), which generalizes the known impulse-free
condition of switched linear DAEs (see [27, 28] or Re-
mark 3.6 below) to the nonlinear case. Secondly, with
the help of a notion called the jump-flow explicitation of
DAEs, we give novel common Lyapunov functions con-
ditions for checking the asymptotic stability of switched
nonlinear DAEs (Theorem 4.5), these condition are dif-
ferent from the corresponding results in [53]. Finally, we
give a nonlinear version of the commutativity conditions
for switched linear DAEs (see [29, 60]), we will show in
Theorem 4.10 that in order to guarantee the asymptotic
stability of switched nonlinear DAEs with all models be-
ing asymptotically stable, not only the commutativity
of the flow vector fields but also some extra invariant
distributions conditions are needed.

Some preliminary results on impulse-freeness and com-
mon Lyapunov function conditions of switched nonlinear
DAEs can be found in our recent conference publication
[16], in which we assume that all models of the switched
DAE are globally equivalent to a nonlinear Weierstrass
form (NWF) (see Corollary 3.4). In the present paper,
both the impulse-freeness condition in Corollary 3.5 and
the common Lyapunov functions conditions in Theo-
rems 2.7 can be applied to high-index DAEs which are
not necessarily equivalent to the (NWF). Additionally,
we give a practical Example 4.7 of a switched electric
circuit to verify our stability conditions and to show the
construction of the common Lyapunov function.

This paper is organized as follows: We review the ex-
istence and uniqueness of C1-solutions and impulse-free
jumps of non-switching DAEs in Sections 2.1 and 2.2, re-
spectively. The results on impulse-free consistency space,
and the existence and uniqueness of impulse-free solu-
tions of switched DAEs are given in Section 3. In Sec-
tions 4.1 and 4.2, respectively, we discuss the stability
of nonlinear switched DAEs using common Lyapunov
function conditions and commutativity conditions. The
proofs are put into Section 5. The conclusions and per-
spectives of the paper are given in Section 6.

Notations:We denote by TxM ⊆ Rn the tangent space
of a submanifold M of Rn at x ∈ M and by TM the
corresponding tangent bundle. By Ck the class of k-
times differentiable functions is denoted. For a smooth
map f : X → R, we denote its differential by df =∑n
i=1

∂f
∂xi

dxi = [ ∂f∂x1
, . . . , ∂f∂xn ] and for a vector-valued

map f : X → Rm, where f = [f1, . . . , fm]T , we de-

note its differential by df =

[
df1

...
dfm

]
. For a vector filed

g : X → TX, we denote its flow map by Φgt , i.e.,

g(x) =
dΦgτ (x)

dτ |τ=0 . For a map A : X → Rn×n, kerA(x),
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ImA(x) and rankA(x) are the kernel, the image and
the rank of A at x, respectively. We use GL(n,R) to de-
note the general linear group of degree n (or in other
words, the set of invertible linear maps from Rn to Rn).
For two column vectors v1 ∈ Rm and v2 ∈ Rn, we write
(v1, v2) = [vT1 , v

T
2 ]
T ∈ Rm+n. Let U ⊆ Rn be a neighbor-

hood of x = 0, a continuous function V : U → R is posi-
tive definite if V (0) = 0 and V (x) > 0 for all x 6= 0 ∈ U .
A function α : [0,∞) → [0,∞) is said to be of class K
if it is continuous, strictly increasing, and α(0) = 0. A
function β : [0,∞) × [0,∞) → [0,∞) is said to be of
class KL if β(·, t) is of class K for each fixed t > 0 and
lim
t→∞

β(r, t) = 0 for each fixed r > 0. We assume famil-

iarity with basic notions from differential geometry [23]
and nonlinear geometric control theory [20, 36], e.g., sub-
manifolds, distributions, involutivity, zero dynamics.

2 C1-solutions and impulse-free jumps of non-
switching DAEs

In this section, we review some notions related to C1-
solutions and jumps of the non-switching case of (1), i.e.,
a nonlinear DAE of the form

Ξ : E(x)ẋ = F (x), (4)

where E : TX → Rn and F : X → Rn are C∞-smooth
maps, we denote a nonlinear DAE of the form (4) by
Ξ = (E,F ).

2.1 C1-solutions of non-switching DAEs

A C1-curve x : I → X for some open interval I ⊆ R is
called a C1-solution of Ξ if E(x(t))ẋ(t) = F (x(t)) for all
t ∈ I. We call a C1-solution x : I → (U ⊆)X maximal

(in U) if there is no other solution x̃ : Ĩ → (U ⊆)X with

I ( Ĩ and x(t) = x̃(t) for all t ∈ I.

Definition 2.1 (consistency space and internal regular-
ity). A point xc ∈ X is called consistent (or admissible
[8, 12]) if there exist a C1-solution x : I → X and tc ∈ I
such that x(tc) = xc. The consistency space C ⊆ X is
the set of all consistent points. A nonlinear DAE Ξ is
called internally regular (or autonomous) around a point
xp ∈ C if there exists a neighborhood U ⊆ X of xp such
that for any point x0 ∈ C∩U , there exists only one max-
imal solution x : I → C ∩ U satisfying x(t0) = x0 for a
certain t0 ∈ I.

The above two notions of consistency space and internal
regularity characterize the existence and the uniqueness
of C1-solutions, respectively. In the following definition,
we recall the geometric reduction method [42, 40, 43, 12],
which is a recursive procedure to construct a sequence of
submanifoldsM c

k whose limitM∗ coincides locally with
the consistency space C (see Proposition 2.3 below).

Definition 2.2 (geometric reduction method [2, 12,
17]). Consider a DAE Ξ and fix a point xp ∈ X. Let
U0 ⊆ X be a connected neighborhood of xp. Step 0:
Set M c

0 = U0. Step k (k ≥ 1): Suppose that a se-
quence of smooth connected embedded submanifolds
M c
k−1 ( · · · (M c

0 of Uk−1 for a certain k−1, have been
constructed. Define recursively

Mk :=
{
x ∈M c

k−1 |F (x) ∈ E(x)TxM
c
k−1

}
. (5)

As long as xp ∈Mk, letM
c
k =Mk ∩Uk be a smooth em-

bedded connected submanifold for some neighborhood
Uk ⊆ Uk−1. The (local) geometric index, or shortly, the
index 1 , of Ξ is defined by

νg := min
{
k ≥ 0 |M c

k+1 =M c
k

}
.

Proposition 2.3 ([12]). In the above geometric reduc-
tion method, there always exists a smallest k such that
either xp /∈ Mk or M c

k+1 = M c
k in Uk+1. In the latter

case denote k∗ = k (thus the geometric index νg = k∗)
and M∗ = M c

k∗+1 and assume that there exists an open
neighborhood U ⊆ Uk∗+1 of xp such that dimE(x)TxM

∗

is constant for x ∈M∗ ∩ U , then

(i) xp is a consistent point and M∗ ∩ U = C ∩ U .
(ii) Ξ is internally regular around xp if and only if

dimE(x)TxM
∗ = dimM∗ for all x ∈M∗ ∩ U .

Note that M∗ is called a locally maximal invariant sub-
manifold [2, 12] and the word “invariant” means that
the C1-solutions starting from any point x+0 ∈M∗ exist
and stay in M∗ for all t ∈ I. So any point x−0 ∈ U \M∗

is inconsistent and there exist no C1-solutions starting
from x−0 .

2.2 Impulse-free jumps of non-switching DAEs

In our recent contributions [13, 15], we studied impulse-
free jumps for DAEs with inconsistent initial values. The
main idea behind the following definition of impulse-free
jump (solutions) is that we view a jump not only as
an instant change between an inconsistent point and a
consistent one but also as a parametrized curve J(τ) 2

whose derivatives with respect to τ satisfy a certain rule,
i.e., staying in kerE, such a rule ensures that the jump
does not cause any impulse.

1 Another commonly used DAE index is the so called dif-
ferentiation index, which is the smallest integer νd such that
the combination of the νd-times differentiation of the DAE
uniquely determines ẋ as a function of x. Actually, the two
notions of index coincide when the forthcoming assumptions
(RE) and (CR) are satisfied, see [14].
2 Note that τ is a parametrization variable which is not
necessarily related to the time t.
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Definition 2.4 (impulse-free jump [15]). Consider a
DAE Ξ = (E,F ), let C be the consistency space of Ξ,
fix an initial point x−0 ∈ X. An impulse-free jump solu-
tion (trajectory), shortly, an IFJ solution, of Ξ starting
from x−0 is a C1-curve J : [0, a] → X, a ≥ 0, satisfying
J(0) = x−0 ∈ X, J(a) = x+0 ∈ C and

∀τ ∈ [0, a] : E(J(τ))
dJ(τ)

dτ
= 0.

A jump x−0 → x+0 associated with an IFJ trajectory J(·)
is called an impulse-free jump IFJ of Ξ.

Definition 2.5. (external equivalence) Two DAEs Ξ =

(E,F ) and Ξ̃ = (Ẽ, F̃ ) are called externally equivalent,
shortly ex-equivalent, if there exist a diffeomorphism
ψ : X → X̃ and a smooth map Q : X → GL(n,R) such

that Ẽ(ψ(x)) = Q(x)E(x)
(
∂ψ(x)
∂x

)−1

and F̃ (ψ(x)) =

Q(x)F (x). Fix a point xp ∈ X, if ψ and Q are de-
fined locally around xp, we will speak about local ex-
equivalence.

Remark 2.6. It is important to note that the ex-
equivalence preserves both C1-solutions and IFJ so-
lutions (and thus IFJs) of DAEs [12, 15]. Note that
the jump rule (3) shown in [28] is not invariant un-
der the ex-equivalence, i.e., given a jump x−0 → x+0
of Ξ defined by (3) then, in general, the jump

x̃−0 = ψ(x−0 ) → x̃+0 = ψ(x+0 ) of Ξ̃ does not satisfy

x̃+0 − x̃−0 ∈ ker Ẽ(x̃+0 ).

We recall the results on existence and uniqueness of IFJs
for index-1 nonlinear DAEs from [15]. For a DAE Ξ =
(E,F ) and a consistent point xc ∈ X, define F2 :=
Q2F , where Q2 : U → R(n−r)×n is of full row rank and
Q2E = 0, and recall M c

1 := {x ∈ U |F (x) ∈ ImE(x)}
by (5). We now introduce the following regularity and
constant rank conditions: there exists a neighborhood U
of xc such that

(RE) the locally maximal invariant submanifold M∗

around xc exists and Ξ is internally regular;
(CR) rankE(x) = const. = r for x ∈ U ; dimdF2(x) and

dimE(x)TxM
c
1 are constant for x ∈M c

1 ∩ U .

Theorem 2.7 (Thm. 4.6 and Cor. 4.9 of [15]). Consider
a DAE Ξ = (E,F ) and a consistent point xc ∈ X. As-
sume that (RE) and (CR) hold in an open neighborhood
U of xc. Then there exists a neighborhood Uc ⊆ U of xc
such that the the following statements are equivalent:

(i) The DAE Ξ is of index-1 and the distribution kerE
is involutive 3 .

3 A distribution D is called involutive if for any two vector
fields f1, f2 ∈ D, we have [f1, f2] ∈ D.

(ii) The DAE Ξ is locally on Uc, via an invertible
matrix-valued function Q and a diffeomorphism
ψ, ex-equivalent to the following index-1 nonlinear
Weierstrass form

(INWF) :

{
ξ̇1 = f∗(ξ1),
0 = ξ2,

(6)

where (ξ1, ξ2) = ψ(x) ∈ Ũ1 × Ũ2 ⊆ Rr × Rm and
m = n− r = dimkerE.

(iii) For any point x−0 ∈ Uc such that M∗ ∩ Nx−
0

6= ∅,
there exists a unique IFJ x−0 → x+0 , whereNx−

0
⊆ Uc

is the integral submanifold of the distribution kerE
on Uc passing through x−0 .

If one of (i),(ii),(iii) holds, then the unique IFJ from x−0
is given by x−0 → x+0 = ΩE,F (x

−
0 ) ∈ M∗ ∩ Nx−

0
, where

ΩE,F : X → M∗ is the nonlinear consistency projector
defined by

ΩE,F := ψ−1 ◦ π ◦ ψ, (7)

where π is the canonical projection (ξ1, ξ2) 7→ (ξ1, 0) and
ψ is the diffeomorphism in (ii).

The submanifold Nx−
0
in Theorem 2.7(iii) can be seen as

a local reachable space of IFJ solutions [15]. Note that

if (and only if) the set Ũ2 of item (ii) above is a star

field (i.e., λξ2 ∈ Ũ2, ∀ξ2 ∈ Ũ2 and ∀λ ∈ [0, 1]), then
we always have Nx−

0
⊆ Uc and M

∗ ∩ Nx−
0
6= ∅; thus by

Theorem 2.7(iii) we have that for any point x−0 ∈ Uc,
there exists a unique IFJ starting from x−0 . If for some
point x−0 ∈ Uc, the setM

∗∩Nx−
0
is empty, then in order

to have a well-defined IFJ for any x−0 ∈ Uc, we need to

take a smaller Uc to exclude those points such that Ũ2 is
a star field. The results shown above on C1-solutions and
IFJs of nonlinear DAEs have their linear counterparts
which we will discuss in the following remark.

Remark 2.8 (C1-solutions and jumps of linear DAEs).
For a linear DAE ∆ = (E,H), its consistency space C

coincides with the limit V ∗ = Vn of the Wong sequence
[58] Vk defined by

V0 = Rn, Vk+1 = H−1EVk, k ≥ 1. (8)

It is clear that the sequence of subspaces Vk is a linear
version of the submanifolds sequence M c

k . The DAE ∆
is called regular if det(sE − H) is not identically zero.
Note that the notions of internal regularity and regular-
ity are equivalent [4] for (square) linear DAEs. A linear
regular DAE ∆ = (E,H) is always ex-equivalent, via
two constant invertible matrices Q and P , to the Weier-

4



strass form [57, 3] ∆̃ = (QEP−1, QHP−1), given by

[
In1

0

0 N

][
ẋ1

ẋ2

]
=

[
A1 0

0 In2

][
x1

x2

]
, (9)

where A1 ∈ Rn1×n1 and N ∈ Rn2×n2 is a nilpotent ma-
trix with nilpotency index ν, i.e. Nν−1 6= 0 and Nν = 0.
The index of ∆ is defined to be the nilpotency index ν of
N , which coincides with its geometric index νg (i.e., the
least integer such that Vνg+1 = Vνg ). The consistency
projector [27, 28] of ∆ is defined by

ΠE,H := P−1

[
In1

0

0 0

]
P. (10)

For a given inconsistent point x−0 ∈ Rn \V ∗, the consis-
tent point x+0 ∈ V ∗ jumping from x−0 is unique and is
defined by x+0 = ΠE,H(x−0 ). A jump x−0 → x+0 is called
impulse-free if x+0 − x−0 ∈ kerE. It follows that all the
jumps from any point x−0 ∈ Rn are impulse-free if and
only if EΠE,H = 0, the latter condition is also equiva-
lent to ν = 1 (i.e., ∆ is of index-1) or V ∗ + kerE = Rn.
It should be pointed out that the involutivity of kerE
and condition (CR) above are always satisfied for any
linear DAE.

3 Impulse-free solutions of switched nonlinear
DAEs

Definition 3.1 (impulse-free solutions). Consider a
switched DAE Ξσ, given by (1). Let σ be a switching
signal with k switches at t1, . . . , tk ∈ I, respectively,
where I = [t0, tk+1) is the time interval of interest. An
impulse-free jump-flow solution, shortly, an impulse-
free solution, of Ξσ is a piecewise C1-curve x : I → X
such that for all 0 ≤ i ≤ k, the jump x(t−i ) → x(t+i ) is
an impulse-free jump of Ξσ(t+

i
) in the sense of Defini-

tion 2.4 and the curve x(·) is a C1-solution of Ξσ(t+
i
) on

[ti, ti+1) such that x(ti) = x(t+i ).

In this section, we study the following problem: given
a switched nonlinear DAE under an arbitrary switching
signal σ : I → N , where I is an interval on which all C1-
solutions of each model are well-defined, when does there
exist a unique impulse-free solution defined on I? A sim-
ple solution to the latter problem is to assume that all
models Ξp of the switched DAE Ξσ are index-1 and that
all distributions kerEp are involutive, because the lat-
ter conditions imply that each model Ξp is ex-equivalent
to its (INWF) and there exists a unique IFJ at each
switching time by Theorem 2.7. Recall that being index-
1 is not a necessary condition to have IFJs, it is possi-
ble that IFJs exist for high-index nonlinear DAEs (see
Remark 4.7(iii) of [15]). We will show in Corollary 3.5

below that a switched nonlinear DAE with high-index
models can have uniquely defined impulse-free solution
under a sufficient condition, which can be regarded as
a nonlinear generalization of the impulse-free condition
for linear DAEs shown e.g. in [51, 27].

3.1 Impulse-free consistency space for non-switching
DAEs

We start from the definition of impulse-free consistent
space for non-switching DAEs.

Definition 3.2 (impulse-free consistency space). For a
nonlinear DAE Ξ = (E,F ), a point x0 ∈ X is called an
impulse-free consistent point if there exists an impulse-
free solution from x0. The set of all impulse-free consis-
tent points is called the impulse-free consistency space
of Ξ, denoted by CIF .

From Definitions 3.1 and 3.2, it is clear to see that
the consistency space C ⊆ CIF . For a linear regular
DAE ∆ = (E,H), the impulse-free consistency space
coincides with the consistent initial differential variables
space (see Chapter 3.1 of [1]), i.e., the set of points x0
such that there exists a C1-solution x(t) of ∆ satisfying
Ex(0) = Ex0, which can be characterized by

CIF = V
∗ + kerE, (11)

where V ∗ = Vν is the limit of the Wong sequences Vk,
given by (8). For a nonlinear DAE Ξ = (E,F ) with
kerE(x) being involutive, the set CIF is, roughly speak-
ing, the union of the integral manifolds Nx+

0
of kerE(x)

for all x+0 ∈ M∗, which is in general not a smooth sub-
manifold. We show below that under certain constant
rank and involutivity conditions, the set CIF coincides
locally with a smooth submanifold M∗

IF , which can be
parametrized as the zero level set of certain functions.

Theorem 3.3. Consider a DAE Ξ = (E,F ) and a con-
sistent point xc ∈ X, let M∗ be the locally maximal in-
variant submanifold of Ξ around xc, assume that there
exists a neighborhood U of xc such that condition (RE)
is satisfied and there exists a distribution D(x) such that
on U :

(D1) D(x), kerE(x) and D(x)+kerE(x) are of constant
dimensions and involutive.

(D2) D(x) = TxM
∗, ∀x ∈M∗ ∩ U .

Let M∗
IF ⊆ U be the integral submanifold of the distri-

bution D(x) + kerE(x) passing through xc, then there
exists a neighborhood Uc ⊆ U such that the impulse-free
consistency space CIF satisfies

CIF ∩ Uc =M∗
IF ∩ Uc = {x ∈ Uc | ξ2(x) = 0} ,
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where ξ2 = (ξ12 , . . . , ξ
n2
2 ) and ξ2(xc) = 0, the codistri-

bution span
{
dξ12 , . . . , dξ

n2
2

}
annihilates the distribution

D(x)+kerE(x). Moreover, the IFJ from any initial point
x−0 ∈M∗

IF ∩ Uc is uniquely defined.

The proof is given in Section 5. The following corol-
lary says that if a DAE is ex-equivalent to the nonlinear
Weierstrass form [12, 16], then it is straightforward to
obtain M∗ and M∗

IF .

Corollary 3.4. Consider a nonlinear DAE Ξ = (E,F )
and a consistent point xc. Assume that on a neighbor-
hood Uc of xc, the DAE Ξ is ex-equivalent, via a diffeo-
morphism ψ = (ψ1, ψ2) = (ξ1, ξ2) : Uc → Ũ1 × Ũ2 and
an invertible map Q defined on a neighborhood Uc of xc,
to the following nonlinear Weierstrass form

(NWF) :

{
ξ̇1 = f∗(ξ1),

Nξ̇2 = ξ2,

where f∗ : Ũ1 → T Ũ1 is a vector field on Ũ1 ⊆ Rn1

and N is a constant nilpotent matrix. Then con-
dition (RE) holds and the distributions kerE and

D = span
{

∂
∂ξ11

, . . . , ∂
∂ξ
n1
1

}
satisfy (D1) and (D2) of

Theorem 3.3. Moreover, we have

M∗ ∩ Uc = C ∩ Uc = {x ∈ Uc |ψ2(x) = 0} ,
M∗
IF ∩ Uc = CIF ∩ Uc = {x ∈ Uc |Nψ2(x) = 0} .

3.2 Existence and uniqueness of impulse-free solutions
for switched nonlinear DAEs

We extend the results of Theorem 3.3 to the switched
case as a corollary shown below.

Corollary 3.5 (impulse-free solution). Consider a
switched DAE Ξσ under an arbitrary switching sig-
nal σ : I → N and let xcp be a consistent point of
the model Ξp, i.e., xcp ∈ C(Ξp), for p ∈ N . Assume
that each DAE model Ξp satisfies (RE), (D1) and
(D2) around xcp. By Theorem 3.3, for each model
Ξp, there exists a neighborhood Ucp of xcp such that
M∗
IF (Ξp) ∩ Ucp = CIF (Ξp) ∩ Ucp. Suppose that all C1-

solutions of each model Ξp defined on C(Ξp) ∩ Ucp can
be extended on the interval I. Then, given any initial
point x0 ∈ M∗

IF (Ξσ(t0)) ∩ Ucσ(t0), there exists a unique

impulse-free solution x : I →
N⋃
p=1

Ucp of Ξσ if

∀p, q ∈ N : M∗(Ξp) ∩ Ucp ⊆M∗
IF (Ξq) ∩ Ucq. (12)

Remark 3.6. For a switched linear DAE ∆σ with all
models ∆p = (Ep, Hp) being regular, the distributional

solution 4 of ∆σ is impulse-free [27, 28] if

∀p, q ∈ N : Eq(I −ΠEq,Hq )ΠEp,Hp = 0, (13)

the latter condition holds if and only if ImΠEp,Hp ⊆
kerEq(I −ΠEq,Hq ), or, equivalently,

∀p, q ∈ N : V
∗(∆p) ⊆ V

∗(∆q) + kerEq,

where V ∗ is the limit of the Wong sequence Vi of (8). Be-
cause C(∆p) = V ∗(∆p) and CIF (∆q) = V ∗(∆q)+kerEq
(see (11)), it is seen that condition (12) is a nonlinear
generalization of the linear impulse-free condition (13).

Example 3.7. Consider a switched nonlinear DAE Ξσ
with the generalized states x = (x1, x2, x3) ∈ X = R3,
and two models Ξ1 = (E1, F1) and Ξ2 = (E2, F2), where

E1(x) =
[

1 0 x1
0 0 0
x3 1 x1

]
, F1(x) =

[
x2−x1
x2+x1x3

x3(x1+x3+1)

]
,

E2(x) =
[
x1+1 0 0
x1+1 0 0

0 0 0

]
, F2(x) =

[ x1

x2+x1(x3+1)
x1+x3

]
.

By (5), M1(Ξ1) =
{
x ∈ R3 |x2 + x1x3 = 0

}
, M∗(Ξ1) =

M2(Ξ1) =
{
x ∈ R3 |x2 + x1x3 = x3(x1 + x3 + 1) = 0

}

and

M∗(Ξ2)=M1(Ξ2)=
{
x ∈ R3 |x2 + x1x3=x1 + x3=0

}
.

The point xc = (0, 0, 0) is a consistent point for both
Ξ1 and Ξ2, we consider Ξ1 on the neighborhood U1 ={
x ∈ R3 |x1 + x3 > −1

}
of xc such thatM∗(Ξ1)∩U1 ={

x ∈ R3 |x2 = x3 = 0, x1 > 0
}

is a smooth embedded
connected submanifold and is locally invariant; we exam-
ine Ξ2 on the neighborhood U2 =

{
x ∈ R3 |x1 + 1 > 0

}

in order that rankE2(x) = const. on U2.

Observe that Ξ1 is index-2 and satisfies (RE) by
dimE1(x)TxM

∗(Ξ1) = dimM∗ = 1 and Proposi-

tion 2.3(ii). The distributionsD1 = span
{

∂
∂x1

− x3
∂
∂x2

}

and

kerE1 = span

{
−x1

∂

∂x1
+ (x1x3 − x3)

∂

∂x2
+

∂

∂x3

}

satisfy conditions (D1) and (D2) of Theorem 3.3 on U1.
Choose ψ12(x) = x2 + x1x3 such that span {dψ12} =
(D1 + kerE1)

⊥. It follows that

M∗
IF (Ξ1)∩U1=

{
x ∈ R3 |x2 + x1x3 = 0, x1 + x3>−1

}
.

Actually, the DAE Ξ1 is locally on U1 ex-equivalent, via
the diffeomorphism

ψ1(x) = (x̃1, x̃2, x̃3) = (ex3x1, x2 + x1x3, x3)

4 For distributional solutions theory of linear DAEs, see e.g.,
[18, 54, 52]
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Fig. 1. Above: red line: M∗(Ξ1) ∩ U1, mesh sur-
face: M∗

IF (Ξ1) ∩ U1, blue curve: M∗(Ξ2) ∩ U2, the set
M∗

IF (Ξ2)∩U2 = U2 =
{

x ∈ R3 |x1 > −1
}

is clear to see and

thus is not shown; Below: red curve with arrows: C1-solutions
of Ξ1, blue curve with arrows: C1-solutions of Ξ2, dashed
lines: IFJ solutions.

and Q1(x) =
[
ex3 −ex3 0
0 1 0
0 0 1

]
, to

Ξ̃1 :
[
1 0 0
0 0 0
0 1 0

] [ ˙̃x1
˙̃x2
˙̃x3

]
=

[ −x̃1−x̃1x̃3
x̃2

x̃3(e
−x̃3 x̃1+x̃3+1)

]
, (14)

which is in the form (29) but not in the (NWF) of
Corollary 3.4. The DAE Ξ2 is of index-1 and locally on
U2 ex-equivalent to

Ξ̄2 :
[
1 0 0
0 0 0
0 0 0

] [ ˙̄x1
˙̄x2
˙̄x3

]
=

[
−x̄1
x̄1+1

x̄2
x̄3

]
, (15)

via the diffeomorphism ψ2(x) = (x̄1, x̄2, x̄3) = (x1, x2 +

x1x3, x1 + x3) and Q2 =
[

1 0 0
−1 1 0
0 0 1

]
. Observe that Ξ̄2 is

in the (NWF) (more precisely, it is in the (INWF) of
(6)). It follows that

M∗
IF (Ξ2) ∩ U2 = X ∩ U2 = U2.

It is seen that M∗(Ξ1) ∩ U1 ( M∗
IF (Ξ2) ∩ U2 and

M∗(Ξ2) ∩ U2 ( M∗
IF (Ξ1) ∩ U1. We draw those sub-

manifolds on the above subfigure of Figure 1. By Corol-
lary 3.5, for any switching signal σ : I → N such that
C1-solutions of Ξ1 and Ξ2 are well-defined on I, there
exists a unique impulse-free solution x : I → U1 ∪ U2

for any initial point x0 ∈ M∗
IF (Ξσ(t0)) ∩ Uσ(t0). For ex-

ample, we fix a switching signal σ : [0,∞) → N with
σ(0) = 1 and two switches at t1 = 0.4 and t2 = 1.4, re-
spectively, choose an initial point x−0 = (4/e,−4/e, 1) ∈
M∗
IF (Ξ1) ∩ U1, the impulse-free solution of Ξσ starting

from x−0 is shown on the below subfigure of Figure 1.
Observe that the dashed curves are IFJ solutions which
satisfy the jump rule in Definition 2.4. Moreover, it is
seen that the impulse-free solution of Ξσ converges to 0,
we will discuss its asymptotic stability in the next sec-
tion, see Example 4.9 below.

4 Stability analysis of switched DAEs under ar-
bitrary switching signal

Throughout the remaining parts of the paper, we focus
on switched nonlinear DAEs Ξσ with all models Ξp being
index-1. More specifically, we will make the following
assumptions (S1) and (S2). If a model Ξp has an index
higher than one, it is possible (see Example 4.9 below)
to use the results in Proposition 4.8 to replace Ξp with

an index-1 DAE Ξ̂p, which has the same impulse-free
solution as Ξp for any initial point x0 ∈ CIF (Ξp).

(S1) There exists a neighborhood Uc of xc = 0 such
that each DAE model Ξp, p ∈ N , is locally on Uc
ex-equivalent to its (INWF), given by (6), via a
smooth map Qp : Uc → GL(n,R) and a diffeomor-

phism ψp = (ψ1p, ψ2p) = (ξ1p, ξ2p) : Uc → Ũcp.

Moreover, all points (ξ1p, λξ2p) ∈ Ũcp, ∀λ ∈ [0, 1]

and ∀(ξ1p, ξ2p) ∈ Ũcp.
(S2) All C1-solutions of Ξp onUc∩C(Ξp) can be extended

on I = [0,+∞).

Remark 4.1. Note that (S1) implies (CR) and (RE)
and by Theorem 2.7, (S1) is equivalent to

(S1)’ there exists a neighborhood Uc of xc = 0 such that
for any initial point x−0 ∈ Uc, there exists a well-
defined IFJ x−0 → x+0 and its associated IFJ trajec-
tory J(τ) ∈ Uc, ∀0 ≤ τ ≤ a for the model Ξp.

It is seen that under condition (S1) (or (S1)’), condition
(12) is always satisfied because (S1) impliesM∗

IF (Ξq)∩
Uc = Uc, ∀q ∈ N . Hence if (S1) and (S2) are both
satisfied, by Corollaries 3.4 and 3.5, there exists a unique
impulse-free solution x : [0,+∞) → Uc for any initial
point x0 ∈ Uc. Note that for the case that (S1) holds
only on Uc \ {0}, the latter conclusion is still true if
x(t) = 0 is the unique solution for xc = 0.

To both linear and nonlinear DAEs, one can attach a
class of control systems, called the explicitation of DAEs,
which is a general framework to use control theory to
solve DAE problems, see e.g., [8, 11, 12, 10, 9] for details.
Now we recall the following notion of jump-flow explic-
itation [16], which is a control system, associated with
any DAE being ex-equivalent to the (INWF).

Definition 4.2 (jump-flow explicitation of DAEs).
Consider a DAE Ξ = (E,F ), assume that Ξ is ex-
equivalent to the (INWF) of (6) via an invertible ma-
trix Q(x) and a diffeomorphism ψ = (ψ1, ψ2) = (ξ1, ξ2)
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defined on X, the jump-flow explicitation of Ξ is the
following nonlinear control system

Σe :




ẋ = fe(x) +

m∑

i=1

gei (x)vi=f
e(x) + ge(x)v,

y = he(x),

(16)

denoted by Σe = (fe, ge, he), where v ∈ Rm is a vector of
control inputs, m = n− r = dimkerE. The vector field
fe : X → TX, the matrix valued-function ge : X →
Rn×m (whose columns gei : X → TX, 1 ≤ i ≤ m are
vector fields) and he : X → Rm are defined by

fe :=

(
∂ψ

∂x

)−1 [
f∗◦ψ1

0

]
, ge :=

(
∂ψ

∂x

)−1 [
0
Im

]
, he :=ψ2.

Remark 4.3. The vector fe plays a similar role as
the flow matrix Adiff = P−1

[
A1 0
0 0

]
P for a linear DAE

∆, see e.g., [27], [53]. The ODE ẋ = fe(x), which is
the zero dynamics of the control system Σe, has the
same C1-solutions with the DAE Ξ. Moreover, because
of Im ge = kerE, any IFJ solution J : [0, a] → X of Ξ by
Definition 2.4 can be seen as a solution of the control sys-

tem dJ(τ)
dτ = ge(J(τ))v(J(τ)) for a certain choice of input

v which renders the solution J(τ) from J(0) = x−0 ∈ X
to x+0 = J(a) ∈ C. It follows that the nonlinear consis-
tency projector ΩE,F , given by (7), coincides with the

flow map Φv
e

τ of the vector field ve = gev, i.e.,

x+0 = ΩE,F (x
−
0 ) = Φv

e

a (x−0 ).

A particular choice of v is v(x) = −he(x), i.e., ve =
−gehe, then we have a = ∞ because the solution J :
[0,+∞) → X of dJ

dτ = −gehe(J) (the latter is dξ1
dτ =

0, dξ2
dτ = −ξ2 in (ξ1, ξ2)-coordinates) is an IFJ solution

of Ξ. The impulse-free solution of Ξ for any initial point

x0 can be expressed as x(t) = Φf
e

t ◦ΩE,F ◦x0, where Φf
e

t
is the flow map of the vector field fe. Furthermore, the
following properties hold for the jump-flow explicitation

fe ∈ ker dhe, Im ge ∩ ker dhe = 0,

dhe · ge = Im, dim(Im ge ⊕ ker dhe) = n.
(17)

4.1 Stability analysis of switched DAEs via common
Lyapunov functions

Given any internally regular DAE Ξ = (E,F ), if F (0) =
0, then xc = 0 is clearly consistent and is also an equilib-
rium of Ξ, because x(t) = 0 is the only C1-solution pass-
ing through xc = 0. For a switched DAE Ξσ, we make
the following assumption to guarantee that xc = 0 is a
common equilibrium for all models Ξp = (Ep, Fp):

(S3) the vector-valued functions Fp(x) satisfy Fp(0) = 0,
∀p ∈ N .

Consider a switched DAE Ξσ satisfying (S3) and a do-
main D ⊆ Rn containing xc = 0, fix a switching signal σ,
suppose that for any initial point x0 ∈ D, the impulse-
free solution x : [0,+∞) → D of Ξσ is well-defined.

Definition 4.4 (stability). The equilibrium xc = 0 is
called stable if for any ǫ > 0, there exists δ > 0 such
that the implication ||x(0)|| < δ ⇒ ||x(t)|| < ǫ, ∀t > 0 is
true for all impulse-free solutions x of Ξσ; the DAE Ξσ
is called asymptotically stable over D if xc = 0 is stable
and all impulse-free solutions on D converge to zero, or
equivalently, if there exists β : [0,∞) × [0,∞) → KL
such that ||x(t)|| ≤ β(||x0||, t), ∀t ≥ 0, ∀x0 ∈ D.

The following theorem is the “index-1” and “local” case
of Theorem 15 in [16], the latter was given under the as-
sumption that each DAE model Ξp is ex-equivalent to
its (NWF) (see Corollary 3.4) on the whole generalized
state space X. We will show in Example 4.9 below that
with the help of the novel results in Proposition 4.8 be-
low, the results of Theorem 4.5 can be also applied to
switched DAEs with high-index models which are not
necessarily ex-equivalent to the (NWF).

Theorem 4.5. For a switched nonlinear DAE Ξσ, given
by (1), assume that there exists a neighborhoodUc of xc =
0 such that (S1)-(S3) are satisfied on Uc. Let a control
systemΣep = (fep , g

e
p, h

e
p) be the jump-flow explicitation of

the model Ξp for each p ∈ N . Then the switched DAE Ξσ
is asymptotically stable over Uc, uniformly for arbitrary
switching signal σ if there exists a common C1-positive
definite (Lyapunov) function V : Uc → [0,∞) such that
the level set La := {x ∈ Uc |V (x) ≤ a} is compact for
every a ∈ V (Uc) and ∀p, q ∈ N :

∂V (x)

∂x
fep (x) < 0, ∀x ∈ (M∗(Ξp) ∩ Uc) \ {0} , (18)

∂V (x)

∂x
vep(x) ≤ 0, ∀x ∈M∗(Ξq) ∩ Uc, (19)

where vep := −gephep is a vector field on Uc andM
∗(Ξp)∩

Uc =
{
x ∈ Uc

∣∣ hep(x) = 0
}
.

Conditions (18) and (19) mean that the Lyapunov
function V (x) decreases along the flow dynamics (C1-
solutions) and the jump dynamics (IFJ solutions) of the
model Ξp, respectively. It was shown in Lemma 16 of
[16] that condition (19) is equivalent to condition (14)
in Theorem 4.1 of [28]), i.e.,

V (ΩEp,Fp(x))− V (x) ≤ 0, ∀x ∈M∗(Ξq) ∩ Uc, (20)

where ΩEp,Fp is the nonlinear consistency projector of
Ξp. The differences between Theorem 4.5 and Theo-
rem 4.1 of [28], and the advantages of using jump-flow
explicitation are explained in Remark 17 of [16]. We give
the full proof of Theorem 4.5 in Section 5, which was
absent in [16].
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Any linear regular index-1 DAE ∆ = (E,H) is ex-
equivalent (via two invertible constant matrices Q and
P ) to the Weierstrass form (9) with N = 0. The jump-
flow explicitation of the linear DAE ∆ is a linear control
system Λe = (Ae, Be, Ce) : ẋ = Aex + Beu, y = Cex,
where

Ae = P−1
[
A1 0
0 0

]
P, Be = P−1

[
0
Im

]
, Ce = [ 0 Im ]P.

(21)
By choosing a common Lyapunov function in the
quadratic form V (x) = xTLx, we can straightforwardly
formulate the linear version of Theorem 4.5 as a linear
matrices inequalities (LMIs) problem:

Corollary 4.6 (linear case). Consider a switched linear
DAE ∆σ of the form (2) with all models ∆p = (Ep, Hp)
being index-1 regular linear DAEs. For each p ∈ N , let
Λep = (Aep, B

e
p, C

e
p) be the jump-flow explicitation of the

model ∆p = (Ep, Hp). Then ∆σ is asymptotically sta-
ble under arbitrary switching signal σ if there exists a
positive-definite matrix L = LT > 0 such that

∀p, q ∈ N :

{
(Ce

p)
T ((Aep)

TL+ LAep)C
e
p < 0

(Ce
q)
T (LBepC

e
p + (BepC

e
p)
TL)Ce

q ≥ 0,

whereCe
p is a full column rank matrix satisfying ImCe

p =
kerCep.

Example 4.7. Consider a switched electrical circuit
shown in Figure 2 below. The circuit consists of a non-
linear resistor N , a nonlinear capacitor with voltage-
related capacitance C(vc), an inductor with constant in-
ductance L and a switching device S. Let

ξ = (x, y, z) = (i, v, vc) ∈ X = R3

be the generalized states, where i = x is the current and
vC = z is the voltage of the capacitor and v = y denotes
the voltage between the nodes 1 and 2. The capacitance
C(vc) and the characteristic of the nonlinear resistor
a(iN , vN ) = 0 are given by

C(vC) = v2C + 1, a(iN , vN ) = iN − v3N = 0.

Notice that we have i− v3 = x− y3 = 0 when S is open
and iL = i − iN = i − v3 = x − y3 when S is closed.
Using the Kirchhoff’s laws, the circuit can be modeled
by a switched nonlinear DAE Ξσ with two models Ξ1

(representing that S is open) and Ξ2 (representing that
S is closed), where

Ξ1 :
[
0 0 C(z)
0 0 0
0 0 0

] [
ẋ
ẏ
ż

]
=

[ x
x−y3
y+z

]

and

Ξ2 :

[
0 0 C(z)

L −3Ly2 0
0 0 0

] [
ẋ
ẏ
ż

]
=

[ x
−R(x−y3)+y

y+z

]
.

C(vC)

vC=z

S

R

L

1

Nv=y

2i=x

Fig. 2. A nonlinear switching electric circuit

The two models are ex-equivalent on Uc = X to their
(INWF), given by, respectively,

Ξ̃1 :
[
1 0 0
0 0 0
0 0 0

] [ ˙̃z
˙̃x
˙̃y

]
=

[
−z̃3

z̃2+1

x̃
ỹ

]

and

Ξ̃2 :
[
1 0 0
0 1 0
0 0 0

] [ ˙̃z
˙̃x
˙̃y

]
=

[
x̃−z̃3

z̃2+1

−L−1Rx̃−L−1z̃
ỹ

]

via suitable invertible matrix-valued functions Q1 and
Q2, and the following coordinates transformations

ψ1 = (z̃, x̃, ỹ) = (z, x− y3, y + z) and ψ2 = ψ1.

Both Ξ1 and Ξ2 are ex-equivalent to their (INWF) on
Uc = X and satisfy conditions (S1)-(S3) onUc. Then by
Definition 4.2, we construct the jump-flow explicitation
Σe1 = (fe1 , g

e
1, h

e
1) and Σe2 = (fe2 , g

e
2, h

e
2) of Ξ1 and Ξ2,

respectively, where

fe1 =

[
−3y2

−1
1

]
· −z3

z2+1
, ge1 =

[
1 3y2

0 1
0 0

]
, he1 =

[
x−y3
y+z

]
,

fe2 =

[
−3y2

−1
1

]
· x−y3−z3

z2+1
+

[
−R(x−y3)−z

L

0
0

]
,

ge2 =
[
3y2

1
0

]
, he2 = y+z .

Consider the following common Lyapunov function can-
didate defined on Uc = X:

V (ξ) = V (x, y, z) =
R

4
z4+

R

2
z2+

L

2
(x−y3)2+1

2
(y+z)2.

Define ve1 := −ge1he1 and ve2 := −ge2he2, it follows

that Lfe1 V (ξ) = ∂V (ξ)
∂ξ fe1 (ξ) = −Rz4, Lve1V (ξ) =

∂V (ξ)
∂ξ ve1(ξ) = −L(x − y3)2 − (y + z)2, Lfe2 V (ξ) =

∂V (ξ)
∂ξ fe2 (ξ) = −R(x−y3)2−Rz4, Lve2V (ξ) = −(y+ z)2.

Thus by M∗(Ξ1) =
{
ξ ∈ X

∣∣ x− y3 = y + z = 0
}
and

M∗(Ξ2) = {ξ ∈ X | y + z = 0}, we get

Lfe1 V (ξ)|M∗(Ξ1) = −Rz4 < 0, ∀ξ ∈M∗(Ξ1) \ {0},
Lve1V (ξ)|M∗(Ξ2) = −L(x− y3)2 ≤ 0, ∀ξ ∈M∗(Ξ2),

Lfe2 V (ξ)|M∗(Ξ2) < 0, ∀ξ ∈M∗(Ξ2) \ {0},
Lve2V (ξ)|M∗(Ξ1) = 0, ∀ξ ∈M∗(Ξ1).
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Fig. 3. Magenta curve: M∗(Ξ1), light blue surface: M∗(Ξ2),
dark red curve: C1-solutions of Ξ1, dark blue curve:
C1-solutions of Ξ2, dashed lines: IFJ solutions.

It follows that conditions (18) and (19) of Theorem 4.5
are satisfied on Uc = X. Hence, the switched DAE Ξσ is
globally asymptotically stable, uniformly for arbitrary
switching signal σ. For example, let L = R = 1, we take
an initial point ξ0 = (0, 0, 1) (which is not consistent for
both Ξ1 and Ξ2) and choose a periodical switched signal
σ with the period T = 0.4 and σ(0) = 1, the impulse-free
solution of Ξσ starting from ξ0 is drawn in Figure 3.

Now we show how to use the results in Section 3 and
Theorem 4.5 to check the stability of high-index DAEs
which may not be ex-equivalent to the (NWF).

Proposition 4.8 (index-reduction). Consider the
switched DAE Ξσ in Corollary 3.5. Assume addition-
ally that Fp(0) = 0 and I = [0,∞). Then, there exists

another switched DAE Ξ̂σ defined on the neighborhood
Uc of xc = 0 such that each model Ξ̂p of Ξ̂σ is in

the (INWF) and the two switched DAEs Ξ̂σ and Ξσ
have the same impulse-free solution x(·) for any initial
point x0 ∈ M∗

IF (Ξσ(0)) ∩ Uc. Moreover, we have that

Ξ̂σ satisfies conditions (S1)-(S3) and the solution x(·)
is asymptotically stable over Uc if conditions (18) and
(19) are satisfied for the jump-flow explicitations of the

models of Ξ̂σ.

Proof. Consider the DAE Ξ in Theorem 3.3 and the fol-
lowing index-1 DAE Ξ̂ defined on Uc, given by

Ξ̄ :

{
ξ̇1 = F̃1(ξ1,0,0)
0 = ξ2
0 = ξ3

ψ(x)=ξ⇒ Ξ̂ :

{
∂ψ1(x)

∂x
ẋ = F̃ (ψ1(x),0,0)

0 = ψ2(x)
0 = ψ3(x),

where ψ = (ψ1, ψ2, ψ3) = (ξ1, ξ2, ξ3) and Ξ̄ is con-
structed from (29) and is in the (INWF). Then Ξ

and Ξ̂ have the same impulse-free solution for any
initial point x0 ∈ M∗

IF ∩ Uc = CIF ∩ Uc. Indeed,
recall from the proof of Theorem 3.3 that Ξ is ex-
equivalent to Ξ̃, given by (29). Notice that Ξ̃ and Ξ̄
have the same C1-solutions ξ(t) = (ξ1(t), 0, 0) for any
initial point (ξ+10, 0, 0) ∈ ψ(M∗ ∩ Uc), where ξ1(t)

is a solution of the ODE ξ̇1 = F̃1(ξ1, 0, 0), and the
same IFJ: (ξ−10, 0, ξ

−
30) → (ξ−10, 0, 0) for any initial

point (ξ−10, 0, ξ
−
30) ∈ ψ(M∗

IF ∩ Uc), so Ξ̃ and Ξ̄ have
the same impulse-free solution for any initial point
ξ0 ∈ ψ(M∗

IF ∩ Uc). The ex-equivalence preserves both
C1-solutions and impulse-free jumps (see Remark 2.6),

so the ex-equivalent DAEs Ξ and Ξ̃, and also Ξ̄ and Ξ̂,
have corresponding impulse-free solutions. Therefore,
Ξ and Ξ̂, which are both represented in x-coordinates,
have the same impulse-free solutions for any initial
point x0 ∈M∗

IF ∩ Uc.

Using the method above, for each model Ξp of Ξσ, we

can construct a DAE Ξ̂p which has the same impulse-

free solutions with Ξp. Let Ξ̂σ be a switched DAE with

models Ξ̂p and with the same switching signal σ(t) as
Ξσ. Then x(·) is the impulse-free solution of Ξσ starting
from x0 ∈ M∗

IF (Ξσ(0)) ∩ Uc if and only if it is that of

Ξ̂σ. Clearly, Ξ̂σ satisfies (S1)-(S3), we can check its
asymptotically stability by (18) and (19) of Theorem 4.5,
which would imply the asymptotically stability of any
solution x(·) of Ξσ.

Example 4.9 (continuation of Example 3.7). Consider
the switched DAE Ξσ in Example 3.7. The DAE Ξ1 is
index-2 and is not ex-equivalent to the (NWF). Using
the method in Proposition 4.8, we construct a DAE Ξ̄1

from (14) and transform it into Ξ̂1:

Ξ̄1 :
[
1 0 0
0 0 0
0 0 0

] [ ˙̃x1
˙̃x2
˙̃x3

]
=

[
−x̃1
x̃2
x̃3

]
x=ψ−1

1 (x̃)⇒

Ξ̂1 :
[
1 0 x1
0 0 0
0 0 0

] [ ẋ1
ẋ2
ẋ3

]
=

[ −x1
x2+x1x3

x3

]
.

The DAE Ξ̂1 has the same impulse-free solution with Ξ1

for any initial point x0 ∈M∗
IF (Ξ1)∩U1. Now Ξ̂1 and Ξ2

are ex-equivalent to Ξ̄1 and Ξ̄2 (see (15)), respectively,
on Uc = U1 ∩U2 =

{
x ∈ R3

∣∣ x1 > −1, x1 + x3 > −1
}
,

and Ξ̄1 and Ξ̄2 are both in (INWF). It can be
seen that conditions (S1)-(S3) are satisfied on Uc
for the switched system Ξ̂σ with models Ξ̂1 and
Ξ̂2 = Ξ2. By Definition 4.2, we construct the jump-
flow explicitation systems Σe1 = (fe1 , g

e
1, h

e
1) and

Σe2 = (fe2 , g
e
2, h

e
2) for Ξ̂1 and Ξ2, respectively, where

fe1 (x) =
[ −x1
x1x3
0

]
, ge1(x) =

[
0 −x1
1 x1x3−x1
0 1

]
, he1(x) =

[
x2+x1x3

x3

]
, fe2 (x) = −x1

x1+1

[
1

x1−x3
−1

]
, ge2(x) =

[
0 0
1 −x1
0 1

]
,

he2(x) =
[
x2+x1x3
x1+x3

]
. Thus ve1 := −ge1he1 =

[
x1x3

−x2−x1(x3)
2

−x3

]

and ve2 := −ge2he2 =

[
0

(x1)
2−x2

−x1−x3

]
. Choose the following

Lyapunov function candidate

V (x) =
1

2
(x1 + x3)

2 +
1

2
(x2 + x1x3)

2 +
1

2
(x3)

2.
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It follows that Lfe1 V (x)|M∗(Ξ1) = −x21 < 0, ∀x ∈
(M∗(Ξ1) ∩ Uc) \ {0}; Lve1V (x)|M∗(Ξ2) = −(x3)

2 ≤ 0,

∀x ∈M∗(Ξ2)∩Uc; Lfe2 V (x)|M∗(Ξ2) = − (x1)
2

x1+1 < 0, ∀x ∈
(M∗(Ξ2)∩Uc)\{0}; Lve2V (x)|M∗(Ξ1) = −(x1+x3)

2 ≤ 0,
∀x ∈ M∗(Ξ1) ∩ Uc. Hence (18) and (19) hold, we have

that Ξ̂σ and thus Ξσ are asymptotically stable over Uc
under arbitrary switching signals for any initial point
x0 ∈M∗

IF (Ξσ(0)) ∩ Uc.

4.2 Commutativity and invariance conditions for
switched nonlinear DAEs

It is well-known (see [32, 24]) that for a switched non-
linear ODE ẋ = fσ(x) with all models being asymptot-
ically stable, if

∀p, q ∈ N : [fp, fq] :=
∂fq
∂x

fp −
∂fp
∂x

fq = 0,

then the switched ODE is asymptotically stable for ar-
bitrary switching signal σ. In this section, we discuss
how to generalize the above commutativity condition to
switched nonlinear DAEs. The results in [29] show that
for a switched linear DAE∆σ, given by (2), with all mod-
els being regular and asymptotically stable, the commu-
tativity of the flow matrices Adiff (i.e., Ae of (21)) for
each model, i.e.,

∀p, q ∈ N : [Aep, A
e
q] = AeqA

e
p −AepA

e
q = 0, (22)

implies the asymptotical stability of ∆σ under arbitrary
switching signal σ. We will show in the following the-
orem that for a switched nonlinear DAE Ξσ, not only
commutativity conditions (i.e., (23)) but also certain in-
variant distributions conditions (i.e., (24)-(25)) are re-
quired to guarantee the asymptotically stability of Ξσ
under arbitrary switching signal.

Theorem 4.10 (commutativity and invariance condi-
tions). Consider a switched nonlinear DAE Ξσ, given by
(1). Assume that there exists a neighborhood Uc of xc = 0
such that (S1)-(S3) are satisfied on Uc. Suppose that
each model Ξp of Ξσ is asymptotically stable over Uc.
Then Ξσ is asymptotically stable, uniformly for arbitrary
switching signal σ, over Uc, if ∀p, q ∈ N :

[fep , f
e
q ] = 0, (23)

[fep ,Geq ] ⊆ Geq , [fep ,He
q] ⊆ He

q, (24)

(gep · dhep) · Geq ⊆ Geq , (gep · dhep) · He
q ⊆ He

q, (25)

where fep : Uc → TUc, g
e
p : Uc → Rn×mp and hep :

Uc → Rmp×n are from the jump-flow explicitation Σep =
(fep , g

e
p, h

e
p), given by (16), of the model Ξp, and where

Gep = Im gep = kerEp andHe
p = ker dhep are distributions.

The following lemma shows that (25) can be replaced
by condition (26) below, the latter is crucial for proving
Theorem 4.10.

Lemma 4.11. Condition (25) is equivalent to

(Gep ∩ Geq )⊕ (He
p ∩ Geq ) = Geq ,

(Gep ∩He
q)⊕ (He

p ∩He
q) = He

q.
(26)

The proofs of Lemma 4.11 and Theorem 4.10 are given
in Section 5.

Remark 4.12. For a switched linear DAE ∆σ with all
models ∆p = (Ep, Hp), p ∈ N , being index-1, regu-
lar, and asymptotically stable, the linear commutativity
condition (22) implies the linear version of the invari-
ance conditions (24)-(25), i.e., ∀p, q ∈ N : Aep · Beq ⊆ Beq ,
Aep · Ceq ⊆ Ceq , BepCep · Beq ⊆ Beq , BepCep · Ceq ⊆ Ceq , where
Aep, B

e
p, C

e
p are system matrices of the jump-flow ex-

plicitation of ∆p, given by (21), the subspaces Bep =
ImBep and Cep = kerCep . Indeed, we know from Lemma 9
of [29] that (22) implies ∀p, q ∈ N : [Aep,ΠEq,Hq ] =
[ΠEp,Hp ,ΠEq,Hq ] = 0. Moreover, we have ∀p ∈ N :
ΠEp,Hp = In−BepC

e
p by (10) and (21). Then by a direct

calculation, we get

∀p, q ∈ N : [Aep, B
e
qC

e
q ] = [BepC

e
p , B

e
qC

e
q ] = 0.

Recall by constructions that Bep = ImBepC
e
p and Cep =

kerBepC
e
p . So byA

e
p ·BeqCeq = BeqC

e
q ·Aep, we haveAep ·Beq =

ImBeqC
e
q ·Aep ⊆ Beq and {0} = BeqC

e
q ·Aep · Ceq ⇒ Aep · Ceq ⊆

Ceq . Similarly, the condition [BepC
e
p , B

e
qC

e
q ] = 0 implies

BepC
e
p · Bcq ⊆ Bcq and BepCep · Ccq ⊆ Ccq .

It is known (see e.g., [32, 56]) that for pairwise commut-
ing asymptotically stable nonlinear ODEs

ẋ = fp(x), p ∈ N , (27)

it is possible to find a common Lyapunov function. In
particular, assume that the family of systems in (27) is
defined on a ball Br := {x ∈ Rn | ||x|| ≤ r}. Then there
exist r0 ∈ (0, r) and a positive-definite C1-(Lyapunov)
function V (x) such that La := {x ∈ Br0 |V (x) ≤ a} is

compact for every a ∈ V (Br0) and ∂V (x)
∂x fp(x) < 0,

∀p ∈ N , ∀x ∈ Br0/{0} (see Theorem 4 of [56]). We now
use the latter result to construct Lyapunov functions
for asymptotically stable switched nonlinear DAEs sat-
isfying the commutativity and invariance conditions of
Theorem 4.10.

Corollary 4.13 (converse Lyapunov theorem). Con-
sider the switched DAE Ξσ satisfying (S1)-(S3) on a
neighborhood Uc of xc = 0. Suppose that the jump-flow
explicitation Σp = (fep , g

e
p, h

e
p) of each model Ξp satis-

fies the commutativity and invariance conditions (23)-
(25) on Uc. Assume that all models Ξp = (Ep, Hp) are

11



asymptotically stable on a ball Br ⊆ Uc. Then there exist
r0 ∈ (0, r) and a positive-definite C1-(Lyapunov) func-
tion V (x) such that La := {x ∈ Br0 |V (x) ≤ a} is com-
pact for every a ∈ V (Uc) and satisfying (18)-(19) of The-
orem 4.5 on Br0 .

The proof is given in Section 5. We now illustrate the
above results by two examples.

Example 4.14. Consider a switched DAE Ξσ de-
fined on X = R2 with two models Ξ1 = (E1, F1) and

Ξ2 = (E2, F2), where Ξ1 : [ 0 C0 0 ]
[
ẋ
ẏ

]
=

[
−x
x−y3

]
and

Ξ2 :
[
L −3Ly2

0 0

] [
ẋ
ẏ

]
=

[
y−R(x−y2)

y

]
, where C, L and R

are all positive constant scalars. Clearly, assumptions
(S1)-(S3) are satisfied globally, in fact, Ξ1 and Ξ2 are
ex-equivalent to, respectively, the following two DAEs
Ξ̃1 and Ξ̃2 represented in the (INWF), via the same
coordinates transformation (x̃, ỹ) = ψ = (x− y3, y),

Ξ̃1 : [ 1 0
0 0 ]

[
˙̃y
˙̃x

]
=
[
−ỹ3/C
x̃

]
, Ξ̃2 : [ 1 0

0 0 ]
[

˙̃x
˙̃y

]
=
[
−Rx̃/L

ỹ

]
.

The jump-flow explicitations of Ξ1 and Ξ2 are, respec-
tively, Σe1 = (fe1 , g

e
1, h

e
1) and Σe2 = (fe2 , g

e
2, h

e
2), given by

fe1 =
(
∂ψ
∂x

)−1 [
0

−y3/C

]
, ge1 =

(
∂ψ
∂x

)−1

[ 10 ], h
e
1 = x− y3

fe2 =
(
∂ψ
∂x

)−1 [
−R(x−y3)/L

0

]
, ge2 =

(
∂ψ
∂x

)−1

[ 01 ], h
e
2 = y.

Observe that Ge1 = Im ge1 coincides with He
2 = ker dhe2

and He
1 = ker dhe1 coincides with Ge2 = Im ge2. Then it

is easy to verify that conditions (23)-(25) are all sat-
isfied. Since both Ξ1 and Ξ2 are asymptotically sta-
ble, we conclude by Theorem 4.10 that Ξ is asymp-
totically stable under arbitrary switching signal. More-
over, we can choose the common Lyapunov function
V (x, y) = 1

2y
2+ 1

2 (x−y3)2. It can be checked that V (x, y)
satisfies conditions (18) and (19) of Theorem 4.5.

Note that the above switched DAE Ξσ is an academic
example, we show below that it can be easily realized by
slightly modifying the electrical circuit shown in Exam-
ple 4.7, we change the nonlinear capacitance C(y) to a
constant one C and add an additional switching devices
S1 parallel to the capacitor (although to short-circuit
the capacitor may not have a strong practical meaning
for real electrical circuits). The switches S and S1 are
required to be simultaneously open or closed.

C S

R

L

S1

Nv=y

i=x

Fig. 4. The modified nonlinear switching electric circuit

The second example is to show the importance of the in-
variance conditions (24)-(25), a nonlinear switched DAE
satisfies (23) but not (24)-(25) could be unstable (which
is different from the linear case, see Remark 4.12).

Example 4.15. Consider a switched DAE Ξσ defined
on R2 with two models Ξ1 = (E1, F1) : [ ẋ0 ] =

[−√
x

y

]

and Ξ2 = (E2, F2) :
[
ψ̇1(x,y)

0

]
=

[
−
√
ψ1(x,y)

ψ2(x,y)

]
, where

ψ1(x, y) = 2e2
√
x−e−2y−1 and ψ2(x, y) =

√
x+y. Con-

sider Ξσ on the set Uc =
{
(x, y) ∈ R2

∣∣ x ≥ 0, y ≤ 0
}
.

The mode Ξ1 is already in (INWF) and Ξ2 can trans-

formed into
[

˙̃x
0

]
=

[
−
√
x̃

ỹ

]
via (x̃, ỹ) = ψ = (ψ1, ψ2)

on Uc \ {0} (so xc = 0 is a singular point for the ex-
equivalence but the impulse-free solution exist for all
x ∈ Uc, see Remark 4.1). The jump-flow explications
are given by Σe1 = (fe1 , g

e
1, h

e
1) and Σe2 = (fe2 , g

e
2, h

e
2),

where fe1 =
[
−√

x
0

]
, ge1 = [ 01 ], h

e
1 = y, fe2 =

[
−√

x
0.5

]
,

ge2 = 1
e2

√
x−e−2y ·

[
−√

xe−2y

e2
√
x

]
, he2 = ψ2. It can checked

that condition (23) is satisfied but (24)-(25) do not hold.
Both Ξ1 and Ξ2 are asymptotically stable on Uc but it
can be seen from the following figure that Ξσ can be un-
stabilized via impulse-free jumps (note that Ξσ remains
unstable for switching signals with small enough dwell-
time).

x

y

Fig. 5. x-axis: M∗(Ξ1), blue curve: M∗(Ξ2), dashed blue
curve: jumps of Ξ1, dashed blue curve: jumps of Ξ2.

5 Proof of the results

Proof of Theorem 3.3. Since the distributions D(x),
kerE(x) and D(x) + kerE(x) are all of constant dimen-
sions on U by (D1), we have dim(D(x) ∩ kerE(x)) =
dimD(x)+dimkerE(x)−dim(D(x)+kerE(x)) = const.
(by e.g., Theorem 2.3.1 of [5]) and thus dimE(x)D(x) =
const., for all x ∈ U . Then by (D2), we have that
dimE(x)TxM

∗ = dimE(x)D(x) = const. for all
x ∈ M∗ ∩ U . Observe that dimE(x)TxM

∗ = dimM∗

by (RE) and Proposition 2.3(ii). Thus we have
dimE(x)D(x) = dimD(x) on U , which implies that
kerE(x)∩D(x) = 0 for all x ∈ U . Since the distributions
D(x), kerE(x) andD(x)+kerE(x) are all involutive, by
Frobenius theorem (see e.g., [23]), there exist a neighbor-
hood Uc ⊆ U and smooth maps ξ1 : Uc → Uc1 ⊆ Rn1 ,

12



ξ2 : Uc → Uc2 ⊆ Rn2 and ξ3 : Uc → Uc3 ⊆ Rn3 such that

span
{
dξ12 , . . . , dξ

n2
2

}
= (D + kerE)⊥,

span
{
dξ12 , . . . , dξ

n2
2 , dξ13 , . . . , dξ

n3
3

}
= D⊥,

span
{
dξ11 , . . . , dξ

n1
1 , dξ12 , . . . , dξ

n2
2

}
= (kerE)⊥,

(28)

and ξ2(xc) = 0, ξ3(xc) = 0, where ⊥ denotes the left

annihilator of a distribution, the functions ξji , 1 ≤ i ≤ 3,
1 ≤ j ≤ ni, are the rows of the vector ξi, where n1 =
dimD, n3 = dimkerE and n2 = n− (n1 + n3). Now by
kerE ∩ D = 0, we have

span
{
dξji , 1 ≤ i ≤ 3, 1 ≤ j ≤ ni

}
= T ∗Uc,

where T ∗Uc denotes the cotangent bundle of Uc, thus
ξ = (ξ1, ξ2, ξ3) are local coordinates and ψ = ξ is a local
diffeomorphism on Uc. Then via ψ, the DAE Ξ is locally
on Uc ex-equivalent to

[ Ẽ1(ξ) Ẽ2(ξ) 0 ]

[
ξ̇1
ξ̇2
ξ̇3

]
= F̃ (ξ),

where [ Ẽ1◦ψ Ẽ2◦ψ Ẽ3◦ψ ] = E
(
∂ψ
∂x

)−1

with Ẽ3 ◦ ψ ≡ 0

and F̃ ◦ ψ = F . Note that Ẽ3 ◦ ψ ≡ 0 because Im Ẽ3 =

E ker
[
dξ1
dξ2

]
= 0 by (28). Now since rankE(x) =

const. = n − n3, there exists Q : ψ(Uc) → GL(n,R)
such that

Q(ξ) [ Ẽ1(ξ) Ẽ2(ξ) 0 ]

[
ξ̇1
ξ̇2
ξ̇3

]
= Q(ξ)F̃ (ξ)

⇔ Ξ̃ :

[
In1

0 0

0 In2
0

0 0 0

] [
ξ̇1
ξ̇2
ξ̇3

]
=

[
F̃1(ξ1,ξ2,ξ3)

F̃2(ξ1,ξ2,ξ3)

F̃3(ξ1,ξ2,ξ3)

]
.

(29)

Notice that by (D2), we have

ψ(M∗ ∩ Uc) = {ξ ∈ ψ(Uc) | ξ2 = 0, ξ3 = 0} .

Now by taking a smaller Uc if necessary
5 , given any ini-

tial point ξ−0 = (ξ−10, ξ
−
20, ξ

−
30) ∈ ψ(Uc), there exists an

IFJ of Ξ̃ of (29) starting from ξ−0 if and only if ξ−20 = 0.
The latter conclusion comes from Definition 2.4, since
by which the direction of the IFJs of Ξ̃ should stay

in ker Ẽ = span
{

∂
∂ξ13

, . . . , ∂
∂ξ
n3
3

}
, i.e., only ξ3-variables

are allowed to jump. Moreover, from any initial point
ξ−0 = (ξ−10, 0, ξ

−
30), there exists a unique IFJ ξ−0 → ξ+0 =

(ξ+10, 0, 0) ∈ ψ(M∗ ∩ Uc) with ξ+10 = ξ−10. Thus by Def-

inition 3.2, the impulse-free consistency set CIF (Ξ̃) =

5 we may need to take a smaller Uc to guarantee Uc3 is a
star field such that the jump ξ−

30
→ 0 exists on Uc3

{ξ ∈ ψ(Uc) | ξ2 = 0}. Since the ex-equivalence preserves
both C1-solutions and IFJs (see Remark 2.6), we have
for the original DAE Ξ that

CIF ∩ Uc = {x ∈ Uc | ξ2(x) = 0} =M∗
IF ∩ Uc.

Clearly, M∗
IF is the integral submanifold of D(x) +

kerE(x) passing through xc as ξ2(xc) = 0. Moreover,
there exists a unique IFJ x−0 = ψ−1(ξ−0 ) → x+0 =
ψ−1(ξ+0 ) for any initial point x−0 ∈M∗

IF ∩ Uc.

Proof of Theorem 4.5. We show that t 7→ V (x(t)) is
monotonically decreasing for any jump-flow solution
x : [0,∞) → Uc of Ξσ. Let 0 = t0 < t1 < t2 <
. . . < tk < . . . be the switching times of the switch-
ing signal σ and let Ii := (ti, ti+1). On each interval
Ii ⊆ [0,∞), x(·) is a C1-solution of the model Ξp,
where p = σ(t) for any t ∈ Ii, so x(·) is also a solution
of the ODE ẋ = fep (x) defined on M∗(Ξp) (see Re-

mark 4.3). By (18), we have V̇ (x(t)) = ∂V
∂x f

e
p (x(t)) < 0,

∀t ∈ Ii. For any switching time ti, denote q = σ(t−i )
and p = σ(t+i ), then x(t−i ) ∈ M∗(Ξq) ∩ Uc and
x(t+i ) = ΩEp,Fp(x(t

−
i )) ∈ M∗(Ξp) ∩ Uc, thus by (20),

we have V (x(t+i )) − V (x(t−i )) ≤ 0. Hence t 7→ V (x(t))
is decreasing on the whole interval [0,∞).

Step 2: We show xc = 0 is stable. Fix ǫ > 0, choose r ∈
(0, ǫ] and let Br := {x ∈ Uc | ||x|| ≤ r}. Then we prove
that there exists βr > 0 depending on r such that the set
Lβr := {x ∈ Uc |V (x) ≤ βr} is strictly contained in Br,
i.e., Lβr ( Br. Assume the contrary, i.e., for all βr > 0,
there exists x ∈ Lβr satisfying ||x|| ≥ r, which implies
that there exists a sequence (xn)n∈N ∈ L 1

n
such that

||xn|| ≥ r. By construction, lim
n→∞

V (xn) = 0. Moreover,

since L 1
n
is compact by assumption (for sufficiently large

n), there exists a subsequence of (xn) whose limit x∗

exists and satisfies ||x∗|| ≥ r. Then we get lim
n→∞

V (xn) =

V (x∗) > 0, which is a contradiction, so we can choose
βr > 0 such that Lβr ( Br. Recall from Step 1 that t 7→
V (x(t)) is decreasing, it follows that Lβr is an invariant
set for any jump-flow solution x(t) starting from x(0) =
x0 ∈ Lβr because V (x(t)) ≤ V (x(0)) ≤ βr implies that
x(t) ∈ Lβr , ∀t ≥ 0. Since V (x) is continuous and V (0) =
0, there exists δ > 0 such that Bδ ( Lβr . We thus have
x(0) ∈ Bδ ( Lβr ⇒ x(t) ∈ Lβr ( Br, which implies
that ||x(0)|| < δ ⇒ ||x(t)|| < ǫ, hence xc = 0 is stable.

Step 3: We prove that all jump-flow solutions x(t)
converge to zero. Seeking a contradiction, assume
that x(t) does not converge to zero. Then, since
V (x(t)) is nonnegative and decreasing, we have
lim
t→∞

V (x(t)) = c > 0. Notice that the set Lc,d =

{x ∈ Uc | c ≤ V (x) ≤ V (x(0)) = d} is compact by as-
sumption, it follows that, for each p ∈ N , the con-

tinuous function ∂V (x)
∂x fep (x) attains its maximum
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sp < 0 within Lc,d. Then with s = maxp∈N sp, we

have that V̇ (x(t)) ≤ s < 0 for all t ∈ Ii for any inter-
val Ii = (ti, ti+1) ⊆ [0,+∞) without switching times.
Consequently, for any k ≥ 1,

V (x(t−k )) = V (x(t−0 )) +
k−1∑

i=0

∫ t−
i+1

t+
i

V̇ (x(t))dt+

k−1∑

i=0

(
V (x(t+i ))− V (x(t−i ))

)
≤ V (x(t−0 )) + stk.

So for tk > −V (x(0−))
s , the above relation results in

V (x(t−k )) < 0, which is a contradiction. Hence all jump-
flow solutions x(t) converge to zero.

Proof of Lemma 4.11. Since Σeq = (feq , g
e
q , h

e
q) is the

jump-flow explicitation of Ξq, we have
∂ψq
∂x g

e
q =[

0
Imq

]
and heq = ψ2q, where ψq = (ψ1q, ψ2q) =

(ξ1q, ξ2q) is the diffeomorphism transforming Ξq into
its (INWF). Thus condition (25) is equivalent to
∂ψq
∂x · (gep · dhep) ·

(
∂ψq
∂x

)−1 (
∂ψq
∂x

)
Im geq ⊆ Im

(
∂ψq
∂x

)
geq ,

∂ψq
∂x · (gep · dhep) ·

(
∂ψq
∂x

)−1 (
∂ψq
∂x

)
ker dheq ⊆ ∂ψq

∂x ker dheq,

i.e.,

ImΓe ·
[

0
Imq

]
⊆ Im

[
0
Imq

]
,

Γe ker [ 0 Imq ] ⊆ ker [ 0 Imq ] ,
(30)

where Γe =
∂ψq
∂x · (gep · dhep)

(
∂ψq
∂x

)−1

: ψq(Uc) → Rn×n.

Notice that by dhep · gep = Imp of (17), we have Im (gep ·
dhep) = Im gep and ker(gep · dhep) = ker dhep. It follows

that ImΓe =
∂ψq
∂x Gep and ker Γe =

∂ψq
∂x He

p. Recall that
∂ψq
∂x Geq = Im

[
0
Imq

]
and

∂ψq
∂x He

q = ker [ 0 Imq ]. So by

expressing condition (26) in ξq = ψq-coordinate, we get
∂ψq
∂x (Gep ∩ Geq )⊕ ∂ψq

∂x (He
p ∩ Geq ) = ∂ψq

∂x Geq ⇔

(ImΓe ∩ Im [ 0I ])⊕(ker Γe∩Im [ 0I ])=Im [ 0I ] (31)

and
∂ψq
∂x (Gep ∩He

q)⊕ ∂ψq
∂x (He

p ∩He
q) =

∂ψq
∂x He

q ⇔

(ImΓe∩ker [ 0 I ])⊕(ker Γe∩ker [ 0 I ])=ker [ 0 I ] . (32)

Now, assume (25) holds, then thematrix-valued function

Γe is block diagonal by (30), i.e., Γe =
[
Γe1 0
0 Γe2

]
, where

Γe1 : ψq(Uc) → Rrq×rq and Γe2 : ψq(Uc) → Rmq×mq .
Thus ImΓe1 ⊕ ker Γe1 ≃ Rrq and ImΓe2 ⊕ ker Γe2 ≃ Rmq

because ImΓe ⊕ ker Γe =
∂ψq
∂x Gep ⊕ ∂ψq

∂x He
p ≃ Rn by

(17). By a direct calculation, it follows that both (31)

and (32) hold. Conversely, if (31) holds, then the left-
multiplication of (31) by Γe yields

Γe
(
ImΓe ∩ Im

[
0
Imq

])
= ΓeIm

[
0
Imq

]
.

Observe that Γe =
∂ψq
∂x · (gep · dhep)

(
∂ψq
∂x

)−1

=

∂ψq
∂x

(
∂ψp
∂x

)−1 [
0 0
0 Ip

] ∂ψp
∂x

(
∂ψq
∂x

)−1

has the property that

Γe · Γe = Γe. It follows that Γe (ImΓe ∩ Im [ 0I ]) =
(ImΓe ∩ Im [ 0I ]), so

ImΓe ·
[

0
Imq

]
=

(
ImΓe ∩ Im

[
0
Imq

])
⊆ Im

[
0
Imq

]
.

Similarly, it can be shown that (32) indicates the inclu-
sion Γe ker [ 0 Imq ] ⊆ ker [ 0 Imq ]. Hence (31) and (32)
imply (30) and the latter is equivalent to (25).

Proof of Theorem 4.10. Step 1: By He
q ⊕ Geq = TUc

of (17) and (26) (which is equivalent to (25) by
Lemma 4.11), we have

(He
p ∩He

q)⊕ (Gep ∩He
q)⊕ (He

p ∩ Geq )⊕ (Gep ∩ Geq ) = TUc.

Recall that the distributions Gp andHp for all p ∈ N are
of constant dimensions and involutive by constructions.
It follows that the intersections Gep∩Geq ,He

p∩Geq , Gep∩He
q,

He
p ∩ He

q are all of constant dimensions and involutive
as well. Thus by Frobenius theorem, we can choose local
coordinates ξ = (ξ1, ξ2, ξ3, ξ4) = ψpq(x), where ψpq :
Uc → Rn is a local diffeomorphism, such that

span

{
∂

∂ξ11
, . . . ,

∂

∂ξn1
1

}
=
∂ψpq
∂x

(He
p ∩He

q),

span

{
∂

∂ξ12
, . . . ,

∂

∂ξn2
2

}
=
∂ψpq
∂x

(Gep ∩He
q),

span

{
∂

∂ξ13
, . . . ,

∂

∂ξn3
3

}
=
∂ψpq
∂x

(He
p ∩ Geq ),

span

{
∂

∂ξ14
, . . . ,

∂

∂ξn4
4

}
=
∂ψpq
∂x

(Gep ∩ Geq ),

(33)

where n1 = dimHe
p ∩ He

q, n2 = dimGep ∩ He
q, n3 =

dimHe
p∩Geq , n4 = dimGep∩Geq and n1+n2+n3+n4 = n.

Since fp ∈ Hp and Hp is involutive, we have [fp,Hp] ⊆
Hp. Notice that [fp,Gp] = 0 ⊆ Gp by construction. Thus
by (24), we get ∀p, q ∈ N :

[fep ,He
p ∩He

q] ⊆ [fep ,He
p] ∩ [fep ,He

q] ⊆ He
p ∩He

q,

[fep ,Gep ∩He
q] ⊆ [fep ,Gep] ∩ [fep ,He

q] ⊆ Gep ∩He
q,

[fep ,He
p ∩ Geq ] ⊆ [fep ,He

p] ∩ [fep ,Geq ] ⊆ He
p ∩ Geq ,

[fep ,Gep ∩ Geq ] ⊆ [fep ,Gep] ∩ [fep ,Geq ] ⊆ Gep ∩ Geq .

(34)
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Then by (33) and (34), the vector fields fep and feq are of
the following form in ξ = (ξ1, ξ2, ξ3, ξ4)-coordinates

f̃ep =
∂ψpq
∂x

fep =




f̃1
p (ξ1)

f̃2
p (ξ2)

f̃3
p (ξ3)

f̃4
p (ξ4)


 , f̃eq =

∂ψpq
∂x

feq =




f̃1
q (ξ1)

f̃2
q (ξ2)

f̃3
q (ξ3)

f̃4
q (ξ4)


 .

(35)
Since fep ∈ He

p and feq ∈ He
q by (17), it can be deduced

from (33) and (34) that

f̃2p (ξ2) ≡ 0, f̃4p (ξ4) ≡ 0, f̃3q (ξ3) ≡ 0, f̃4q (ξ4) ≡ 0. (36)

Note that the nonlinear consistency projectors (see (7))
of the models Ξp and Ξq are, respectively,

ΩEp,Fp = ψ−1
pq ◦πp ◦ψpq, ΩEq,Fq = ψ−1

pq ◦πq ◦ψpq, (37)

where πp : (ξ1, ξ2, ξ3, ξ4) 7→ (ξ1, 0, ξ3, 0) and πq :
(ξ1, ξ2, ξ3, ξ4) 7→ (ξ1, ξ2, 0, 0).

Step 2: We show that ∀p, q ∈ N :

Φ
fep
t ◦ ΩEp,Fp ◦ Φ

feq
s ◦ ΩEq,Fq =

Φ
feq
s ◦ ΩEq,Fq ◦ Φ

fep
t ◦ ΩEp,Fp ,

(38)

where Φ
fep
t and Φ

feq
s are the flow maps of fep and feq ,

respectively. Indeed, first it can be seen from (35) and
(36) that

Φ
f̃ep
t ◦ πp ◦ Φ

f̃eq
s ◦ πq =

[
Φ
f̃1p
t ◦Φf̃

1
q
s

0
0
0

]
,

Φ
f̃eq
s ◦ πq ◦ Φ

f̃ep
t ◦ πp =

[
Φ
f̃1q
s ◦Φf̃

1
p
t

0
0
0

]
,

Observe that (23) implies [f̃ep , f̃
e
q ] = 0, we thus have

[f̃1p , f̃
1
q ] = 0, which is equivalent to (see Proposition 1.7

of [21]) Φ
f̃1
p

t ◦ Φf̃
1
q
s = Φ

f̃1
q
s ◦ Φf̃

1
p

t . It follows that

Φ
f̃ep
t ◦ πp ◦ Φ

f̃eq
s ◦ πq = Φ

f̃eq
s ◦ πq ◦ Φ

f̃ep
t ◦ πp. (39)

It is well-known (see Proposition 1.11 of [21]) that f̃ep =

∂ψpq
∂x fep implies Φ

f̃ep
t = ψpq ◦Φ

fep
t ◦ψ−1

pq . Then by (39) and
(37), we have

ψpq ◦ Φ
fep
t ◦ ΩEp,Fp ◦ Φ

feq
s ◦ ΩEq,Fq ◦ ψ−1

pq =

ψpq ◦ Φ
feq
s ◦ ΩEq,Fq ◦ Φ

fep
t ◦ ΩEp,Fp ◦ ψ−1

pq .

Hence the commutativity condition (38) holds.

Step 3: We prove that Ξσ is asymptotically stable. Recall
that all models Ξp of Ξσ are asymptotically stable, which
means (see Definition 4.4) that for each p ∈ N , there
exists βp : ||Uc|| × [0,+∞) → KL such that for any
initial value x0 ∈ Uc, the impulse-free solution xp(t) of
Ξp satisfies ∀t ≥ 0 and ∀x0 ∈ Uc :

||xp(t)|| = ||Φf
e
p

t ◦ ΩEp,Fp ◦ x0|| ≤ βp(x0, t).

Because N is finite, there exists a function β : ||Uc|| ×
[0,+∞) → KL such that βp(x0, t) ≤ β(x0, t), ∀p ∈ N ,
∀x0 ∈ Uc, ∀t ≥ 0. Let 0 = t0 < t1 < t2 < . . . < tk < . . .
be the switching time of σ, then given an initial point
x0 ∈ Uc, the impulse-free solution x(t) of Ξσ can be
expressed as

x(t) = Φ
fepk
t−tk ◦ ΩEpk ,Fpk ◦ · · · ◦ Φf

e
p1
t2−t1 ◦ ΩEp1 ,Fp1 ◦

Φ
fep0
t1−t0 ◦ ΩEp0 ,Fp0 ◦ x0,

where t ∈ [tk, tk+1) and pi = σ(t+i ) for 0 ≤ i ≤ k. Then
by the commutativity condition (38), we have

x(t)=Φ
fe1
∆t1

◦ΩE1,F1
◦Φf

e
2

∆t2
◦ΩE2,F2

◦· · ·Φf
e
N

∆tN
◦ΩEN ,FN ◦x0,

where ∆tp is the total amount time of activation of the
p-th model in [0, t). Note that ∆tp = 0 if the p-th models

is not activated and
∑N
p=1 ∆tp = t. Since ||Φf

e
p

t ◦ΩEp,Fp ◦
x0|| ≤ β(x0, t), ∀t ≥ 0, ∀x0 ∈ Uc, ∀p ∈ N , we have
x(t) ≤ β(·,∆t1) ◦ · · · ◦ β(||x0||,∆tN ). By Lemma 2.2 of

[32], there exists a function β̃ : ||Uc|| → KL such that

β(·,∆t1)◦· · ·◦β(||x0||,∆tN ) ≤ β̃(||x0||,∆t1+· · ·+∆tN ).

It follows that x(t) ≤ β̃(||x0||, t), hence Ξσ is asymptot-
ically stable.

Proof of Corollary 4.13. Define κ = 2N distributions

Di, 1 ≤ i ≤ κ, by D1 :=
N⋂
i=1

Hi, D2 :=

(
N−1⋂
i=1

Hi

)
∩ GN ,

. . ., Dκ−1 :=

(
N−1⋂
i=1

Gi
)
∩HN , Dκ :=

N⋂
i=1

Gi. Similarly as

Step 1 in the proof of Theorem 4.10 above, it is possible
to show Di ∩ Dj = 0, ∀i 6= j and

D1 ⊕D2 ⊕ · · · ⊕ Dκ−1 ⊕Dκ = TUc.

By the involutivity ofDi, we can choose new coordinates
ξ = (ξ1, ξ2, . . . , ξκ−1, ξκ) to rectify the distributions Di,
1 ≤ i ≤ κ as D̃i = span

{
∂
∂ξ1
i

, . . . , ∂
∂ξ
ni
i

}
= ∂ψ

∂xDi, where
ni = dimDi. It follows from (24) that [fep ,Di] ∈ Di
(equivalently, [f̃ep , D̃i] ∈ D̃i), 1 ≤ i ≤ κ and p ∈ N . Thus
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we have

f̃ep (ξ) =
∂ψ

∂x
fep (ψ

−1(ξ)) =




f̃1
p (ξ1)

f̃2
p (ξ2)

...
f̃κ−1
p (ξκ−1)

f̃κp (ξκ)



, p ∈ N .

Since fep ∈ Hp, ∀p ∈ N , we have

f̃ ip(ξi) ≡ 0, ∀p ∈ N , ∀i : Di ∩Hp = 0.

It follows that f̃ ip(ξi) is either zero or a vector field de-
fined on Di with asymptotically stable flow dynamics.
Moreover, by (23), we have [f̃ ip, f̃

i
q] = 0, ∀p, q ∈ N ,

∀1 ≤ i ≤ κ. It is known from Theorem 4 of [56] that
for each i, there exist r0i ∈ (0, r) and a positive def-
inite C1-function Vi(ξi) = Vi(ψi(x)) such that Lai :=

{x ∈ Br0i |Vi(ψi(x)) ≤ ai} is compact and ∀ξi ∈ B̃ξir0i \{0} :

∂Vi(ξi)

∂ξi
f̃ ip(ξi) < 0, ∀p ∈ N , ∀i : f̃ ip 6= 0. (40)

Notice that f̃κp ≡ 0, ∀p ∈ N , so we define Vκ(ξκ) :=
1
2ξ
T
κ ξκ (for the other f̃ ip, i 6= κ, there exists at least one

p∗ ∈ N such that f̃ ip∗ 6= 0). Then we claim that

V (ψ(x)) = V (ξ) :=
κ∑

i=1

Vi(ξi)

is a common Lyapunov function satisfying (18) and (20)
(and thus satisfying (19)). Indeed, there exists a positive
scalar r0 ≤ r0i, ∀1 ≤ i ≤ κ such that ∀p ∈ N and
∀x ∈ Br0 \ {0}, we have

∂V (ψ(x))

∂x
fep (x) =

∂V (ξ)

∂ξ
f̃ep (ξ) =

κ∑

i=1

∂Vi(ξi)

∂ξi
f̃ ip(ξi) < 0

and ∀x ∈ Br0 , we have

V (ψ(x))− V (ψ ◦ ΩEp,Fp(x)) = V (ξ)− V (πp(ξ))

=
∑

i:Di∩Gp=0

Vi(ξi) ≥ 0,

where πp is the canonical projection ψ(Uc) → ψ(Uc),
attaching ξip 7→ ξip, ∀i : Di ∩ Gp = 0 and at-

taching ξip 7→ 0, ∀i : Di ∩ Hp = 0. Note that
La := {x ∈ Br0 |V (ψ(x)) ≤ a} is compact, hence the
corollary holds.

6 Conclusions and perspectives

We introduce the concept of impulse-free solutions for
switched nonlinear DAEs, referred to as jump-flow so-
lutions in this context. This notion differs from the
distributional solution framework employed in previ-
ous works such as [27, 28]. By employing geometric
methods, we establish conditions for the existence and
uniqueness of such solutions. Moreover, we extend vari-
ous concepts and results from switched linear DAEs to
the nonlinear case, including the consistency projector,
impulse-free conditions, and stability analysis utilizing
common Lyapunov functions and commutativity condi-
tions. To analyze stability, we employ a novel concept
called jump-flow explicitation, constructed based on a
nonlinear Weierstrass form. This explicitation technique
not only facilitates the construction of common Lya-
punov functions but also plays a crucial role in deriving
commutativity and invariance conditions. As part of
future research directions, we will focus on investigat-
ing the stability of impulse-free solutions for switched
nonlinear DAEs with unstable models, employing the
jump-flow explicitation approach. Additionally, explor-
ing the impulse-freeness and stability of state-dependent
switched nonlinear DAEs are intriguing topics for fur-
ther investigation.
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