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Abstract

The stability of arbitrarily switched discrete-time linear singular (SDLS) systems is studied. Our analysis builds on the recently
introduced one-step-map for SDLS systems of index-1. We first provide a sufficient stability conditions in terms of Lyapunov functions.
Furthermore, we generalize the notion of joint spectral radius of a finite set of matrix pairs, which allows us to fully characterize
exponential stability.
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1 Introduction

In this paper we investigate stability of switched discrete-
time linear singular (SDLS) systems of the form

Eσ(k)x(k+ 1) = Aσ(k)x(k), (1)

whereσ : N→ {1, . . . ,n} denotes the switching signal that
determines which of the n ∈ N modes is active at time k.

Singular switched systems arise in many applications,
such as power electronics and systems, flight control
systems, network control systems, robot manipulators,
economic systems, and so forth (see e.g. Koenig and Marx
(2009); Lang et al. (2007); Meng and Zhang (2006);
Xia et al. (2008); Zhang and Duan (2007)). There are
examples (e.g. the dynamic Leontief system in economic
studies in Luenberger (1977)) which are canonically
given in discrete time; however, system models stemming
from physical first principles usually are formulated in
terms of differential equations in continuous time and
also may contain external variables (inputs) which can

? The first author was supported by NAFOSTED project 101.02-
2017.305, the third author was supported by NAFOSTED project
101.01-2017.302 and the forth author was supported by the
NWO Vidi grant 639.032.733.

Email addresses: anhpk2009@gmail.com (Pham Ky Anh),
linhpt1803@gmail.com (Pham Thi Linh),
thuan.doduc@hust.edu.vn (Do Duc Thuan),
s.trenn@rug.nl (Stephan Trenn).

be used to influence the dynamics of the system. In this
paper we focus on the stability of the closed loop system,
i.e. we assume that an adequate candidate feedback rule
is already chosen and ask the question whether this con-
troller leads to stability regardless of the switching signal.
Furthermore, we assume that the continuous dynamics
are discretized in time because many feedback controllers
are nowadays implemented digitally. The consideration
of a switching signal is often another modelling simplifi-
cation where rapidly changing parameters are simplified
as parameters which change their values instantaneously
at some isolated points in time.

There are already quite a few works devoted to the stabil-
ity of SDLS systems, some of them restrict themselves to
the case of a constant E-matrix (Xia et al., 2008; Zhai et
al., 2012; Zhai and Xu, 2010; Zhai et al., 2009) and some
restrict the switching signal (Anh and Linh, 2017; Chen et
al., 2013). The references Darouach and Chadli (2013);
Koenig and Marx (2009); Meng and Zhang (2006) which
actually study the general SDLS system (1) seem to have
overlooked the fact that even if each mode is causal (i.e.
regular and index-1, see Section 2.2) the corresponding
switched system is not well-posed in general, see the re-
cent publication Anh et al. (2019); in particular, these
references lack a proper solution theory capable to han-
dle arbitrary switching. In fact, to study the SDLS sys-
tem (1) under arbitrary switching it seems reasonable to
impose an additional causality assumption with respect to
the switching signal, i.e. the future value of the switching
signal should not influence the past values of the state-
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variable. In other words, we expect that the value x(k)
only depends on the previous state together with the sys-
tem parameters of the modes active at time k or earlier.
This intuition is formalized by an index-1 assumption for
the overall SDLS which then results in a well defined one-
step-map, see Section 3.

Based on this novel solution framework we are able to
generalize the well known stability result in terms of a
common Lyapunov function to SDLS systems (1), which
can be seen as an discrete time version of the results pre-
sented in Liberzon and Trenn (2009) for the continuous
time and which seems not to have been reported so far.

Another main contribution is the generalization of the
joint spectral radius to the family of matrix pairs {(Ei , Ai)}
associated to (1) and how it can be used to characterize
exponential stability of the SDLS system (1). The continu-
ous time counterpart of the the joint spectral radius is the
Lyapunov exponent and was already studied for switched
singular systems in Trenn and Wirth (2012); however, the
methods used in the discrete time case are very different
to the ones used in the continuous time case. Further-
more, we are able to show that the joint spectral radius of
(1) can also be obtained via a standard switched system
of reduced size. This may have important consequences
when calculating (or approximating) the joint spectral ra-
dius numerically, but this topic is outside the scope of the
current paper.

2 Preliminaries

In this section we recall some notations and results already
known for classical switched linear systems as well as
discrete time linear singular systems, that will be extended
and generalized for index-1 SDLS in subsequent sections.

2.1 Switched linear systems

We recall in the following basic properties of switched
linear system of the form

x(k+ 1) = Aσ(k)x(k); (2)

where σ : N ∪ {0} → {1, 2, . . . ,n} is the switching signal
with n ∈ N modes, Ai ∈ Rn×n are given matrices, i =
1,2, ..,n, x(k) ∈ Rn is the state at time k ∈ N.
Define the state transition matrix Φσ(k, h) for system (2)
as Φσ(k, h) = I for k = h and, for k > h,

Φσ(k, h) = Aσ(k−1)Aσ(k−2)...Aσ(h).

The unique solution of system (2) with initial condition
x(0) = x0 ∈ Rn is given by

x(k) = Φσ(k, 0)x0, k ≥ 0.

Definition 2.1 System (2) is called exponentially stable if
there exist γ ≥ 1 and 0 ≤ λ < 1 such that for all switching
signals and any solutions x(·) of (2) with x(0) = x0 ∈ Rn

the following inequality holds:

‖x(k)‖ ≤ γλk ‖x0‖ ∀k ≥ 0,

where ‖ · ‖ is some norm on Rn.

Lemma 2.2 (Rugh (1996); Sun and Ge (2011)) System
(2) is exponentially stable if and only if there exist γ ≥ 1
and 0 < λ < 1 such that for all switching signals the
following inequality holds:

‖Φσ(k, j)‖ ≤ γλk− j , ∀k ≥ j,

where ‖ · ‖ is the induced matrix norm.

Lemma 2.3 (Lin and Antsaklis (2009)) System (2) is
exponentially stable if, and only if, there exists a finite
positive integer m such that



Ai1Ai1 ...Aim



< 1

for all m-tuples (Ai j
)mj=1 with Ai j

∈ {A1, A2, .., An}.

The stability of (2) can be investigated by using the joint
spectral radius of a set of matrices introduced in Rota and
Strang (1960).

Definition 2.4 The joint spectral radius of a family of ma-
trices {Ai}ni=1 is defined to be

ρ({Ai}n1) = lim
k→∞

max
σk∈{1,2,..,n}

‖Aσ1
Aσ2

...Aσk
‖

1
k .

The existence of the limit in the definition of the joint
spectral radius is based on the following well-known result
of Polya and Szego (1998), which we will also need in
Section 5.

Lemma 2.5 Let {ak}∞k=1 be a sequence of positive num-
bers, such that ak+` ≤ aka` for all k,`. Then the limit
limk→∞(ak)

1
k exists.

Theorem 2.6 (see e.g. Shih et al. (1997)) System (2) is
exponentially stable if and only if ρ({Ai}n1)< 1.

2.2 Singular systems

We recall some basic properties of discrete-time linear
singular systems of the form

Ex(k+ 1) = Ax(k), (3)
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where E, A ∈ Rn×n and x(k) ∈ Rn. Usually it is assumed
that E is singular, as otherwise, (3) could be multiplied
with the inverse of E from the left to obtain a standard
linear system.

Definition 2.7 A matrix pair (E, A) ∈ Rn×n×Rn×n is called
regular if, and only if, the polynomial det(sE − A) is not
identically zero.

Lemma 2.8 (Weierstraß (1868); Gantmacher (1959))
A matrix pair (E, A) ∈ Rn×n ×Rn×n is regular if, and only
if, there exists invertible matrices S, T ∈ Rn×n such that

(SET, SAT ) =
��

I 0
0 N

�

,
�

J 0
0 I

��

(4)

where N ∈ RnN×nN is nilpotent and J ∈ RnJ×nJ with nN +
nJ = n.

In view of Berger et al. (2012) we call (4) a quasi Weier-
strass form (QWF) of (E, A). The QWF is unique up to sim-
ilarity of the matrices J and N ; in particular, the nilpo-
tency index of N (the smallest number ν ∈ N such that
Nν = 0) is independent of the choices for S and T and
we will define the index of a regular matrix pair (E, A) as
the nilpotency index of N in the QWF. In the index-1 case
(also called sometimes causal) it is actually easy to see
that T = [T1, T2] and S = [ET1, AT2]−1 with full column
rank matrices T1, T2 matrices such that

im T1 = S := A−1(im E) := {ξ ∈ Rn : Aξ ∈ im E}

im T2 = ker E

transform (E, A) into QWF, in particular,S ⊕ker E = Rn. In
fact, the following stronger result holds, see Appendix A,
Thm. 13 in Griepentrog and März (1986) and cf. Prop. 9
in Bonilla and Malabre (2003).

Lemma 2.9 The following three statements are equivalent
for any E, A∈ Rn×n and S := A−1(im E).

a. The matrix pair (E, A) is regular with index-1.
b. S ∩ ker E = {0}.
c. S ⊕ ker E = Rn.

The main relevance of regularity and index-1 is the fol-
lowing statement about existence and uniqueness of solu-
tions of (3), which is a straightforward consequence from
the QWF (4) and was already stated as Lem. 2.5 in Anh
et al. (2019).

Lemma 2.10 Assume (E, A) is regular and of index-1, then
the discrete-time singular system (3) with initial condition
x(0) = x0 ∈ Rn has a unique solution if, and only if x0 ∈ S
and the solution is then given by

x(k) = Φk
(E,A)x0, with Φ(E,A) := T

�

J 0
0 0

�

T−1,

where T and J are given by the QWF (4) and Φ(E,A) is
independent from the specific choice of S and T leading
to (4).

Remark 2.11 The matrix Φ(E,A) corresponds to the matrix
Adiff in continuous time, see e.g. Tanwani and Trenn (2010)
and can be interpreted as the one-step map for (3). However,
it is important to note that this interpretation is only valid
if we assume that (3) holds for at least two time steps. In
fact, from

Ex(1) = Ax(0)
we can only conclude that

x(1) ∈ {Φ(E,A)x(0)}+ ker E.

In order to conclude that x(1) = Φ(E,A)x(0) we additionally
have to take into account

Ex(2) = Ax(1)

together with S ∩ ker E = {0}.

Definition 2.12 (cf. Debeljković et al. (2007)) Assume
that there exists symmetric positive definite matrix H ∈ Rn×n

such that A>HA− E>HE = −K, where K is symmetric and
positive in the sense x>K x > 0, ∀x ∈ S \{0}. Then the
function V : Rn → R≥0, defined by V (x) = (Ex)>HEx is
called a Lyapunov function for system (3).

Lemma 2.13 (cf. Debeljković et al. (2007)) Assume
that system (3) is regular and of index-1. Then system (3) is
exponentially stable if, and only if, there exists a Lyapunov
function for system (3).

3 Solution theory for switched singular systems

We now consider the solution properties of the switched
SDLS (1)

Eσ(k)x(k+ 1) = Aσ(k)x(k),
where σ : N ∪ {0} → {1,2, ..,n}, n ∈ N, is a switching
signal taking values in the finite set {1, . . . ,n}; Ei , Ai ∈
Rn×n are given matrices, and x(k) ∈ Rn is state vector
at time k ∈ N. Suppose that the matrices Ei are singular
for all i = 1, 2, ..,n. For notational convenience we put
σ(−1) = 1.

Remark 3.1 In (1) the E-matrix is also assumed to depend
on the switching signal. Here we assume that the E- and A-
matrices change synchronously, which leads to (1). However,
one could also argue that the matrix in front of the future
value x(k+1) should also be the matrix valid in the future,
leading to the following SDLS system

Eσ(k+1)x(k+ 1) = Aσ(k)x(k) (5)

which is the system class studied by one of the first papers on
discrete time-varying singular systems (Luenberger, 1977).
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One could even argue that the equation determining the fu-
ture value x(k+1) should be governed by the future coeffi-
cient matrices, i.e.

Eσ(k+1)x(k+ 1) = Aσ(k+1)x(k),

which, however, can be analyzed with the same methods
used for (1) by just considering a shifted switching signal.
The “correct” modeling choice will in the end depend on the
underlying application and here we decided to focus on the
form (1). Some results concerning (5) have been developed
in parallel to this work and have already appeared (Linh,
2018).

For the continuous time case it suffices to assume that
each matrix pair (Ei , Ai) is regular, to conclude existence
and uniqueness of (distributional) solutions of the corre-
sponding switched system. This nice solvability character-
ization is lost in the discrete time case (see e.g. Exam-
ple 1.1 in Anh et al. (2019)); in particular, causality with
respect to the switching signal may be lost. It is therefore
necessary to impose more strict assumptions on the ma-
trix pairs (Ei , Ai) to be able to conclude suitable solution
properties. Inspired by our previous works on discrete-
time singular systems (Anh and Yen, 2006; Anh et al.,
2007; Loi et al., 2002; Anh et al., 2019), we introduce the
following index-1 notion for the overall switched system.

Definition 3.2 System (1) is called an arbitrarily switched
singular system of index-1 if

Si ∩ ker E j = {0}, ∀i, j ∈ {1, 2, ..,n}, (6)

where Si := A−1
i (im Ei).

Since condition (6) also needs to hold for i = j and in
view of Lemma 2.9 it follows that each individual pair
(Ei , Ai) needs to be regular and of index-1, i.e. the defini-
tion is indeed a generalization of the index-1 property for
the non-switched case; however, Example 1.1 in Anh et
al. (2019) shows that regularity and index-1 (causality)
of each individual mode is not sufficient in general for the
whole SDLS (1) to be of index-1 in the above sense. Note
furthermore, that we do not assume that the “mixed” ma-
trix pairs (E j , Ai) are regular and index-1 (because Si is
defined in terms of Ei and not E j). We highlight the fol-
lowing consequences from the index-1 definition.

Lemma 3.3 (Lem. 3.3 in Anh et al. (2019)) Suppose
the SDLS system (1) is of index-1. Then the following
statements hold:

(a) rank Ei = r, i = 1, . . . ,n.
(b) Si ⊕ ker E j = Rn, for all i, j ∈ {1, 2, ..,n}.

Based on the index-1 assumption it is now possible to give
an explicit solution formula for the SDLS system (1).

Lemma 3.4 (Thm. 3.5 in Anh et al. (2019)) The SDSL
(1) of index-1 in the sense of Definition 3.2 has a unique
solution with x(0) = x0 ∈ R if, and only if, x0 ∈ Sσ(0). This
solution satisfies

x(k+ 1) = Φσ(k+1),σ(k)x(k) ∀k ∈ N, (7)

where Φi, j is the one-step map from mode j to mode i given
by

Φi, j := Π
ker E j

Si
Φ(E j ,A j),

where Π
ker E j

Si
is the unique projector onto Si along ker E j

and Φ(E j ,A j) is the one-step map corresponding to mode j as
in Lemma 2.10.

Note that a direct consequence of the solution formula
(7) is that all solutions satisfy x(k) ∈ Sk for all k (as
expected). Furthermore, the definition of the one-step-
map consist of two parts: first the old state is mapped to an
intermediate state with the one-step-map of the current
mode, afterwards the new state is obtained by applying a
projector, so that the new state is consistent with the new
algebraic constraint, cf. also Remark 2.11.

Remark 3.5 Similar as for classical switched systems (2),
it is now possible to define also a transition matrix Φσ(k, h)
for SDLS system (1) as follows:

Φσ(k, h) = Φσ(k),σ(k−1)Φσ(k−1),σ(k−2) · · ·Φσ(h+1),σ(h)

for k > h and
Φσ(h, h) = Π

ker Eσ(h)
Sσ(h)

.

Then all solutions of the SDLS system (1) are given by

x(k) = Φσ(k, 0)x0. (8)

Note that also for x0 /∈ Sσ(0), the formula (8) results in a
valid solution, however, in general x(0) 6= x0 and

x(0) = Π
ker Eσ(0)
Sσ(0)

x0.

In the following we give a constructive formula for the
matrix Φi, j as well as for the unique solution to SDSL sys-
tem (1). These formulas will be helpful in the forthcoming
stability analysis.

Lemma 3.6 (Lem. 4.1 in Anh et al. (2019)) Consider
the SDLS system (1) and assume that it is index-1. For
i = 1, . . . ,n, let Ti := [s1

i , . . . , sr
i , hr+1

i , . . . , hn
i ] be such

that it columns form bases of Si and ker Ei , respectively.
Let P :=

�

Ir 0
0 0

�

∈ Rn×n, where Ir is an r × r, identity

matrix, Q := In − P. Finally, let Pi := Ti PT−1
i = Πker Ei

Si
,

Q i := I− Pi = Π
Si

ker Ei
and Q i, j := T jQT−1

i for i, j = 1, . . . ,n.
Then the following properties hold
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(i) Gi, j := Ei + AiQ i, j is nonsingular for all i, j ∈
{1,2, . . . ,n},

(ii) Π
ker E j

Si
= I −Q i, jG

−1
i, j Ai ,

(iii) Φ(Ei ,Ai) = PiG
−1
i,i Ai ,

(iv) Φi, j = (I −Q i, jG
−1
i, j Ai)PjG

−1
j, j A j .

4 Stability of switched system based on Lyapunov
functions

We will establish a sufficient condition for the exponential
stability for SDLS systems (1) in terms of the Laypunov
functions of each mode. This approach is inspired by a sim-
ilar result available for the continuous time case (Liberzon
and Trenn, 2009); in particular, it generalizes the common
Lyapunov function approach for standard switched system.

We first generalize the notions of stability already defined
for switched linear system (2) to the class of SDLS sys-
tems (1).

Definition 4.1 System (1) is called stable if there exists
a positive constant γ such that for all switching signals,
the corresponding solution x(·) with the initial condition
x(0) = Π

ker Eσ(0)
Sσ(0)

x0 for x0 ∈ Rn, satisfies

‖x(k)‖ ≤ γ‖x0‖ .

Definition 4.2 System (1) is called exponentially stable if
there exist constants γ≥ 0 and λ ∈ [0, 1), such that for all
switching signals, the corresponding solution x(·) with the
initial condition x(0) = Π

ker Eσ(0)
Sσ(0)

x0 for x0 ∈ Rn fulfills

‖x(k)‖ ≤ γλk ‖x0‖ .

Note that the (exponential) stability definitions are in
terms of x0 and not in terms of x(0) (which is unequal
from x0 in general); this is important for precise charac-
terizations in terms of the transition matrix (in particular
for concluding an upper bound of the transition matrix,
see e.g. the necessity part of the proof of the forthcoming
Theorem 5.3).

Theorem 4.3 Consider the SDSL (1) of index-1 and as-
sume that every subsystem Ei x(k+1) = Ai x(k) is exponen-
tially stable with a Lyapunov function Vi : Rn → R≥0, x 7→
(Ei x)>Hi Ei x in the sense of Definition 2.12. If

Vi (Pi x)≤ V j (Pi x) , ∀i, j = 1,2, ..,n, (9)

where Pi = Π
ker Ei
Si

, then the SDLS system (1) is exponentially
stable for arbitrary switching signals

Proof.
Step 1: We construct a Lyapunov function for the switched

system which decreases along solutions.
If x ∈ Si ∩S j then x = Pi x = Pj x . From condition (9) we
have

Vi(x) = Vi(Pi x)≤ V j(Pi x) = V j(x),
V j(x) = V j(Pj x)≤ Vi(Pj x) = Vi(x).

Thus, Vi(x) = V j(x) for all x ∈ Si ∩S j , therefore we can
define a common (piecewise-quadratic) Lyapunov func-
tion for system (1) as follows:

V : Rn→ R, x →

(

Vi(x) if x ∈ Si ,

0 otherwise.

Suppose x(k), k ∈ N, is the solution of system (1), then

V (x(k+ 1))−V (x(k))
= Vσ(k+1)(x(k+ 1))−Vσ(k)(x(k))
= Vσ(k+1)(Pσ(k+1)x(k+ 1))−Vσ(k)(x(k))
≤ Vσ(k)(x(k+ 1))−Vσ(k)(x(k))
= (Eσ(k)x(k+ 1))>Hσ(k)(Eσ(k)x(k+ 1))

− (Eσ(k)x(k))>Hσ(k)(Eσ(k)x(k))

= (Aσ(k)x(k))
>Hσ(k)(Aσ(k)x(k))

− (Eσ(k)x(k))>Hσ(k)(Eσ(k)x(k))

= x(k)>(A>σ(k)Hσ(k)Aσ(k) − E>σ(k)Hσ(k)Eσ(k))x(k)

= −x(k)>Kσ(k)x(k).

Since Kσ(k) is by assumption positive definite on Sσ(k) it
is shown that indeed V decreases along solutions.

Step 2: We show existence of λi ∈ (0,1] for all
i ∈ {1, . . . ,n} such that

x>Ki x ≥ λiVi(x) ∀x ∈ Si .

Let fSi := {y ∈ Si | Vi(y) = 1}. Since fSi is the preimage
of a closed set under a continuous function it is closed.
Seeking a contradiction suppose that fSi is unbounded,
then there exists a sequence {y`} within fSi , such that
‖y`‖ → ∞ as ` →∞. Due to the positive definiteness
of the matrix Hi , there exists a positive constant γi , such
that 1 = Vi(y`) = (Ei y`)>Hi Ei y` ≥ γi‖Ei y`‖2. Let eEi be
the restriction of Ei to Si . According to Lemma 3.3(b),
Si ⊕ ker Ei = Rn, hence, eEi : Si → Ei(Si) is a bijective
mapping, therefore, it has an inverse eE−1

i . Since y` ∈ Si ,
we find ‖y`‖ = ‖eE−1

i Ei y`‖ ≤ ‖eE−1
i ‖‖Ei y`‖ ≤

1p
γi
‖eE−1

i ‖,
which contradicts the assumption ‖y`‖ →∞ as `→∞.
We therefore have shown that fSi is compact, hence

λ̄i :=min
y∈fSi

y>Ki y > 0

is well defined. Furthermore, by definition of Ki and pos-
itive definiteness of Hi we have y>Ki y = y>E>i Hi Ei y −
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y>A>i HiAi y = Vi(y)− y>A>i HiAi y ≤ 1 for all y ∈ fSi and
hence λ̄i ≤ 1. Since for any x ∈ Si \ {0} we have that

xp
Vi(x)

∈ fSi , we can therefore conclude that

x>Ki x =

�

x
p

Vi(x)

�>

Ki
x

p

Vi(x)
Vi(x)≥ λ̄iVi(x).

Step 3: We show exponential stability.

Let λ̄ :=min{λ̄1, . . . , λ̄n} ∈ (0,1] then from Steps 1 and 2
we immediately obtain:

V (x(k))≤ (1− λ̄)kV (x(0)), ∀k ≥ 0.

Since Ki is positive definite on Si there exists γ̄i > 0 such
that x>Ki x ≥ γ̄i‖x‖2 for all x ∈ Si . Hence we have, with
γ̄ :=min{γ̄1, . . . , γ̄n},

‖x(k)‖2 ≤
x(k)>Kσ(k)x(k)

γ̄
≤
V (x(k))
γ̄

≤ (1−λ̄)k
γ̄ V (x(0))≤ (1−λ̄)k

γ̄ ‖Eσ(0)Hσ(0)Eσ(0)‖‖x(0)‖2.

We therefore have shown exponential stability

‖x(k)‖ ≤ γλk‖x0‖

with λ :=
p

1− λ̄ ∈ [0, 1) and (recalling that x(0) =

Π
ker Eσ(0)
Sσ(0)

x0) with γ :=




Π
ker Eσ(0)
Sσ(0)







Æ

‖Eσ(0)Hσ(0)Eσ(0)‖/γ̄.�

Remark 4.4 Similar as in the continuous time case it is
possible to relax the condition (9) to

Vi(Pi x)≤ µV j(Pi x), ∀i, j = 1,2, ..,n.

where µ≥ 1. Then exponential stability holds for all switch-
ing signals whose dwell time is sufficiently large. To be pre-
cise, assume that every subsystem Ei x(k + 1) = Ai x(k) is
exponentially stable with Lyapunov function Vi : Rn →
R≥0, Vi(x) = (Ei x)>Hi(Ei x), where Hi are the symmet-
ric positive definite matrices, such that A>i HiAi − E>i Hi Ei =
−Ki , i = 1,2, . . . ,n, and Ki are symmetric and positive
in the sense that x>Ki x > 0, ∀x ∈ Si\{0} and let λ =
min

i
inf

x∈Si\{0}

x>Ki x
Vi(x)

. As shown in the proof of Theorem 4.3 we

have λ ∈ (0,1] and it is easily seen that the case λ = 1 is
only possible if x(k) = 0 is the only solution of (1). Other-
wise, expontential stability holds if the dwell time d of the
switching signal satisfies

d > log1−λ(1/µ).

5 The joint spectral radius and exponential stability

The previous section provided only a sufficient condition
for exponential stability, we will now provide a necessary
and sufficient condition for exponential stability in terms of
the joint spectral radius. Furthermore, we will exploit the
solution properties to calculate the joint spectral radius
via a standard system of reduced size. Finally, we highlight
that the conditions simplify significantly under a certain
commutativity assumption.

5.1 Stability characterization via joint spectral radius

Our first goal is to characterize exponential stabil-
ity with a generalization of the joint spectral radius
similar as in Theorem 2.6. Therefore, we first define
the joint spectral radius of a family of matrix pairs
{(E1, A1), (E2, A2), . . . , (En, An)} corresponding to the SDLS
system (1) of index-1 as follows.

Definition 5.1 The joint spectral radius of (1) of index-1 is

ρ
��

(Ei , Ai)
	n

1

�

:= lim
k→∞

max
i0,i1,...,ik
∈{1,...,n}



Φik ,ik−1
Φik−1,ik−2

· · ·Φi1,i0





1/k
,

where Φi, j is the one-step-map as in Lemma 3.4 and ‖ · ‖ is
the induced matrix norm.

We will show the existence of the limit in Definition 5.1.
Letting ak = max

i1,i2,...,ik
∈{1,...,n}



Φik ,ik−1
Φik−1,ik−2

· · ·Φi1,i0



 , we have the

following estimates:

ak+m = max
i0,i1,...,ik+m
∈{1,...,n}



Φik+m,ik+m−1
Φik+m−1,ik+m−2

· · ·Φi1,i0





≤ max
im,...,ik+m
∈{1,...,n}



Φik+m,ik+m−1
Φik+m−1,ik+m−2

· · ·Φim+1,im



×

max
i0,i1,...,im
∈{1,...,n}



Φim,im−1
Φim−1,im−2

· · ·Φi1,i0





= akam.

Hence Lemma 2.5 ensures the existence of the required
limit.

Remark 5.2 In the index-0 case, i.e., when Ei = In, i =
1, 2, ..,n, we find Φik ,ik−1

Φik−1,ik−2
· · ·Φi1,i0 = Aik−1

Aik−2
...Ai0 .

Thus the joint spectral radius of a family of matrix pairs
{(In, Ai)}ni=1 equals the joint spectral radius of the family of
matrices {Ai}ni=1.

Theorem 5.3 The switched system (1) of index-1 is expo-
nentially stable if, and only if,

ρ
��

(Ei , Ai)
	n

1

�

< 1.
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Proof. Sufficiency. Let K > 0 and λ ∈ (0, 1) such that

maxi0,i1,...,ik∈{1,...,n}


Φik ,ik−1
Φik−1,ik−2

· · ·Φi1,i0





1/k ≤ λ < 1 for
all k ≥ K and let x(·) be a solution of (1) for some switch-
ing signal σ, then due to Lemma 3.4 and in view of (8),
for all k ≥ K

‖x(k)‖ ≤


Φσ(k),σ(k−1) · · ·Φσ(1),σ(0)


‖x0‖ ≤ λk‖x0‖
≤ γλk‖x0‖,

for any γ≥ 1. In fact, let γ≥ 1 be such that

γ≥ max
1≤k<K

max
i0,i1,...,ik
∈{1,...,n}



Φik ,ik−1
Φik−1,ik−2

· · ·Φi1,i0





λk
,

then, clearly, for all 0≤ k < K

‖x(k)‖ ≤ γλk‖x0‖.

Necessity. In view of (8), we have that

‖x(k)‖= ‖Φσ(k, 0)x0‖ ≤ γλk‖x0‖

for all k ≥ 0, x0 ∈ Rn, all switching signals σ and all cor-
responding solutions x(·). Since ‖ · ‖ is an induced matrix
norm we therefore have

max
i0,i1,...,ik
∈{1,...,n}



Φik ,ik−1
Φik−1,ik−2

· · ·Φi1,i0



≤ γλk,

hence,

ρ
��

(Ei , Ai)
	n

1

�

≤ lim
k→∞

γ1/kλ≤ λ < 1.
�

Remark 5.4 With similar arguments as in the proof of
Theorem 5.3 it is actually possible to show that the re-
sult from Lemma 2.2 also holds for SDSL systems. Further-
more, a generalization of the result from Lemma 2.3 holds:
ρ
��

(Ei , Ai)
	n

1

�

< 1 if, and only if, there exists K > 0 such
that



ΦiK ,iK−1
ΦiK−1,iK−2

· · ·Φi1,i0



< 1 ∀i0, i1, . . . , iK ∈ {1, . . . ,n}.

In fact, if such a K > 0 exists, then exponential stability is
guaranteed with

λ= max
i0,i1,...,iK
∈{1,...,n}



ΦiK ,iK−1
ΦiK−1,iK−2

· · ·Φi1,i0





1/K
,

γ= max
1≤k<K

max
i0,i1,...,ik
∈{1,...,n}



Φik ,ik−1
Φik−1,ik−2

· · ·Φi1,i0





λk
.

5.2 Reduced order joint spectral radius

Although it is possible, to explicitly calculate the one-step-
maps Φi, j via Lemma 3.6, we want to provide another
approach to check for exponential stability. The advan-
tage of this approach is that one can reduce the initial
n-dimensional switched linear singular system (1) to a
well-understood r-dimensional switched linear nonsingu-
lar system. This reduction is based on the following result.

Proposition 5.5 Consider the switched singular system (1)
of index-1 and let Ti and Gi, j be given as in Lemma 3.6.
Then

T−1
i G−1

i, j Ai T j =: Āi, j =
h

Ā1
i, j 0

Ā2
i, j In−r

i

, (10)

for some Ā1
i, j ∈ R

r×r and Ā1
i, j ∈ R

(n−r)×r where r as in
Lemma 3.3(a) is assumed to be positive. Furthermore, for
any switching signal we have that x(·) is a solution of (1)
if, and only if, v(·) is a solution of

v(k+ 1) = Ā1
σ(k)σ(k−1)v(k) (11)

and

x(k) = Tσ(k−1)

 

v(k)

−Ā2
σ(k)σ(k−1)v(k)

!

.

In particular, (1) is exponentially stable if, and only if, (11)
is exponentially stable.

Proof. Observe that Gi, j Pi = (Ei + Ai T jQT−1
i )Ti PT−1

i =
Ei Pi+Ai T jQPT−1

i = Ei Pi . Further, since Q i is the projection
onto ker Ei along Si , it follows EiQ i = 0, therefore, Ei Pi =
Ei(Pi +Q i) = Ei . Thus, Gi, j Pi = Ei , hence Pi = G−1

i, j Ei and

Ēi, j := T−1
i G−1

i, j Ei Ti =
�

Ir O
O O

�

.

Furthermore, according to the proof of item (ii) of
Lemma 3.6, Ai T jQ = Gi, j TiQ, hence T−1

i G−1
i, j Ai T jQ = Q

and therefore

Āi, j = T−1
i G−1

i, j Ai T j =
h

Ā1
i, j O

Ā2
i, j In−r

i

.

Multiplying both sides of system (1) by T−1
σ(k)G

−1
σ(k)σ(k−1),

and using the transformation x̄(k) = T−1
σ(k−1)x(k), we get

Ēσ(k)σ(k−1) x̄(k+ 1) = Āσ(k)σ(k−1) x̄(k). (12)

Putting x̄(k) := (v(k)>, w(k)>)>, where v(k) ∈ Rr , w(k) ∈
Rn−r , we can reduce system (12) to (11) in combination
with

w(k) = −Ā2
σ(k)σ(k−1)v(k).

Since (1) has by assumption only finitely many different
modes, max

i∈{1,...,n}
‖Ti‖<∞, max

i∈{1,...,n}
‖T−1

i ‖<∞; as well as

7



max
i, j∈{1,...,n}

‖Ā2
i, j‖ <∞; consequently, x(k) converges expo-

nentially to zero if, and only if, v(k) does. �

Remark 5.6 Comparing (11) with (7) it becomes apparent
that Ā1

i, j does not directly correspond toΦi, j for i 6= j, because
in (11) we have that Ā1

σ(k),σ(k−1) relates v(k) with v(k+1),
while in (7) the matrix Φσ(k+1),σ(k) relates x(k) with x(k+
1).

Theorem 5.7 Assume that system (1) is of index-1 with
r > 0 as in Lemma 3.3(a) and consider the reduced sys-
tem (11). Then

ρ
�

{(Ei , Ai)}ni=1

�

= ρ
�

{Ā1
i, j}

n
i, j=1

�

= lim
k→∞

max
i−1,i0,...,ik−1
∈{1,...,n}





Ā1
ik−1,ik−2

...Ā1
i0,i−1







1/k
.

The proof of Theorem 5.7 is based on the following
lemma.

Lemma 5.8 Assume that system (1) is of index-1. Then the
following statements hold for all i, j, k ∈ {1, . . . ,n}:

(i) Φi, j Pj = Φi, j ,

(ii) Φi, j = eΦi, j,k Pj where eΦi, j,k := Π
ker E j

Si
PjG

−1
j,k A j .

(iii) PiG
−1
i, j AiΠ

ker E j

Si
= PiG

−1
i, j Ai ,

Proof.

(i) From Lemma 2.10 it follows that

Φ(E j ,A j)Q j = T j

� J j 0
0 0

�

T−1
j T j

�

0 0
0 I

�

T−1
j = 0

and hence by Lemma 3.4 we have Φi, jQ j = 0 which
concludes the proof because Pj = I −Q j .

(ii) Due to (i) and Lemma 3.6 we have for any ξ ∈ Rn

Φi, jξ= Φi, j Pjξ= Π
ker E j

Si
PjG

−1
j, j A j Pjξ.

Since Pjξ ∈ S j = A−1
j (im E j) there exists η ∈ Rn

such that A j Pjξ= E jη and according to the proof of
Proposition 4.7 we have Pj = G−1

j,k E j for all j, k, in

particular, G−1
j, j E j = Pj = G−1

j,k E j , so that

Φi, jξ= Π
ker E j

Si
PjG

−1
j, j E jη= Π

ker E j

Si
PjG

−1
j,k E jη

= Π
ker E j

Si
PjG

−1
j,k A j Pjξ= eΦi, j,k Pjξ.

Since ξ ∈ Rn was arbitrary, the claim is shown.

(iii) We have

PiG
−1
i, j AiΠ

ker E j

Si
= PiG

−1
i, j Ai(I −Q i, jG

−1
i, j Ai)

= PiG
−1
i, j Ai − PiG

−1
i, j AiQ i, jG

−1
i, j Ai

= PiG
−1
i, j Ai − Ti PT−1

i G−1
i, j Ai T jQT−1

i G−1
i, j Ai

= PiG
−1
i, j Ai Pj − Ti PQT−1

i G−1
i, j Ai Pj

PQ=0
= PiG

−1
i, j Ai Pj = PiG

−1
i, j Ai ,

where we used T−1
i G−1

i, j Ai T jQ = Q, which was al-
ready established in the proof of Proposition 5.5. �

Proof of Theorem 5.7.
From Lemma 5.8 it follows that

Φik ,ik−1
Φik−1,ik−2

· · ·Φi2,i1Φi1,i0

= eΦik ,ik−1,ik−2
Pik−1

eΦik−1,ik−2,ik−3
Pik−2
· · · eΦi2,i1,i0 Pi1

eΦi1,i0,i−1
Pi0

= Π
ker Eik−1
Sik

Tik−1
PĀik−1 ik−2

PĀik−2 ik−3
· · · PĀi1,i0 PĀi0,i−1

T−1
i−1

Pi0 .
(13)

Therefore,

ρ
�

{(Ei , Ai)}ni=1

�

= lim
k→∞

max
i0,i1,...,ik
∈{1,...,n}



Φik ,ik−1
Φik−1,ik−2

· · ·Φi1,i0





1/k

(13)
= lim

k→∞
max

i−1,...,ik
∈{1,...,n}





Π
ker Eik−1
Sik

Tik−1
PĀik−1,ik−2

...PĀi0,i−1
T−1

i−1
Pi0







1/k

≤ lim
k→∞

max
i−1,...,ik−1
∈{1,...,n}



PĀik−1,ik−2
...PĀi0,i−1





1/k ·

lim
k→∞

max
i−1,...,ik
∈{1,...,n}

�




Π
ker Eik−1
Sik

Tik−1











T−1
i−1

Pi0







�1/k

= lim
k→∞

max
i−1,...,ik−1
∈{1,...,n}

�

PĀik−1,ik−2
...PĀi0,i−1





�1/k

= lim
k→∞

max
i−1,...,ik−1
∈{1,...,n}

�




Ā1
ik−1,ik−2

...Ā1
i0,i−1







�1/k
= ρ

�

{Ā1
i, j}

n
i, j=1

�

.

On the other hand, we clearly have PiΠ
ker E j

Si
= Π

ker E j

Si

which together with Lemma 5.8(iii) and (13) yields

Π
ker Eik−1
Sik

Tik−1
PĀik−1,ik−2

. . . PĀi1,i0 PĀi0,i−1
T−1

i−1

= Π
ker Eik−1
Sik

Tik−1
PĀik−1,ik−2

. . . PĀi1,i0 PĀi0,i−1
T−1

i−1
Π

ker Ei−1
Si0

= Π
ker Eik−1
Sik

Tik−1
PĀik−1,ik−2

. . . PĀi1,i0 PĀi0,i−1
T−1

i−1
Pi0Π

ker Ei−1
Si0

= Φik ,ik−1
. . .Φi1,i0Π

ker Ei−1
Si0

.
(14)

Note that PiΠ
ker E j

Si
Pi = Pi , which is equivalent to

PT−1
i Π

ker E j

Si
Ti P = P, (15)
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therefore,

ρ
�

{Ā1
i, j}

n
i, j=1

�

= lim
k→∞

max
i−1,...,ik−1
∈{1,...,n}





Ā1
ik−1,ik−2

...Ā1
i0,i−1







1/k

= lim
k→∞

max
i−1,...,ik−1
∈{1,...,n}



PĀik−1,ik−2
...PĀi0,i−1





1/k

(15)
= lim

k→∞
max

i−1,...,ik
∈{1,...,n}





PT−1
ik−1
Π

ker Eik−1
Sik

Tik−1
PĀik−1,ik−2

...PĀi0,i−1







1/k

≤ lim
k→∞

max
i−1,...,ik
∈{1,...,n}





Π
ker Eik−1
Sik

Tik−1
PĀik−1,ik−2

...PĀi0,i−1
T−1

i−1







1/k
·

lim
k→∞

max
i−1,ik−1
∈{1,...,n}

�




PT−1
ik−1









Ti−1





�1/k

(14)
= lim

k→∞
max

i−1,...,ik
∈{1,...,n}





Φik ,ik−1
...Φi1,i0Π

ker Ei−1
Si0







1/k

≤ lim
k→∞

max
i−1,...,ik
∈{1,...,n}



Φik ,ik−1
...Φi1,i0





1/k · lim
k→∞

max
i−1,i0
∈{1,...,n}





Π
ker Ei−1
Si0







1/k

= lim
k→∞

max
i0,...,ik
∈{1,...,n}



Φik ,ik−1
...Φi1,i0





1/k
= ρ

�

{(Ei , Ai)}ni=1

�

.

Thus, we get ρ
�

{(Ei , Ai)}ni=1

�

= ρ
�

{Ā1
i, j}

n
i, j=1

�

. �

Remark 5.9 The joint spectral radius in Definition 5.1 may
also be called Bohl exponent for the index-1 SDSL (1), cf.
Du et al. (2016) and the references therein. Concerning the
computation of the joint-spectral radius (or Bohl exponent)
of the SDLS system (1) we first remark, that already in the
nonsingular case the calculation (of an approximation) is
an NP-hard problem (Theys, 2005) and the situation gets
even worse for the SDLS system (1) because according to
Definition 5.1 the joint spectral radius needs to be calculated
for n2 matrices (instead of n matrices in the non-singular
case). This complexity issues is to a little extend resolved
by Theorem 5.7, because it shows that the calculation can
be carried out with smaller r × r matrices instead of n× n
matrices.

We illustrate Theorem 5.7 by applying it to the following
Example.

Example 5.10 Let

(E1, A1) =
�� 1 3 −1

1 3 −1
−1 1 1

�

,
� 1 2 0

0 1 −1
0 1 1

��

,

(E2, A2) =
�� 3 −6 −3

0 −3 0
−6 −9 6

�

,
� 1 −2 −1
−1 −2 −1
−1 −2 3

��

A simple computation shows that ker E1 = ker E2 =
span{(1,0, 1)>}, S1 = S2 = span{(−1,1, 0)>, (0,−1,1)>},
hence Si ∩ ker E j = {0}, i, j = 1, 2. Hence system (1) with

Fig. 1. State responses of x1(k), x2(k), x3(k).

the above data is of index-1. An easy computation shows
that with the choice of T1 = T2 =

�−1 0 1
1 −1 0
0 1 1

�

, we have

Ā1
1,1 = Ā1

1,2 =
h 1

2 0

0 1
2

i

, Ā1
2,2 = Ā1

2,1 =
h 1

3 0

0 1
3

i

,

Φ11 = Φ21 =

� 1
4
−1
4
−1
4

0 1
2 0

−1
4
−1
4

1
4

�

, Φ22 = Φ12 =

� 1
6
−1
6
−1
6

0 1
3 0

−1
6
−1
6

1
6

�

,

Using Theorem 5.7, we find ρ({(Ei , Ai)}2i=1) =
1
2 < 1. Ac-

cording to Theorem 5.3, the SDLS system with the above
data {(Ei , Ai)}2i=1 is therefore exponentially stable. Note that
the spectral radius cannot be read off directly from Φi, j but
can be easily determined from Ā1

i, j . A numerical simula-
tion is presented in Figure 1 with initial condition x(0) =
[−3, 2,1]T under switching signal σ(k) = (k mod 2) + 1.

5.3 Commutativity and exponential stability

It is well known (see e.g. Lin and Antsaklis (2009); Zhai
et al. (2002)), that a certain commutativity conditions
ensure exponential stability under arbitrary switching for
switched systems, hence Lemma 3.4 immediately leads to
the following result on exponential stability under arbi-
trary switching.

Corollary 5.11 Consider the SDLS system (1) of index-1
and assume that all one-step mapsΦi, j as in Lemma 3.4 have
eigenvalues in the (open) unit circle and commute with each
other. Then the SDLS system (1) is exponentially stable. In
particular, the joint spectral radius is the the largest absolut
value of all eigenvalues of all one-step-maps Φi, j .

Due to Proposition 5.5 it is also possible to test the com-
mutativity condition on the smaller matrices Ā1

i, j .

Corollary 5.12 Consider the SDLS system (1) of index-1
and let Ā1

i, j be given according to Proposition 5.5. If all
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eigenvalues of Ā1
i, j are in the (open) unit circle and all Ā1

i, j
commute with each other then the SDLS system (1) is ex-
ponentially stable.

Remark 5.13 (i) Since

det(λIr − Āi, j) = det(λT−1
i G−1

i, j Ei Ti − T−1
i G−1

i, j Ai T j)

= det(T−1
i G−1

i, j )det(λEi Ti − Ai T j),

and due to the block upper diagonal structure of Āi, j , all
eigenvalues of Ā1

i, j are also finite (generalized) eigenval-
ues of the pair (Ei Ti , Ai T j) (i.e. those λ ∈ C such that
det(λEi Ti−Ai T j) = 0). Hence a sufficient condition for Ā1

i, j
having only eigenvalues in the unit circle is that the pair
(Ei Ti , Ai T j) has this property.
(ii) There seems to be no obvious connection between the
eigenvalues of Φi, j and Āi, j and also not between the com-
mutativity of each. Hence as of now it is not clear, which
stability condition is more conservative.

Example 5.14 Let us consider Example 5.10 again. Clearly,
the diagonal matrices Ā1

i, j commute and the eigenvalues have
magnitude smaller than one, hence (without explicitely cal-
culating the joint spectral radius we can conclude via Corol-
lary 5.12 that (1) is exponentially stable under arbitrary
switching. Note that the matrices Φi, j also commute and
their spectrum is given by {0, 1/2, 1/2} or {0, 1/3, 1/3}, so
Corollary 5.11 can also be used to establish exponential sta-
bility of (1).

Remark 5.15 There are many similarities between the con-
tinuous and discrete time case. In fact, the single-mode one-
step map Φ(E,A) is identical to the matrix Adiff which de-
scribes the dynamics of E ẋ = Ax via the equation ẋ = Adiff x
(see Tanwani and Trenn (2010); Trenn (2012)). There is
also a similarity when considering switching, in both cases
the dynamics are described by the single-mode one-step map
in combination with a certain projector. However, the major
difference between continuous and discrete time case is that
for the discrete time case, the resulting dynamics can still be
described in a usual way (i.e. x(k + 1) = M x(k) for some
matrix M), while in the continuous time case the resulting
dynamics are a combination of a continuous flow with a
discrete jump. In particular, an adequate notion of commu-
tativity for the continuous time case and the corresponding
proof of exponential stability (Liberzon et al., 2011) is much
more complicated than for the discrete time case.

6 Conclusion

In this paper a class of SDLS systems of index-1 is intro-
duced and a corresponding one-step-map is established.
The stability of such systems is studied by using Lyapunov
functions as well as the joint spectral radius of a set of ma-
trix pairs. Furthermore, certain commutativity conditions
are shown to preserve exponential stability.
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