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a b s t r a c t

We consider switched linear systems with mode-dependent state-dimensions and/or state jumps and
propose a method to obtain a switched system of reduced size with identical input–output behavior.
A key feature of our method is that only the mode sequence of the switching signal needs to be
known and not the exact switching times. Since simple examples show that a minimal realization will
depend on the switching times, our algorithm cannot result in a minimal realization in general, but
we conjecture that it results in a minimal realization for almost all switching times. Our approach
is based on considering time-dependent reachability and unobservability spaces as well as suitable
extended reachability and restricted unobservability spaces together with the notion of a weak Kalman
decomposition.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Realization theory is a classical topic in control theory and
nvolves finding a (preferably) unique minimal system which
enerates the specified input–output behavior of a certain class,
f. Kalman (1963) and Williams and Lawrence (2007). More-
ver, realization theory provides a theoretical basis for model
eduction, system identification and filtering/observer design.
n Gilbert (1963), the minimal state space realization problem
or (continuous) linear time-invariance systems was first studied
ased on hidden pole-zero cancellation techniques and in Kalman
1963), the input–output description is revealed by considering
he reachable and observable part of a dynamical system.

Realization theory of switched systems has already been dis-
ussed e.g. in Baştuğ, Petreczky, Wisniewski, and Leth (2016a,
016b), Petreczky (2006, 2007, 2011a, 2011b), Petreczky, Bako,
nd Van Schuppen (2013) and Petreczky and van Schuppen (2010,
011) and the references therein. In particular, in Petreczky
2006), the author combines the theory of rational formal power
eries with the classical automata theory to discuss the realization
heory of hybrid systems. Specifically, the cases of arbitrary and
onstrained switching are discussed where the switching signal is
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considered as an input. This consideration of the switching signal
as an ‘‘input’’ is a common viewpoint in most of the existing
works. In particular, in the case of arbitrary switching signals, the
(reduced) realization is valid for all switching signals simultane-
ously, which limits the ‘‘reducibility’’ since also mode sequences
need to be taken into account which may not be relevant in
the corresponding application. Furthermore, it is often assumed
that the state-dimension of all modes is equal and no state-
jumps are considered; however, already simple examples (e.g.
the forthcoming Example 4) show that for a specific switching
signal, a minimal realization may have different state-dimensions
per mode and requires state-jumps. erialno=54, Our approach re-
solves these shortcomings by focusing on switching signal with a
given mode sequence and also allows for mode-dependent state-
dimensions and state-jumps. In particular, we view a switched
linear system as a piecewise-constant time-varying linear system;
as a consequence, a minimal or reduced realization in general
depends on the specifically given switching signal.

This viewpoint and our approach is strongly inspired by
Küsters and Trenn (2018), Petreczky, Tanwani, and Trenn (2015),
Sun and Ge (2005), Sun, Ge, and Lee (2002) and Tanwani, Shim,
and Liberzon (2013), which study observability and reachability
of switched systems but do not discuss realization theory.

To be more specific, we consider the switched linear systems
(SLSs) with a given switching signal of the form

Σσ :

{ ẋk(t) = Aσ (t)xk(t) + Bσ (t)u(t), t ∈ (sk, sk+1),
xk(s+k ) = Jσ (s+k ),σ (s−k )xk−1(s−k ), k ∈ Q,

+

(1)
y(t) = Cσ (t)xk(t ), t ∈ [sk, sk+1),

icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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here σ : R → Q = {0, 1, 2, . . . , m} ⊆ N is the given switching
ignal with finitely many switching times s1 < s2 < · · · < sm in
he bounded interval [t0, tf ) of interest and xk : (sk, sk+1) → Rnk

is the kth piece of the state (whose dimension nk may depend
on the mode). For notational convenience let s0 := t0, sm+1 := tf
and let the duration of mode k be denoted by τk := sk+1 − sk,
k ∈ {0, 1, . . . , m}. In the context of realization theory it is common
to assume that the system starts with a zero initial condition, i.e.
set x−1(t−0 ) := 0, however, it will turn out that our approach can
easily take into account the situation of a nonzero initial value.
The input and output are given by u : R → Rm and y : R → Rm,
respectively. Here, xk(t−) and xk(t+) denote, respectively, the left-
and right-sided limit at t , assuming they exist.

For each mode p ∈ {0, 1, 2, . . . , m}, the system matrices
Ap, Bp, Cp of appropriate size describe the (continuous) dynamics
corresponding to the linear system active on the interval (sk, sk+1)
where σ (t) = p. Furthermore, Jp,q : Rnq → Rnp is the jump
map from mode q to mode p. Note that due to the different
space dimensions the introduction of a jump map is necessary;
on the other hand, in case all state dimensions are equal, the
consideration of a jump map is ‘‘optional’’ and leads to so called
impulsive systems (in particular, our reduced realization results
will also provide novel results for this system class).

It is well known that finding a minimal realization (which
can be interpreted as removing unobservable and unreachable
states) is a first step towards model reduction (which further-
more reduces difficult to observe and difficult to reach states).
In Hossain and Trenn (2020), a time-varying model reduction
approach is presented for switched linear systems (with identical
state-dimensions and without jumps). However, the resulting
reduced system is not a switched system anymore, instead it
is fully time-varying and it is difficult to handle numerically.
Therefore, the aim is to gain insight into a more suitable model
reduction approach by studying the minimal realization problem
for switched systems of the form (1) within this system class.
As already mentioned above, the process of going from a non-
minimal representation (with initial value zero) to a minimal
one can be seen as removing ‘‘unreachable’’ and ‘‘unobservable’’
states; understanding what the notions ‘‘unreachable’’ and ‘‘unob-
servable’’ exactly means in this context allows to generalize these
ideas to ‘‘difficult to reach’’ and ‘‘difficult to observe’’ which then
allows to perform model reduction.

The main goal is to find a reduced size switched system (with
the same switching signal σ ) of the form

Σ̂σ :

{ ˙̂xk(t) = Âσ (t )̂xk(t) + B̂σ (t)u(t), t ∈ (sk, sk+1),

x̂k(s+k ) = Ĵσ (s+k ),σ (s−k )̂xk−1(s−k ), k ∈ Q,

y(t) = Ĉσ (t )̂xk(t+), t ∈ [sk, sk+1),

(2)

which has the same input–output behavior as the original system
Σσ .

The single switch case was discussed in our conference con-
tributions (Hossain & Trenn, 2021a, 2021b) and a preliminary
version of this manuscript is the conference submission (Hossain
& Trenn, 2022b), which does not contain all proofs and less
details.

We will assume in the following that the switching signal is
fixed, hence by suitable relabeling of the matrices, we can assume
that σ (t) = k on (sk, sk+1). Consequently, we can simply write
Jk := Jσ (s+k ),σ (s−k ) = Jk,k−1 and Ĵk := Ĵσ (s+k ),σ (s−k ) = Ĵk,k−1 in the

following. Furthermore, in some slight abuse of notation, we will
speak in the following of the solution x(·) instead of the different
solution pieces xk(·).

This paper is organized as follows. In Section 2, the problem
formulation and preliminaries are given, in particular, the concept

of a weak Kalman decomposition is presented. In Section 3, the

2

time-varying reachability and observability spaces are discussed
for switched systems, and we define suitable extended reach-
able and restricted unobservable spaces. Section 4 discusses the
main results with the proposed reduction algorithm. Finally, some
numerical results are shown in Section 5.

2. Preliminaries

2.1. Reduced realization: definition

In this section, we introduce some notions and challenges
related to reduced realizations of switched linear systems (1). Let
us begin with the formal definition of reduced realization.

Definition 1 (Cf. Petreczky (2006)). For Σσ as in (1) we define its
total dimension as follows

dimΣσ :=

∑
q∈Q

nq.

Furthermore, we define its input–output behavior as follows

Bio
σ :=

{
(u, y)

⏐⏐⏐⏐ ∃xq : (sq, sq+1)→Rnq satisfying
(1) and x(t−0 ) = 0

}
.

A switched linear system Σ̂σ with corresponding input–output
behavior B̂io

σ is said to be a reduced realization of switched
system Σσ if

(1) Bio
σ = B̂io

σ and
(2) dim Σ̂σ ≤ dimΣσ .

In the following we will also discuss minimal realizations,
which are reduced realization of smallest total dimension under
all reduced realizations. It should be noted that at this point it is
not clear that the sequence of reduced state dimensions is unique
for a minimal realization.

For non-switched linear systems, it is well known that a real-
ization is minimal if, and only if, it is reachable and observable,
however, for SLSs of the form (1) this is not the case in general
as the following example shows:

Example 2. Consider a switched linear system with two modes

(A0, B0, C0) =

([
1 0 0
0 2 0
0 0 3

]
,

[
1
0
1

]
, [ 1 1 0 ]

)
,

(A1, B1, C1) =

([
0 0 0
0 2 0
0 0 1

]
,

[
0
1
0

]
, [ 1 0 1 ]

)
and the switching signal

σ (t) =

{
0, on (t0, s1),
1, on (s1, tf ).

(3)

It is easily seen, that each mode is unreachable and unobserv-
able. However, the switched system is reachable in the sense that
each value x(t−f ) ∈ R3 can be reached from zero by a suitable
input and it is also observable in the sense that (for a vanishing
input) only a zero initial value leads to a zero output. On the
other hand, the second state is unreachable in the 1st mode and
unobservable in the 2nd mode. In particular, when starting with a
zero initial value, for any input the value of the second state does
not effect the output (because in the first mode it is identically
zero and in the second mode the corresponding coefficient in
the C-matrix is zero). Therefore, we can remove the second state
without altering the input–output behavior.

Remark 3. The above definition of reduced realization is not
specifying any method how to obtain a reduced realization from a
given switched system. In particular, it does not take into account
constraints like the requirement that the reduced state is ob-

tained via a uniform projection map (cf. Gosea, Duff, Benner, and
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ntoulas (2020) and Gosea, Petreczky, Antoulas, and Fiter (2018)
n the context of model reduction). In general, a reduced realiza-
ion can only be obtained by considering each mode individually
and by properly taking into account the effect from the other
odes). Furthermore, Example 4 in Hossain and Trenn (2021a)
hows that by removing locally unreachable and unobservable
tates in each mode does not preserve the input–output behavior
nd hence does not lead to a reduced system.

Another important challenge for obtaining a reduced realiza-
ion is the fact, that even when we start with a classical switched
ystem (i.e. all states have the same dimensions and the jump
ap is the identity), a reduced realization may have different
tate–space dimensions and/or requires the definition of a jump
ap. This is illustrated with the following example.

xample 4. Consider a switched linear system with two modes

0 = A1 =

[
0 0 0
1 0 0
0 0 0

]
, B0 = B1 =

[
1
0
0

]
,

0 = [ 0 1 0 ] , C1 = [ 1 0 0 ] ,

ith switching signal (3) and without jumps. It is easily seen
hat the first mode corresponds to a double integrator, while the
econd mode corresponds to a single integrator. Hence a minimal
ealization is given by the following switched linear system with
ode-dependent state-dimensions:

on [t0, s1) :

ż0 =
[
0 0
1 0

]
z0 +

[
1
0

]
u,

y = [ 0 1 ] z0,

⏐⏐⏐⏐⏐⏐⏐
on [s1, tf ) :

ż1 = 0 · z1 + u,
y = z1,

with z1(s1) = [ 1 0 ] z0(s1).

The possible mode dependence of a reduced realization is
our main motivation to study switched systems (1) with mode-
dependent state-dimension and jumps, so that both systems
(original system and the reduced realization) are from the same
overall system class.

2.2. Weak Kalman decomposition

In order to obtain a reduced realization in the following,
we will utilize extended reachable and restricted unobservable
spaces together with the following weak Kalman decomposition.

Let us first recall the classical Kalman decomposition (KD)
Kalman, 1963) for a linear system

:

{
ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t),

(4)

ith A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n. Based on the reachability and
nobservable spaces,1 it is possible to define a coordinate trans-
ormation x = Tz which leads to the following block triangular
orm (T−1AT,T−1B, CT) =[

A11 A12 A13 A14
0 A22 0 A24
0 0 A33 A34
0 0 0 A44

]
,

[ B1
B2
0
0

]
, [ 0 C2 0 C4 ]

)
,

where
([

A11 A12
0 A22

]
,

[
B1
B2

])
is reachable and

([
A22 A24
0 A44

]
, [ C2 C4 ]

)
is

observable.
It is then easily seen that a minimal realization of (4) is now

given by (A22, B2, C2).
It should noted that the above minimal realization is only

valid for vanishing initial values; if arbitrary initial values are

1 In fact, T = [V 1, V 2, V 3, V 4
], where im V 1 is the intersection of the reach-

ble and unobservable space, im[V 1, V 2
] is the reachable space and im[V 1, V 3

]

s the unobservable space.
3

onsidered, only the unobservable part can be removed without
ltering the corresponding input–output behavior.
In the context of switched systems, all modes (apart from the

irst) will in general have non-trivial initial states but also not
rbitrary initial states, which means that the classical KD cannot
irectly be used to obtain a reduced realization. In addition to
onsider an extended reachable space for each mode (due to the
artially nonzero initial state) also the local unobservable space
ay need to be restricted, due to the fact, that an unobservable
tate in the current mode may become observable in the future
nd hence cannot be removed without altering the overall input–
utput behavior of the switched system. This motivates us to
efine a weak KD which takes into account an extended reachable
pace and restricted unobservable space.

emma 5. Consider a classical LTI system (4) and let R ⊇ im B and
U ⊆ ker C be two A-invariant subspaces (an extended reachable
and a restricted unobservable space). For any coordinate transforma-
tion T = [V

1
, V

2
, V

3
, V

4
] with im V

1
:= R ∩ U , im [V

1
, V

2
] := R,

im[V
1
, V

3
] := U , we have (T−1AT,T−1B, CT) =([

A11 A12 A13 A14
0 A22 0 A24
0 0 A33 A34
0 0 0 A44

]
,

[
B1
B2
0
0

]
, [ 0 C2 0 C4 ]

)
. (5)

In particular, CeAtB = C2eA
22tB2 for all t ∈ R.

Proof. Since R ∩ U = im V
1
is A-invariant there is a matrix A11

of appropriate size such that AV
1

= V
1
A11. The A-invariance of

R implies that AV
2

⊆ im[V
1
, V

2
], hence there exist A12, A22 such

that AV
2

= V
1
A12

+ V
2
A22. Similarly, A-invariance of U implies

AV
3

⊆ im[V
1
, V

3
], hence there exist A13, A33 such that AV

3
=

V
1
A13

+V
3
A33. Finally, im[V

1
, V

2
, V

3
, V

4
] = Rn implies existence

of A14, A24, A34, A44 such that AV
4

= V
1
A14

+V
2
A24

+V
3
A34

+V
4
A44.

ombining all of the above, we obtain

[V
1
V

2
V

3
V

4
] = [V

1
V

2
V

3
V

4
]

[
A11 A12 A13 A14
0 A22 0 A24
0 0 A33 A34
0 0 0 A44

]
,

which shows that T−1AT has the desired block structure. Since
m B ⊆ R = im[V

1
, V

2
], there exist B1, B2 such that

B = V
1
B1

+ V
2
B2

= [V
1
V

2
V

3
V

4
]

[
B1
B2
0
0

]
,

from which the desired block structure of T−1B follows. Finally,
ker C ⊇ U = im[V

1
V

3
] implies that C[V

1
V

3
] = {0}, and hence,

for C2
:= CV

2
and C4

:= CV
4
,

CT = C[V
1
V

2
V

3
V

4
] = [0 C2 0 C4

].

With these block structures, simple matrix multiplication leads to
CeAtB = C2eA

22tB2 for all t ∈ R. □

For the formulation of forthcoming reduction method, we will
need the following notations of invariant subspaces.

Definition 6. For A ∈ Rn×n and a subspace L ⊆ Rn, let

⟨A | L ⟩ := L + AL + · · · + An−1L

be the smallest A-invariant subspace containing L . Furthermore,
let (here A−1 stands for the preimage, it is not assumed that A is
invertible)

⟨L | A⟩ := L ∩ A−1L . . . ∩ A−(n−1)L

be the largest A-invariant subspace contained in L . △
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Note that for any C ∈ Rm×n we have

⟨ker C | A⟩ = ker[C⊤, (CA)⊤, . . . , (CAn−1)⊤]
⊤.

Furthermore, it is well known that for a linear system (A, B, C),
the reachable space R is given by R = ⟨A | im B⟩ and the
unobservable space U is given by ⟨ker C | A⟩.

Remark 7. Clearly, the choice R = R and U = U in Lemma 5
eads to the well known KD. Furthermore, any A-invariant sub-
pace R ⊇ im B will be a superset of R, because R is the
mallest A-invariant subspace containing im B; analogously, any
-invariant subspace U ⊆ ker C will be contained in U . This is
he motivation to call R ⊇ R an extended reachable space and

U ⊆ U a restricted unobservable space in Lemma 5.

For a linear system (A, B, C) with given extended reachable
space R and restricted unobservable space U the weak KD (5)
mmediately leads to the reduced system (A22, B2, C2) which can
be obtained from (A, B, C) by suitable left and right projection
defined as follows.

Definition 8. For any coordinate transformation T = [V
1
, V

2
, V

3
,

V
4
] as in Lemma 5, let

[(W
1
)⊤, (W

2
)⊤, (W

3
)⊤, (W

4
)⊤]

⊤
:= T−1

such that the size of (W
i
)⊤ matches the size of V

i
, i = 1, 2, 3, 4.

Then W
2
and V

2
are called the weak-KD left-projector and weak

D right-projector, respectively. △

By definition of the weak-KD left- and right-projector, we have
W

2
V

2
= I and (A22, B2, C2) = (W

2
AV

2
,W

2
B, CV

2
).

. Exact (time-varying) reachability/unobservability spaces

Our reduction approach relies on identifying suitable extended
eachable and restricted unobservable spaces for each mode of
he switched system (1). Towards this goal, we first provide ex-
ression for the exact (time-varying) reachable and unobservable
pace for (1) in the following. Before doing so, we briefly highlight
hat the solution of (1) is given recursively by, for t ∈ [sk, sk+1)
nd k = 1, . . . , m,

(t) := eAk(t−sk)Jkx(s−k ) +

∫ t

sk

eAk(t−s)Bku(s)ds. (6)

and the output equation is given by

y(t) := Ckx(t), t ∈ [sk, sk+1), k = 0, 1, . . . , m. (7)

3.1. Exact (time-varying) reachability space

Definition 9. The reachable space of the switched system (1) on
time interval [t0, t) is defined by

Rσ
[t0,t) :=

{
x(t−)

⏐⏐⏐⏐ ∃ solution (x, u) of (1)
with x(t−0 ) = 0

}
.

We call the switched system (1) reachable (on [t0, tf )) if, and only
if,

Rσ
[t0,tf ) = Rnm . △

To calculate the reachability spaces of (1), the known reacha-
bility information from the previous modes needs to carry over
appropriately to the current mode. Let Rk = ⟨Ak | im Bk⟩ be
the local reachable subspace for mode k. We will show then that
4

the reachable space at the end of the kth mode is defined by the
following recursive equation, k = 1, 2, . . . , m:

M σ
0 := R0,

M σ
k := Rk + eAkτk JkM σ

k−1.
(8)

The intuition behind the sequence (8) is as follows. By starting
with a zero initial value in the initial mode, clearly Rσ

[t0,s1)
=

R0; continuing recursively, the reachable space at the end of
mode k, is obtained by propagating forward the reachable space
M σ

k−1 at the end of the previous mode, i.e. first jump via Jk and
then propagate according to the matrix exponential (the time-
evolution for a zero input). Finally, to take into account the effect
of the input, the local reachable space of mode k is added. This
intuition is formalized as follows.

Lemma 10 (Cf. Küsters and Trenn (2016)). For all 0 ≤ k ≤ m,

M σ
k = Rσ

[t0,sk+1).

In particular, (1) is reachable if, and only if M σ
m = Rnm .

Proof. Clearly, M σ
0 = Rσ

[t0,s1)
. Inductively, assume that for some

k ∈ {1, 2, . . . , m},

M σ
k−1 = Rσ

[t0,sk),

we will then show that M σ
k = Rσ

[t0,sk+1)
. Let xk+1 ∈ M σ

k , then
there exist xk ∈ M σ

k−1 and xu ∈ Rk such that xk+1 = eAkτk Jkxk + xu.
From M σ

k−1 = Rσ
[t0,sk)

it follows that there exists a solution (̂x, û)
on [t0, sk) with x̂(0−) = 0 and x̂(s−k ) = xk.

In view of (6) the extension of (̂x, û) on the interval [t0, sk+1)
via (̂x(t), û(t)) := (eAk(t−sk)Jkxk, 0) is a solution of (1) on the larger
interval [t0, sk+1). Furthermore, there exists a solution (̃x, ũ) of
mode k on (sk, sk+1) with x̃(s+k ) = 0 and x̃(s−k+1) = xu.

By setting (̃x(t), ũ(t)) = (0, 0) for all t ∈ [t0, sk), it is easily seen
that (̃x, ũ) is a solution of the switched system (1) on [t0, sk+1)
with x̃(t−0 ) = 0.

Altogether, by linearity we have that (x, u) := (̂x, û) + (̃x, ũ) is
a solution of (1) on [t0, sk+1) with x(t−0 ) = 0 and

x(s−k+1) = x̂(s−k+1) + x̃(s−k+1) = eAkτk Jkxk + xu = xk+1,

which implies that xk+1 ∈ Rσ
[t0,sk+1)

. Hence,

M σ
k ⊆ Rσ

[t0,sk+1).

To show the converse subspace relationship, let xk+1 ∈ Rσ
[t0,sk+1)

,
then there exists a solution (x, u) of (1) with x(sk+1) = xk+1.

From x(s−k ) ∈ Rσ
[t0,sk)

= M σ
k−1 and

xu :=

∫ sk+1

sk

eAk(sk+1−s)Bku(s)ds ∈ Rk,

it follows immediately from (6) that xk+1 = x(sk+1) = eAkτk Jkx(s−k )
+ xu ∈ eAkτk JkM σ

k−1 + Rk = M σ
k .

Now if the system (1) is reachable then

Rσ
[t0,sm+1) = Rnm ,

and consequently,

M σ
m = Rnm .

This completes the proof. □

From (8), it is clear that the reachable spaces depend on
the switching times (in fact, on the mode duration τk) and this
dependency cannot be avoided in general as the following exam-
ple shows. In particular, the overall reachability of the switched
system (1) on [t0, tf ) depends on the switching times and how

long each mode is active.
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E
xample 11 (Dependency on the Switching Times). Consider the
switched system (1) given by

A0 = A2 =
[
0 0
0 0

]
, A1 =

[
0 −1
1 0

]
,

B0 = B2 =
[
1
0

]
, B1 =

[
0
0

]
,

with J1,0 = J2,1 = I . It is noted that none of the pairs (Ai, Bi)
are reachable. Consider the switching signal σ with the mode
sequence 0 → 1 → 2 and switching times s1, s2. Let {e1, e2}
denote the natural basis vectors for R2.

Clearly, R0 = R2 := span{e1}, R1 := {0}, eA1τ
=
[
cos τ − sin τ
sin τ cos τ

]
and eA2τ

=
[
1 0
0 1

]
. Hence

M σ
0 = R0 = span{e1},

M σ
1 = R1 + eA1τ1 J1,0M σ

0 = span
{[ cos τ1

sin τ1

]}
,

M σ
2 = R2 + eA2τ2 J2,1M σ

1 = span{e1} + span
{[ cos τ1

sin τ1

]}
.

If τ1 = kπ for any k ∈ N then M σ
2 = span{e1}, otherwise,

M σ
2 = R2. This clearly shows that the overall reachability of a

switched system depends on the switching times. △

Note that although M σ
k ⊇ Rk ⊇ im Bk, the space M σ

k is not
a suitable extended reachable space for the mode (Ak, Bk, Ck) in
the sense of Lemma 5, because it is not Ak-invariant in general.
Before addressing this problem in Section 3.3, we recall first the
‘‘dual’’ space of the reachability spaces: the unobservable spaces.

3.2. Exact (time-varying) unobservability space

Definition 12. The unobservable space of the switched sys-
tem (1) on time interval [t, tf ) is defined by

U σ
[t,tf ) :=

{
x(t+)

⏐⏐⏐⏐ ∃ solution (x, u = 0) such that
y = 0 of (1) on [t, tf )

}
.

We call the switched system (1) observable (on [t0, tf )) if, and only
if,

U σ
[t0,tf ) = {0}. △

Similar as for the reachable spaces, we aim to express the
unobservable spaces recursively. Starting from the last mode it
is clear that the unobservable space is the same as the classical
unobservable space Um = ⟨ker Cm | Am⟩. Recursively, the unob-
servable space at switch number k + 1 can now be propagated
backwards in time by first taking the preimage under the jump
Jk+1 and then further propagating it back with the continuous
flow of mode k, i.e. by e−Akτk . Finally, this propagated space needs
to be combined with the local unobservable space of mode k
given by Uk = ⟨ker Ck | Ak⟩. This motivates the definition of the
following sequence of subspaces, k = m − 1, m − 2, . . . , 0:

N σ
m := Um,

N σ
k := Uk ∩

(
e−Akτk J−1

k+1N
σ
k+1

)
.

(9)

Lemma 13 (Cf. Küsters & Trenn, 2016; Tanwani, Shim, & Liberzon,
2011). For all 0 ≤ k ≤ m,

N σ
k = U σ

[sk,tf ).

In particular, (1) is observable if, and only if N σ
0 = {0}.

Proof. For k = m, clearly N σ
m = U σ

[sm,tf )
. Inductively, assume now

that for k ∈ {m − 1, m − 2, . . . , 0}

N σ
k+1 = U σ

[sk+1,tf )

and we want to show that then N σ
= U σ .
k [sk,tf )

5

Let xk ∈ N σ
k , then xk ∈ Uk and there exists xk+1 ∈ N σ

k+1 =

U σ
[sk+1,tf )

such that xk+1 = Jk+1eAkτkxk. Consequently, the unique
solution (x, u = 0) of (1) on [sk, tf ) with x(s+k ) satisfies y = 0
on [sk, sk+1) because xk ∈ Uk and y = 0 on [sk+1, tf ) because
x(sk+1) = xk+1 ∈ U σ

[sk+1,tf )
. This shows that xk ∈ U σ

[sk,tf )
.

Now, let xk ∈ U σ
[sk,tf )

, then the unique solution (x, u = 0) of

(1) on [sk, tf ) with x(s+k ) = xk has zero output. Consequently,
xk+1 := x(s+k+1) ∈ U σ

[sk+1,tf )
= N σ

k+1. From xk+1 = Jk+1eAkτkxk, it

follows that xk ∈ e−Akτk J−1
k+1{xk+1} ⊆ e−Akτk J−1

k+1N
σ
k+1 = N σ

k , which
concludes the proof. □

Similar as for the reachability, the observability of the
switched system in general depends on the switching time. This
is illustrated by considering again Example 11 with an additional
output.

Example 14 (Dependency on the Switching Times). Recall Exam-
ple 11 with output submatrices

C0 = C2 = [ 0 1 ] , C1 = [ 0 0 ] .

It is noted that none of the pairs (Ai, Ci) are observable.
Clearly, U0 = U2 = span{e1}, U1 = R2, e−A1τ

=
[

cos τ sin τ
− sin τ cos τ

]
and e−A2τ

=
[
1 0
0 1

]
. Hence

N σ
2 = U2 = span{e1},

N σ
1 = U1 ∩ e−A1τ1 J−1

2 N σ
2 = R2

∩ span
{[ cos τ1

− sin τ1

]}
,

N σ
0 = U0 ∩ e−A0τ0 J−1

1 N σ
1 = span{e1} ∩ span

{[ cos τ1
− sin τ1

]}
.

If τ1 = kπ for any k ∈ N, then N σ
0 := span{e1}, otherwise

N σ
0 = {0}. Therefore, the overall observability of (1) depends on

the switching time. △

Note that similar to the reachability spaces, although the un-
observable spaces N σ

k satisfy N σ
k ⊆ Uk ⊆ ker C , they are

not Ak-invariant and hence, they are not restricted unobservable
spaces in the sense of Lemma 5.

3.3. Extended reachable/restricted unobservable spaces

So far, we have seen that the reachability spaces and ob-
servability spaces of (1) depend on the switching time. Even
worse, when looking at the reachable/unobservable space at a
particular time t ∈ (sk, sk+1) between two switches, then it
is easily seen that these spaces in general also depend on the
considered time t and a reduction method based on the exact
reachability/observability spaces will necessarily result in general
time-varying coordinate transformations/projections (cf. our pre-
viously proposed reduction method Hossain & Trenn, 2020) and
would not lead to a reduced system of the desired form (2).

To circumvent this problem, we introduce suitable extended
reachable and restricted unobservable spaces for the switched
system (1). The key idea is based on the fact that for any subspace
H ⊆ Rn, any matrix A ∈ Rn×n and any t ∈ R the following
subspace relationship holds:

⟨H | A⟩ ⊆ eAtH ⊆ ⟨A | H ⟩. (10)

By replacing the matrix-exponentials in the constructions of the
reachable/unobservable spaces by the corresponding A-invariant
subspace we arrive at the following sequences (cf. Tanwani et al.
(2011) for the unobservable spaces):

R0 := R0,

Rk := Rk + ⟨Ak | JkRk−1⟩, k = 1, . . . , m;
(11)

U m := Um,

−1 (12)

U k := Uk ∩ ⟨Jk+1U k+1 | Ak⟩, k = m − 1, . . . , 0.
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Note that Rk depends on all previous modes 0, 1, . . . , k,
hereas U k depends on all future modes k, k + 1, . . . , m.
In view of (10), it is easy to see that

Rk ⊇ M σ
k ⊇ Rk and U k ⊆ N σ

k ⊆ Uk.

In particular, Rm = Rnm and U 0 = {0} respectively, are neces-
sary conditions for reachability and observability of the overall
switched system (5).

Finally, observe that by construction both Rk and U k are
Ak-invariant, i.e. they are extended reachable/restricted unob-
servable spaces in the sense of Lemma 5 and we are now ready to
propose our main result about the reduction of switched systems
of the form (1).

We conclude this section by highlighting an interesting special
case, which is motivated by the following ‘‘application’’: Consider
a large scale network whose dynamics can be described by a lin-
ear ODE. The network can be controlled through several actuators
at different locations and several sensors are distributed through-
out the network. However, due to resource limitation at any given
time only one or a limited number of actuators can be used and
the data of only one or a limited number of sensors is available.
This situation can be modeled by the following switched system
(without jumps)

ẋ = Ax + Bσu,
y = Cσ x,

(13)

where the switching signal is determined by the schedule of
the actuator and sensor usages. In this scenario it seems rather
natural that the mode sequence is fixed a priori (e.g. to make
sure that all sensors and actuators are equally used), while the
time duration may depend on the actual measured outputs. For
this setup we have the following result:

Proposition 15 (Constant A-Case). Consider the switched linear
system (13) with corresponding time-dependent reachability space
Rσ

[t0,t) and unobservable space U σ
[t,tf )

. Then for all t ∈ (sk, sk+1) we
have

Rσ
[t0,t) = Rk and U σ

[t,tf ) = U k,

.e. the time-varying reachable and unobservable spaces are piece-
ise constant and can be calculated recursively via (11) and (12).

roof. Inductively, it is easily seen that Rσ
[t0,t) and U σ

[t,tf )
are

A-invariant, from which the claim follows.

4. Main result: Proposed reduction method

We now propose a method to compute a reduced realization
(2) of (1) for a given switching signal.

Step 1. Compute the sequence of extended reachable R0, R1, · · · , Rm
and restricted unobservable subspaces U 0, U 1, · · · , U m as in (11) and
(12).
Step 2. Apply Lemma 5 to (Ak, Bk, Ck) with (Rk, U k) to compute the
weak-KD left- and right-projectors W

2
k, V

2
k , and let(̂

Ak, B̂k, Ĉk
)

=

(
W

2
kAkV

2
k,W

2
kBk, CkV

2
k

)
.

Step 3. Calculate the reduced jump map

Ĵk := W
2
k JkV

2
k−1.

Before showing that the resulting reduced system (2) is indeed
realization of (1), we first highlight an important connection
etween the solutions of both systems.
6

Lemma 16. Consider the switched system Σσ as in (1) and the re-
duced system Σ̂σ as in (2) obtained by the left- and right-projectors
W

2
σ (·), V

2
σ (·). If x(·) is a solution of Σσ then x̂(·) := W

2
σ (·)x(·) is a

solution of Σ̂σ .

Proof. Consider any time interval (sk, sk+1) between two
switches, then, for t ∈ (sk, sk+1),

ẋ(t) = W
2
k ẋ = W

2
kAkx(t) + W

2
kBu(t)

= [0, Âk, 0, ∗]T
−1
k x(t) + B2

ku(t),

where T k = [V
1
k, V

2
k, V

3
k, V

4
k] is the coordinate transformation

according to Lemma 5 for mode k. Since x(t) ∈ Rσ
[t0,t) ⊆ Rk =

im[V
1
k, V

2
k], it follows that T

−1
k x(t) = [∗, x̂(t)⊤, 0, 0]⊤ and hence,

as claimed, for all t ∈ (sk, sk+1)

ẋ(t) = Âk̂x(t) + B̂ku(t).

In particular, due to unique solvability of linear ODEs, for any
solutions x of Σσ and x̂ of Σ̂σ the following implication holds:

W
2
kx(s

+

k ) = x̂(s+k ) H⇒ ∀t ∈ (sk, sk+1) : W
2
kx(t) = x̂(t).

To show that x̂ = W
2
σ x is indeed a global solution of Σ̂σ it

therefore remains to be shown that

W
2
kx(s

+

k ) = ĴkW
2
k−1x(s

−

k ). (14)

In fact,

W
2
kx(s

+

k ) = W
2
k Jkx(s

−

k ) = W
2
k JkT k−1T

−1
k−1x(s

−

k )

= W
2
k Jk[V

1
k−1, V

2
k−1, V

3
k−1, V

4
k−1]

(
∗

W2
k−1x(s

−

k )
0
0

)
.

From (12) it is easily seen that JkU k−1 ⊆ U k, hence im JkV
1
k−1 ⊆

im Jk[V
1
k−1, V

3
k−1] = JkU k−1 ⊆ U k = im[V

1
k V

3
k] ⊆ kerW

2
k , i.e.

W
2
k JkV

1
k−1 = 0, from which it follows that

W
2
kx(s

+

k ) = W
2
k JkV

2
k−1W

2
k−1x(s

−

k )

s desired. □

As a consequence of the above and of the uniqueness of
solutions it follows that every solution x̂ of Σ̂σ with zero initial
value and given input u satisfies x̂ = W

2
σ x where x is the solution

of Σσ with zero initial value and the same input u. We will now
prove that the corresponding outputs are indeed equal.

Theorem 17. Consider the switched system Σσ as in (1) and
the reduced system Σ̂σ as in (2) obtained by the above reduction
method. Then Σσ and Σ̂σ are input–output equivalent in the sense
that for all inputs u the output y of (1) with initial condition x(t−0 ) =

0 equals the output ŷ of (2) with initial condition x̂(t−0 ) = 0.

Proof. The output of Σσ on [sk, sk+1) is given by

y(t) = CkeAk(t−sk)Jkx(s−k ) +

∫ t

sk

CkeAk(t−s)Bku(s)ds

=: yJ(t) + yu(t).

Inserting suitable identity matrices we have that

yJ = CkTkeT
−1
k AkTk(t−sk)T−1

k JkTk−1T
−1
k−1x(s

−

k ),

yu(t) =

∫ t

CkTkeT
−1
k AkTk(t−s)T−1

k Bku(s)ds,

sk
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here Tk = [V
1
k, V

2
k, V

3
k, V

4
k] is the coordinate transformation ac-

cording to Lemma 5 for mode k. The special block structure of the
matrices T−1

k AkTk, T
−1
k Bk, CkTk implied by Lemma 5 immediately

eads to

u(t) =

∫ t

sk

ĈkêAk(t−s)̂Bku(s)ds.

Hence, for showing ŷ(t) = y(t) = yJ(t) + yu(t) it remains to be
shown that

yJ(t) = ĈkêAk(t−sk )̂Jk̂x(s−k ). (15)

ith similar arguments as used to establish (14) in Lemma 16
e can show that

T−1
k JkTk−1T

−1
k−1x(s

−

k ) =

(
∗

ĴkW
2
kx(s

−

k )
0
0

)
.

Using the already established fact in Lemma 16, that W
2
kx(s

−

k ) =

(s−k ) together with the special block structures of T−1
k AkTk, T

−1
k

Bk, CkTk we can conclude that (15) holds. □

emark 18 (Non-Zero Initial Values). Our method can easily be
djusted to account for non-zero initial values. Assume x(t−0 ) ∈

X0 for some subspace X0 ⊆ Rn, then in (8) we just have to
replace the initial definition by

M σ
0 := R0 + eA0τ0 J0X0

and in (11) the initial space needs to be adjusted to

R0 := R0 + ⟨A0 | J0X0⟩,

hile the definition of the other subspaces remains unchanged.

A key feature of our method is that it is independent of the
ctual switching times (or mode durations) and only requires
nowledge of the mode sequence. The following example shows
owever that the size of a minimal realization depends on the
ode durations, hence we cannot expect that our method results

n a minimal realization in general.

xample 19. Consider a switched system with modes

0 = A2 =

[
0 0 0
0 0 0
0 0 0

]
, A1 =

[
0 0 0
0 0 −1
0 1 0

]
, B0 =

[
1
1
0

]
,

B1 = B2 =

[
1
0
0

]
, C0 = C1 = [ 1 0 0 ] , C2 = [ 1 1 0 ] .

ith J1,0 = J2,1 = I . Assume the mode sequence 0 → 1 → 2.
ix the switching time duration τ1 = π/2 for mode 1. Then
he original solution x and output y of each time interval can be
haracterized as follows:

t ∈ (t0, s1) : x(t) =

[
∗
∗
0

]
, y(t) = C0x(t) = [ 1 0 0 ]

[
∗
∗
0

]
,

∈ (s1, s1 +
π
2 ) : x(t) =

[
∗
∗
∗

]
, y(t) = C1x(t) = [ 1 0 0 ]

[
∗
∗
∗

]
,

x(s2) = x(s1 +
π
2 ) =

[
∗
0
∗

]
t ∈ (s2, tf ) : x(t) =

[
∗
0
∗

]
, y(t) = C2x(t) = [ 1 1 0 ]

[
∗
0
∗

]
.

Clearly, the second and third states do not affect the output
for this specific switching signal. In particular, it is easily seen
that the overall input–output behavior is described by the (non-
switched) system ˙̂x = u, y = x̂. However, if we apply our pro-
posed method, then the sequence of reachable and unobservable
spaces are given by

M σ
1 = im B0, N σ

0 = {0},

M σ
2 = R3, N σ

1 = {0},
σ 3 σ
M3 = R , N2 = span{e3}.

7

Indeed, the sequences produce a switched system with modes in
dimensions 1, 3 and 2, respectively, instead of a one dimensional
minimal system. Nevertheless, one should note that for τ1 ̸=

kπ/2, our method actually produces a minimal realization. △

The previous example however leads to our believe that our
method results in a minimal realization for almost all switching
times. While we have not been able to prove this conjecture, we
are able to show that our method is optimal in the sense that a
repeated application does not lead to a further reduction.

Theorem 20. Consider the switched system Σσ and the re-
duced switched system Σ̂σ resulting from our proposed method. Let
R̂σ (·) and Û σ (·) be the sequences of reachability and unobservability
spaces, respectively, of Σ̂σ . Then

R̂σ (·) = Rn̂σ (·) , Û σ (·) = {0}.

In particular, the left- and right-projectors for a potential further
reduction are given by identity matrices, i.e. no further reduction
occurs.

Proof. Our proposed method yields for each mode k a coordinate
transformation Tk such that (Ak, Bk, Ck) is transformed to⎛⎜⎜⎝
⎡⎢⎢⎣

A11k A12k A13k A14k

0 Âk 0 A24k

0 0 A33k A34k

0 0 0 A44k

⎤⎥⎥⎦ ,

[
B1k
B̂k
0
0

]
, [ 0 Ĉk 0 C4

k ]

⎞⎟⎟⎠ , (16)

here (̂Ak, B̂k, Ĉk) is the input–output equivalent reduced sys-
tem for mode k. By construction, the extended reachable and
restricted unobservable spaces of (Ak, Bk, Ck) are given by Rk =

Tk

[
I 0
0 I
0 0
0 0

]
, U k = Tk

[
I 0
0 0
0 I
0 0

]
, respectively.

Seeking a contradiction assume R̂k ⊊ Rn̂k (Case I), or Û k ̸= {0}
(Case II) for some k.

Case I: For k = 0 we see that from R0 = R0 it follows that

the pair (̂A0, B̂0) must be reachable and hence R̂0 = R̂0 = Rn̂0 .
Assume now inductively that for some k we have R̂k−1 = Rn̂k−1

and R̂k ⊊ Rn̂k . Since R̂k is Âk-invariant and contains im B̂k we
can choose a coordinate transformation T̂k such that (̂Ak, B̂k) is
transformed to([

Â1k ∗

0 Â2k

]
,

[
B̂1k
0

])
(17)

and im T̂k
[

I
0

]
= R̂k. By adjusting the original coordinate trans-

formation Tk we can assume in the following that (̂Ak, B̂k) is
actually equal to (17). In particular, we then have

im
[

I
0

]
= R̂k = R̂k + ⟨̂Ak | ĴkR̂k−1⟩.

Since R̂k = ⟨̂Ak | B̂k⟩ ⊆ im
[

I
0

]
we can conclude that, im

[
I
0

]
⊇

Âk | ĴkR̂k−1⟩ = ⟨̂Ak | im Ĵk⟩ ⊇ im Ĵk. Therefore (Ak, Bk, Jk) is
actually transformed to⎛⎝⎡⎣ ∗ ∗ ∗ ∗

0

[
Â1k ∗

0 Â2k

]
0 ∗

0 0 ∗ ∗
0 0 0 ∗

⎤⎦ ,

⎡⎣ ∗[
B̂1k
0

]
0
0

⎤⎦ ,

⎡⎣ ∗[
J1k
0

]
0
0

⎤⎦⎞⎠ .

From this we arrive at the following contradiction:

im
[

I 0
0 I
0 0
0 0

]
= Rk = Rk + ⟨Ak | JkRk−1⟩ ⊆ im

[ I 0
0
[
I 0
0 0

]
0 0
0 0

]
.

Hence we have inductively shown that R̂k = Rn̂k for all mode
k.
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Fig. 1. Outputs of original system and the proposed reduced system.

Case II: Assume Û k ̸= {0}. Analogously as in Case I, the
contradiction

U k ̸= im
[

I 0
0 0
0 I
0 0

]
,

arises, the details are omitted. □

For the special case of constant A-matrices, our method does
in fact result in a minimal realization.

Corollary 21. Consider the switched system (13) with mode-
ndependent A-matrix. Then the reduced switched system obtained
ia our proposed reduction method is minimal.

roof. This is a simple consequence from Proposition 15, because
n any mode a smaller reduced model would necessarily remove
ome reachable and observable states and hence cannot lead to
he same input–output behavior.

. Numerical results

In this section, we demonstrate the operation of the proposed
eduction method for the switched linear system. The proposed
ethod is illustrated by means of numerical examples. The source
ode for the numerical examples is available from Hossain and
renn (2022a).

xample 22. Consider a switched linear system with modes:

A0, B0, C0) =

([
2 0 1
0 1 0
0 0 −1

]
,

[
1
0
0

]
, [ 1 0 1 ]

)
,

A1, B1, C1) =

([
0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 2

]
,

[
0
1
0
0

]
, [ 0 0 0 1 ]

)
,

(A2, B2, C2) =

([
1 0 1
0 1 0
0 −1 2

]
,

[
0
1
1

]
, [ 0 1 0 ]

)
,

J1,0 =

[
1 1 0
0 2 1
0 0 1
0 −1 1

]
, J2,1 =

[
2 1 0 0
0 1 0 1
0 0 2 1

]
.

Assume the mode sequence 0 → 1 → 2. We apply the pro-
posed reduction method and the reduced switched system can
be obtained as follows.

Step 1. Here, R0 =

[
1
0
0

]
, R1 =

[
1 0
0 1
0 0
0 0

]
, R2 =

[
1 0
0 1
0 1

]
, U0 =

[
0
1
0

]
,

U1 =

[
1 0 0
0 1 0
0 0 1

]
, U2 =

[
1 0
0 0

]
. Now we compute the sequence of
0 0 0 0 1

8

reachable and unobservable spaces:

R0 = R0 =

[
1
0
0

]
,

R1 = R1 + ⟨A1 | J1,0R0⟩ =

[
1 0
0 1
0 0
0 0

]
,

R2 = R2 + ⟨A2 | J2,1R1⟩ = R3,

U 2 = U2 =

[
1 0
0 0
0 1

]
,

U 1 = U1 ∩ ⟨J−1
2,1 U 2 | A1⟩ =

[
0
0
1
0

]
,

U 0 = U0 ∩ ⟨J−1
1,0 U 1 | A0⟩ = {0}.

Step 2. Via the proposed method, the sequence of left- and right-
projectors are obtained by

(W
2
0, V

2
0) =

([
1

−2
−2

]⊤

,

[
1
0
0

])
,

(W
2
1, V

2
1) =

([
1 0
0 1
0 0
0 0

]⊤

,

[
1 0
0 1
0 0
0 0

])
,

(W
2
2, V

2
2) =

([
0

−1
0

]⊤

,

[
0

−1
−1

])
.

The reduced switched system is given by

(̂A0, B̂0, Ĉ0) = (W
2
0A0V

2
0,W

2
0B0, C0V

2
0) = (2, 1, 1) ,

(̂A1, B̂1, Ĉ1) =

(
W

2
1A1V

2
1,W

2
1B1, C1V

2
1

)
=
([

0 −1
1 0

]
,
[
0
1

]
, [ 0 0 ]

)
,

(̂A2, B̂2, Ĉ2) =

(
W

2
2A2V

2
2,W

2
2B2, C2V

2
2

)
= (1, −1, −1) .

Step 3. The reduced jump maps are given by

J1 =
[
1
0

]
, Ĵ2 = [ 0 −1 ] .

Fig. 1 shows the output of the original and its minimal switched
linear system for input u(t) = 1 with switching times s1 = 2 and
s2 = 5 over [0, 6] and clearly both outputs coincide.

6. Conclusions

In this paper, we have proposed a method for obtaining a
reduced realization for switched linear systems with jumps and
mode-dependent state-dimensions; the switching signal is as-
sumed to be fixed with known mode sequence. Our reduction
method is independent of the switching times and hence in
principle also applicable for state-dependent switched systems
if a certain mode sequence is known a-priori. The proposed
reduction method is based on a weak Kalman decomposition of
each mode by defining suitable extended reachable and restricted
unobservable spaces. We believe, that our method results in a
minimal realization for almost all switching times, however, a
definite answer to this question is still ongoing research. It cannot
be expected that our method will result in a minimal realization
for all switching times, we provided an example for which the
dimension of the minimal realization depends on the specific
switching times. We have so far assumed that all subspace related
operations (intersections, sums, etc.) can be carried out with
exact arithmetics, however, for large scale systems and/or for sys-
tems with numerical coefficient matrices the involved subspace
calculations are in general ill-posed. A suitable adaption of our
algorithm utilizing e.g. the singular value decomposition to carry
out the subspace calculations approximately is a topic of future
research.
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