2024
|
Karimi-Pour, Atiyeh; Trenn, Stephan Funnel control for impulsive switched systems Proceedings Article In: Proc. 63rd IEEE Conf. Decision Control (CDC 2024), IEEE Milan, Italy, 2024, (to appear). @inproceedings{KariTren24,
title = {Funnel control for impulsive switched systems},
author = {Atiyeh Karimi-Pour and Stephan Trenn},
url = {https://stephantrenn.net/wp-content/uploads/2024/09/Preprint-KT240913.pdf, Preprint},
year = {2024},
date = {2024-12-16},
urldate = {2024-12-16},
booktitle = {Proc. 63rd IEEE Conf. Decision Control (CDC 2024)},
address = {Milan, Italy},
organization = {IEEE},
abstract = {Impulsive switched systems encompass various modes, each exhibiting distinct behaviours. Typically, a switching sequence orchestrates transitions between these modes, where state jumps may occur, potentially undermining output tracking performance or system stability. This work introduces a funnel controller tailored for relative degree one nonlinear impulsive switched systems. Notably, this controller operates solely based on system output without necessitating knowledge of system dynamics. Unlike classical funnel controllers with fixed boundaries, the proposed method dynamically adjusts the funnel boundary for each approaching jump, aiming to preserve adherence to the original boundary. No precise knowledge of jump instances or maps is required; approximate jump intervals and an upper bound for maximum jump height suffice. Theoretical analysis establishes that the error remains within the funnel, facilitating successful reference signal tracking. Performance validation is demonstrated via numerical simulation.},
note = {to appear},
keywords = {funnel-control, nonlinear, relative-degree, switched-systems},
pubstate = {published},
tppubtype = {inproceedings}
}
Impulsive switched systems encompass various modes, each exhibiting distinct behaviours. Typically, a switching sequence orchestrates transitions between these modes, where state jumps may occur, potentially undermining output tracking performance or system stability. This work introduces a funnel controller tailored for relative degree one nonlinear impulsive switched systems. Notably, this controller operates solely based on system output without necessitating knowledge of system dynamics. Unlike classical funnel controllers with fixed boundaries, the proposed method dynamically adjusts the funnel boundary for each approaching jump, aiming to preserve adherence to the original boundary. No precise knowledge of jump instances or maps is required; approximate jump intervals and an upper bound for maximum jump height suffice. Theoretical analysis establishes that the error remains within the funnel, facilitating successful reference signal tracking. Performance validation is demonstrated via numerical simulation. |
2023
|
Sutrisno,; Yin, Hao; Trenn, Stephan; Jayawardhana, Bayu Nonlinear singular switched systems in discrete-time: solution theory and incremental stability under restricted switching signals Proceedings Article In: Proc. 62nd IEEE Conf. Decision Control, pp. 914-919, IEEE, Singapore, 2023. @inproceedings{SutrYin23,
title = {Nonlinear singular switched systems in discrete-time: solution theory and incremental stability under restricted switching signals},
author = {Sutrisno and Hao Yin and Stephan Trenn and Bayu Jayawardhana},
url = {https://stephantrenn.net/wp-content/uploads/2023/11/Preprint-SYTJ230914.pdf, Preprint},
doi = {10.1109/CDC49753.2023.10383278},
year = {2023},
date = {2023-12-13},
urldate = {2023-09-14},
booktitle = {Proc. 62nd IEEE Conf. Decision Control},
pages = {914-919},
publisher = {IEEE},
address = {Singapore},
abstract = {In this article the solvability analysis of discrete-time nonlinear singular switched systems with restricted switching signals is studied. We provide necessary and sufficient conditions for the solvability analysis under fixed switching signals and fixed mode sequences. The so-called surrogate systems (ordinary systems that have the equivalent behavior to the original switched systems) are introduced for solvable switched systems. Incremental stability, which ensures that all solution trajectories converge with each other, is then studied by utilizing these surrogate systems. Sufficient (and necessary) conditions are provided for this stability analysis using single and switched Lyapunov function approaches.},
keywords = {DAEs, discrete-time, nonlinear, solution-theory, stability, switched-DAEs, switched-systems},
pubstate = {published},
tppubtype = {inproceedings}
}
In this article the solvability analysis of discrete-time nonlinear singular switched systems with restricted switching signals is studied. We provide necessary and sufficient conditions for the solvability analysis under fixed switching signals and fixed mode sequences. The so-called surrogate systems (ordinary systems that have the equivalent behavior to the original switched systems) are introduced for solvable switched systems. Incremental stability, which ensures that all solution trajectories converge with each other, is then studied by utilizing these surrogate systems. Sufficient (and necessary) conditions are provided for this stability analysis using single and switched Lyapunov function approaches. |
Sutrisno,; Trenn, Stephan Nonlinear switched singular systems in discrete-time: The one-step map and stability under arbitrary switching signals Journal Article In: European Journal of Control, vol. 74, no. 100852, pp. 1-7, 2023, (presented at the 2023 European Control Conference, Bucharest, Rumania; open access). @article{SutrTren23a,
title = {Nonlinear switched singular systems in discrete-time: The one-step map and stability under arbitrary switching signals},
author = {Sutrisno and Stephan Trenn},
url = {https://stephantrenn.net/wp-content/uploads/2024/02/SutrTren23a.pdf, Paper},
doi = {10.1016/j.ejcon.2023.100852},
year = {2023},
date = {2023-11-01},
urldate = {2023-11-01},
journal = {European Journal of Control},
volume = {74},
number = {100852},
pages = {1-7},
abstract = {The solvability of nonlinear nonswitched and switched singular systems in discrete time is studied. We provide necessary and sufficient conditions for solvability. The one-step map that generates equivalent nonlinear (ordinary) systems for solvable nonlinear singular systems under arbitrary switching signals is introduced. Moreover, the stability is studied by utilizing this one-step map. A sufficient condition for stability is provided in terms of (switched) Lyapunov functions.},
note = {presented at the 2023 European Control Conference, Bucharest, Rumania; open access},
keywords = {DAEs, discrete-time, nonlinear, solution-theory, stability, switched-DAEs, switched-systems},
pubstate = {published},
tppubtype = {article}
}
The solvability of nonlinear nonswitched and switched singular systems in discrete time is studied. We provide necessary and sufficient conditions for solvability. The one-step map that generates equivalent nonlinear (ordinary) systems for solvable nonlinear singular systems under arbitrary switching signals is introduced. Moreover, the stability is studied by utilizing this one-step map. A sufficient condition for stability is provided in terms of (switched) Lyapunov functions. |
Lee, Jin Gyu; Berger, Thomas; Trenn, Stephan; Shim, Hyungbo Edge-wise funnel output synchronization of heterogeneous agents with relative degree one Journal Article In: Automatica, vol. 156, no. 111204, pp. 1-10, 2023, (open access). @article{LeeBerg23,
title = {Edge-wise funnel output synchronization of heterogeneous agents with relative degree one},
author = {Jin Gyu Lee and Thomas Berger and Stephan Trenn and Hyungbo Shim},
url = {https://stephantrenn.net/wp-content/uploads/2024/02/LeeBerg23.pdf, Paper
https://arxiv.org/abs/2110.05330, ArXiV},
doi = {10.1016/j.automatica.2023.111204},
year = {2023},
date = {2023-10-01},
urldate = {2023-10-01},
journal = {Automatica},
volume = {156},
number = {111204},
pages = {1-10},
abstract = {When a group of heterogeneous node dynamics are diffusively coupled with a high coupling gain, the group exhibits a collective emergent behavior which is governed by a simple algebraic average of the node dynamics called the blended dynamics. This finding has been utilized for designing heterogeneous multi-agent systems by building the desired blended dynamics first and then splitting it into the node dynamics. However, to compute the magnitude of the coupling gain, each agent needs to know global information such as the number of participating nodes, the graph structure, and so on, which prevents a fully decentralized design of the node dynamics in conjunction with the coupling laws. To resolve this issue, the idea of funnel control, which is a method for adaptive gain selection, can be exploited for a node-wise coupling, but the price to pay is that the collective emergent behavior is no longer governed by a simple average of the node dynamics. Our analysis reveals that this drawback can be avoided by an edge-wise design premise, which is the idea that we present in this paper. After all, we gain benefits such as a fully decentralized design without global information, collective emergent behavior being governed by the blended dynamics, and the plug-and-play operation based on edge-wise handshaking between two nodes.},
note = {open access},
keywords = {funnel-control, networks, nonlinear, relative-degree, synchronization},
pubstate = {published},
tppubtype = {article}
}
When a group of heterogeneous node dynamics are diffusively coupled with a high coupling gain, the group exhibits a collective emergent behavior which is governed by a simple algebraic average of the node dynamics called the blended dynamics. This finding has been utilized for designing heterogeneous multi-agent systems by building the desired blended dynamics first and then splitting it into the node dynamics. However, to compute the magnitude of the coupling gain, each agent needs to know global information such as the number of participating nodes, the graph structure, and so on, which prevents a fully decentralized design of the node dynamics in conjunction with the coupling laws. To resolve this issue, the idea of funnel control, which is a method for adaptive gain selection, can be exploited for a node-wise coupling, but the price to pay is that the collective emergent behavior is no longer governed by a simple average of the node dynamics. Our analysis reveals that this drawback can be avoided by an edge-wise design premise, which is the idea that we present in this paper. After all, we gain benefits such as a fully decentralized design without global information, collective emergent behavior being governed by the blended dynamics, and the plug-and-play operation based on edge-wise handshaking between two nodes. |
Yin, Hao; Jayawardhana, Bayu; Trenn, Stephan On contraction analysis of switched systems with mixed contracting-noncontracting modes via mode-dependent average dwell time Journal Article In: IEEE Transactions on Automatic Control, vol. 68, iss. 10, pp. 6409-6416, 2023. @article{YinJaya23a,
title = {On contraction analysis of switched systems with mixed contracting-noncontracting modes via mode-dependent average dwell time},
author = {Hao Yin and Bayu Jayawardhana and Stephan Trenn},
url = {https://stephantrenn.net/wp-content/uploads/2022/04/Preprint-YJT221110.pdf, Preprint},
doi = {10.1109/TAC.2023.3237492},
year = {2023},
date = {2023-10-01},
urldate = {2023-01-16},
journal = {IEEE Transactions on Automatic Control},
volume = {68},
issue = {10},
pages = {6409-6416},
abstract = {This paper studies contraction analysis of switched systems that are composed of a mixture of contracting and non- contracting modes. The first result pertains to the equivalence of the contraction of a switched system and the uniform global ex- ponential stability of its variational system. Based on this equiva- lence property, sufficient conditions for a mode-dependent average dwell/leave-time based switching law to be contractive are estab- lished. Correspondingly, LMI conditions are derived that allow for numerical validation of contraction property of nonlinear switched systems, which include those with all non-contracting modes.},
keywords = {LMIs, Lyapunov, nonlinear, stability, switched-systems},
pubstate = {published},
tppubtype = {article}
}
This paper studies contraction analysis of switched systems that are composed of a mixture of contracting and non- contracting modes. The first result pertains to the equivalence of the contraction of a switched system and the uniform global ex- ponential stability of its variational system. Based on this equiva- lence property, sufficient conditions for a mode-dependent average dwell/leave-time based switching law to be contractive are estab- lished. Correspondingly, LMI conditions are derived that allow for numerical validation of contraction property of nonlinear switched systems, which include those with all non-contracting modes. |
Chen, Yahao; Trenn, Stephan On impulse-free solutions and stability of switched nonlinear differential-algebraic equations Journal Article In: Automatica, vol. 156, no. 111208, pp. 1-14, 2023. @article{ChenTren23,
title = {On impulse-free solutions and stability of switched nonlinear differential-algebraic equations},
author = {Yahao Chen and Stephan Trenn},
url = {https://stephantrenn.net/wp-content/uploads/2023/06/Preprint-CT230602.pdf, Preprint},
doi = {10.1016/j.automatica.2023.111208},
year = {2023},
date = {2023-10-01},
urldate = {2023-06-02},
journal = {Automatica},
volume = {156},
number = {111208},
pages = {1-14},
abstract = {In this paper, we investigate solutions and stability properties of switched nonlinear differential– algebraic equations (DAEs). We introduce a novel concept of solutions, called impulse-free (jump-flow) solutions, and provide a geometric characterization that establishes their existence and uniqueness. This characterization builds upon the impulse-free condition utilized in previous works such as Liberzon and Trenn (2009, 2012), which focused on linear DAEs. However, our formulation extends this condition to nonlinear DAEs. Subsequently, we demonstrate that the stability conditions based on common Lyapunov functions, previously proposed in our work (Chen and Trenn, 2022) (distinct from those in Liberzon and Trenn (2012)), can be effectively applied to switched nonlinear DAEs with high-index models. It is important to note that these models do not conform to the nonlinear Weierstrass form. Additionally, we extend the commutativity stability conditions presented in Mancilla-Aguilar (2000) from switched nonlinear ordinary differential equations to the case of switched nonlinear DAEs. To illustrate the efficacy of the proposed stability conditions, we present simulation results involving switching electrical circuits and provide numerical examples. These examples serve to demonstrate the practical utility of the developed stability criteria in analyzing and understanding the behavior of switched nonlinear DAEs.},
keywords = {DAEs, Lyapunov, nonlinear, normal-forms, solution-theory, stability, switched-DAEs, switched-systems},
pubstate = {published},
tppubtype = {article}
}
In this paper, we investigate solutions and stability properties of switched nonlinear differential– algebraic equations (DAEs). We introduce a novel concept of solutions, called impulse-free (jump-flow) solutions, and provide a geometric characterization that establishes their existence and uniqueness. This characterization builds upon the impulse-free condition utilized in previous works such as Liberzon and Trenn (2009, 2012), which focused on linear DAEs. However, our formulation extends this condition to nonlinear DAEs. Subsequently, we demonstrate that the stability conditions based on common Lyapunov functions, previously proposed in our work (Chen and Trenn, 2022) (distinct from those in Liberzon and Trenn (2012)), can be effectively applied to switched nonlinear DAEs with high-index models. It is important to note that these models do not conform to the nonlinear Weierstrass form. Additionally, we extend the commutativity stability conditions presented in Mancilla-Aguilar (2000) from switched nonlinear ordinary differential equations to the case of switched nonlinear DAEs. To illustrate the efficacy of the proposed stability conditions, we present simulation results involving switching electrical circuits and provide numerical examples. These examples serve to demonstrate the practical utility of the developed stability criteria in analyzing and understanding the behavior of switched nonlinear DAEs. |
Yin, Hao; Jayawardhana, Bayu; Trenn, Stephan Contraction analysis of time-varying DAE systems via auxiliary ODE systems Unpublished 2023, (conditionally accepted at TAC). @unpublished{YinJaya23ppa,
title = {Contraction analysis of time-varying DAE systems via auxiliary ODE systems},
author = {Hao Yin and Bayu Jayawardhana and Stephan Trenn},
url = {https://stephantrenn.net/wp-content/uploads/2023/12/Preprint-YJT230920.pdf, Preprint},
year = {2023},
date = {2023-09-20},
urldate = {2023-09-20},
note = {conditionally accepted at TAC},
keywords = {DAEs, nonlinear, observer, stability},
pubstate = {published},
tppubtype = {unpublished}
}
|
Hu, Jiaming; Trenn, Stephan; Zhu, Xiaojin A novel two stages funnel controller limiting the error derivative Journal Article In: Systems & Control Letters, vol. 179, no. 105601, pp. 1-10, 2023, (open access). @article{HuTren23,
title = {A novel two stages funnel controller limiting the error derivative},
author = {Jiaming Hu and Stephan Trenn and Xiaojin Zhu},
url = {https://stephantrenn.net/wp-content/uploads/2024/02/HuTren23.pdf, Paper},
doi = {10.1016/j.sysconle.2023.105601},
year = {2023},
date = {2023-09-01},
urldate = {2023-09-01},
journal = {Systems & Control Letters},
volume = {179},
number = {105601},
pages = {1-10},
abstract = {As a powerful adaptive control method for the output tracking problem, funnel control has attracted considerable attention in theoretical research and engineering practice. The funnel control strategy can guarantee both transient behavior and arbitrary good accuracy. A noticeable shortcoming is however that the derivative of the tracking error may become unnecessarily large resulting in a bouncing behavior of the tracking error between the funnel boundaries. To avoid this phenomenon, we present a novel two stages funnel control scheme to solve the output-tracking control problem for uncertain nonlinear systems with relative degree one and stable internal dynamics. This new scheme defines the control input in terms of a desired error derivative while still ensuring that the tracking error evolves within the prescribed funnel. In particular, we can quantify the range of the error derivative with a derivative funnel in terms of the known bounds of the system dynamics. Furthermore, we extend our approach to the situation where input saturations are present and extend the control law outside the funnel to ensure well-defined behavior in case the input saturations are too restrictive to keep the error within the funnel.},
note = {open access},
keywords = {funnel-control, input-constraints, nonlinear, relative-degree},
pubstate = {published},
tppubtype = {article}
}
As a powerful adaptive control method for the output tracking problem, funnel control has attracted considerable attention in theoretical research and engineering practice. The funnel control strategy can guarantee both transient behavior and arbitrary good accuracy. A noticeable shortcoming is however that the derivative of the tracking error may become unnecessarily large resulting in a bouncing behavior of the tracking error between the funnel boundaries. To avoid this phenomenon, we present a novel two stages funnel control scheme to solve the output-tracking control problem for uncertain nonlinear systems with relative degree one and stable internal dynamics. This new scheme defines the control input in terms of a desired error derivative while still ensuring that the tracking error evolves within the prescribed funnel. In particular, we can quantify the range of the error derivative with a derivative funnel in terms of the known bounds of the system dynamics. Furthermore, we extend our approach to the situation where input saturations are present and extend the control law outside the funnel to ensure well-defined behavior in case the input saturations are too restrictive to keep the error within the funnel. |
2022
|
Chen, Yahao; Trenn, Stephan Impulse-free jump solutions of nonlinear differential-algebraic equations Journal Article In: Nonlinear Analysis: Hybrid Systems, vol. 46, no. 101238, pp. 1-17, 2022, (open access). @article{ChenTren22a,
title = {Impulse-free jump solutions of nonlinear differential-algebraic equations},
author = {Yahao Chen and Stephan Trenn},
url = {https://stephantrenn.net/wp-content/uploads/2024/02/ChenTren22a.pdf, Paper},
doi = {10.1016/j.nahs.2022.101238},
year = {2022},
date = {2022-11-01},
urldate = {2022-11-01},
journal = {Nonlinear Analysis: Hybrid Systems},
volume = {46},
number = {101238},
pages = {1-17},
abstract = {In this paper, we propose a novel notion called impulse-free jump solution for nonlinear differential-algebraic equations (DAEs) of the form E(x)x' = F(x) with inconsistent initial values. The term “impulse-free” means that there are no Dirac impulses caused by jumps from inconsistent initial values, i.e., the directions of jumps stay in ker E(x). We find that the existence and uniqueness of impulse-free jumps are closely related to the notion of geometric index-1 and the involutivity of the distribution defined by ker E(x). Moreover, a singular perturbed system approximation is proposed for nonlinear DAEs; we show that solutions of the perturbed system approximate both impulse-free jump solutions and C1-solutions of nonlinear DAEs. Finally, we show by some examples that our results of impulse-free jumps are useful for the problems like consistent initializations of nonlinear DAEs and transient behavior simulations of electric circuits.},
note = {open access},
keywords = {DAEs, nonlinear},
pubstate = {published},
tppubtype = {article}
}
In this paper, we propose a novel notion called impulse-free jump solution for nonlinear differential-algebraic equations (DAEs) of the form E(x)x' = F(x) with inconsistent initial values. The term “impulse-free” means that there are no Dirac impulses caused by jumps from inconsistent initial values, i.e., the directions of jumps stay in ker E(x). We find that the existence and uniqueness of impulse-free jumps are closely related to the notion of geometric index-1 and the involutivity of the distribution defined by ker E(x). Moreover, a singular perturbed system approximation is proposed for nonlinear DAEs; we show that solutions of the perturbed system approximate both impulse-free jump solutions and C1-solutions of nonlinear DAEs. Finally, we show by some examples that our results of impulse-free jumps are useful for the problems like consistent initializations of nonlinear DAEs and transient behavior simulations of electric circuits. |
Chen, Yahao; Trenn, Stephan Stability analysis of switched nonlinear differential-algebraic equations via nonlinear Weierstrass form Proceedings Article In: Proceedings of the 2022 European Control Conference (ECC), pp. 1091-1096, London, 2022. @inproceedings{ChenTren22b,
title = {Stability analysis of switched nonlinear differential-algebraic equations via nonlinear Weierstrass form},
author = {Yahao Chen and Stephan Trenn},
url = {https://stephantrenn.net/wp-content/uploads/2022/03/Preprint-CT220329.pdf, Preprint},
doi = {10.23919/ECC55457.2022.9838148},
year = {2022},
date = {2022-07-12},
urldate = {2022-07-12},
booktitle = {Proceedings of the 2022 European Control Conference (ECC)},
pages = {1091-1096},
address = {London},
abstract = {In this paper, we propose some sufficient conditions for checking the asymptotic stability of switched nonlinear differential-algebraic equations (DAEs) under arbitrary switch- ing signal. We assume that each model of a given switched DAE is externally equivalent to a nonlinear Weierstrass form. With the help of this form, we can define nonlinear consistency projectors and jump-flow solutions for switched nonlinear DAEs. Then we use a different approach from the paper [12] to study the stability of switched DAEs via a novel notion called the jump-flow explicitation, which attaches a nonlinear control system to a given nonlinear DAE and can be used to simplify the common Lyapunov function conditions for both the flow and the jump dynamics of switched nonlinear DAEs. At last, a numerical example is given to illustrate how to check the stability of a switched nonlinear DAE by constructing a common Lyapunov function.
},
keywords = {DAEs, nonlinear, solution-theory, stability, switched-DAEs, switched-systems},
pubstate = {published},
tppubtype = {inproceedings}
}
In this paper, we propose some sufficient conditions for checking the asymptotic stability of switched nonlinear differential-algebraic equations (DAEs) under arbitrary switch- ing signal. We assume that each model of a given switched DAE is externally equivalent to a nonlinear Weierstrass form. With the help of this form, we can define nonlinear consistency projectors and jump-flow solutions for switched nonlinear DAEs. Then we use a different approach from the paper [12] to study the stability of switched DAEs via a novel notion called the jump-flow explicitation, which attaches a nonlinear control system to a given nonlinear DAE and can be used to simplify the common Lyapunov function conditions for both the flow and the jump dynamics of switched nonlinear DAEs. At last, a numerical example is given to illustrate how to check the stability of a switched nonlinear DAE by constructing a common Lyapunov function.
|
Hu, Jiaming; Trenn, Stephan; Zhu, Xiaojin Funnel control for relative degree one nonlinear systems with input saturation Proceedings Article In: Proceedings of the 2022 European Control Conference (ECC), pp. 227-232, London, 2022. @inproceedings{HuTren22,
title = {Funnel control for relative degree one nonlinear systems with input saturation},
author = {Jiaming Hu and Stephan Trenn and Xiaojin Zhu},
url = {https://stephantrenn.net/wp-content/uploads/2022/03/Preprint-HTZ220329.pdf, Preprint},
doi = {10.23919/ECC55457.2022.9837979},
year = {2022},
date = {2022-07-12},
urldate = {2022-07-12},
booktitle = {Proceedings of the 2022 European Control Conference (ECC)},
pages = {227-232},
address = {London},
abstract = {The dilemma between transient behavior and accuracy in tracking control arises in both theoretical research and engineering practice and funnel control has shown great potential in solving that problem. Apart from the controlled system, the performance of funnel control strongly depends on the reference signal and the choice of prescribed funnel boundary. In this paper, we will present a new form of funnel controller for systems with control saturation. Compared to former research, the new controller is more reliable, and the closed-loop system can even achieve asymptotic tracking. Besides that, a new concept called constrained funnel boundary is introduced. Together with the new controller and the constrained funnel boundary, the application range of funnel control is extended significantly.},
keywords = {funnel-control, input-constraints, nonlinear, relative-degree},
pubstate = {published},
tppubtype = {inproceedings}
}
The dilemma between transient behavior and accuracy in tracking control arises in both theoretical research and engineering practice and funnel control has shown great potential in solving that problem. Apart from the controlled system, the performance of funnel control strongly depends on the reference signal and the choice of prescribed funnel boundary. In this paper, we will present a new form of funnel controller for systems with control saturation. Compared to former research, the new controller is more reliable, and the closed-loop system can even achieve asymptotic tracking. Besides that, a new concept called constrained funnel boundary is introduced. Together with the new controller and the constrained funnel boundary, the application range of funnel control is extended significantly. |
Sutrisno,; Trenn, Stephan The one-step function for discrete-time nonlinear switched singular systems Miscellaneous Book of Abstracts - 41th Benelux Meeting on Systems and Control, 2022. @misc{SutrTren22m,
title = {The one-step function for discrete-time nonlinear switched singular systems},
author = {Sutrisno and Stephan Trenn},
editor = {Alain Vande Wouwer and Michel Kinnaert and Emanuele Garone and Laurent Dewasme and Guilherme A. Pimentel},
url = {https://stephantrenn.net/wp-content/uploads/2022/08/SutrTren22.pdf, Abstract
https://www.beneluxmeeting.nl/2022/uploads/images/2022/boa_BeneluxMeeting2022_Web_betaV12_withChairs.pdf, Book of Abstracts},
year = {2022},
date = {2022-07-07},
urldate = {2022-07-07},
howpublished = {Book of Abstracts - 41th Benelux Meeting on Systems and Control},
keywords = {discrete-time, nonlinear, solution-theory, switched-DAEs, switched-systems},
pubstate = {published},
tppubtype = {misc}
}
|
Lee, Jin Gyu; Trenn, Stephan; Shim, Hyungbo Synchronization with prescribed transient behavior: Heterogeneous multi-agent systems under funnel coupling Journal Article In: Automatica, vol. 141, no. 110276, pp. 13, 2022, (open access). @article{LeeTren22,
title = {Synchronization with prescribed transient behavior: Heterogeneous multi-agent systems under funnel coupling},
author = {Jin Gyu Lee and Stephan Trenn and Hyungbo Shim},
url = {https://stephantrenn.net/wp-content/uploads/2022/08/LeeTren22.pdf, Paper
https://arxiv.org/abs/2012.14580, Extended ArXiv-version},
doi = {10.1016/j.automatica.2022.110276},
year = {2022},
date = {2022-07-01},
urldate = {2022-07-01},
journal = {Automatica},
volume = {141},
number = {110276},
pages = {13},
abstract = {In this paper, we introduce a nonlinear time-varying coupling law, which can be designed in a fully decentralized manner and achieves approximate synchronization with arbitrary precision, under only mild assumptions on the individual vector fields and the underlying (undirected) graph structure. The proposed coupling law is motivated by the so-called funnel control method studied in adaptive control under the observation that arbitrary precision synchronization can be achieved for heterogeneous multi-agent systems by a high-gain coupling; consequently we call our novel synchronization method ‘(node-wise) funnel coupling.’ By adjusting the conventional proof technique in the funnel control study, we are even able to obtain asymptotic synchronization with the same funnel coupling law. Moreover, the emergent collective behavior that arises for a heterogeneous multi-agent system when enforcing arbitrary precision synchronization by the proposed funnel coupling law, is analyzed in this paper. In particular, we introduce a single scalar dynamics called ‘emergent dynamics’ which describes the emergent synchronized behavior of the multi-agent system under funnel coupling. Characterization of the emergent dynamics is important because, for instance, one can design the emergent dynamics first such that the solution trajectory behaves as desired, and then, provide a design guideline to each agent so that the constructed vector fields yield the desired emergent dynamics. We illustrate this idea via the example of a distributed median solver based on funnel coupling.},
note = {open access},
keywords = {funnel-control, nonlinear, synchronization},
pubstate = {published},
tppubtype = {article}
}
In this paper, we introduce a nonlinear time-varying coupling law, which can be designed in a fully decentralized manner and achieves approximate synchronization with arbitrary precision, under only mild assumptions on the individual vector fields and the underlying (undirected) graph structure. The proposed coupling law is motivated by the so-called funnel control method studied in adaptive control under the observation that arbitrary precision synchronization can be achieved for heterogeneous multi-agent systems by a high-gain coupling; consequently we call our novel synchronization method ‘(node-wise) funnel coupling.’ By adjusting the conventional proof technique in the funnel control study, we are even able to obtain asymptotic synchronization with the same funnel coupling law. Moreover, the emergent collective behavior that arises for a heterogeneous multi-agent system when enforcing arbitrary precision synchronization by the proposed funnel coupling law, is analyzed in this paper. In particular, we introduce a single scalar dynamics called ‘emergent dynamics’ which describes the emergent synchronized behavior of the multi-agent system under funnel coupling. Characterization of the emergent dynamics is important because, for instance, one can design the emergent dynamics first such that the solution trajectory behaves as desired, and then, provide a design guideline to each agent so that the constructed vector fields yield the desired emergent dynamics. We illustrate this idea via the example of a distributed median solver based on funnel coupling. |
2021
|
Chen, Yahao; Trenn, Stephan; Respondek, Witold Normal forms and internal regularization of nonlinear differential-algebraic control systems Journal Article In: International Journal of Robust and Nonlinear Control, vol. 2021, no. 31, pp. 6562-6584, 2021, (open access). @article{ChenTren21d,
title = {Normal forms and internal regularization of nonlinear differential-algebraic control systems},
author = {Yahao Chen and Stephan Trenn and Witold Respondek},
url = {https://stephantrenn.net/wp-content/uploads/2021/06/ChenTren21d.pdf, Paper},
doi = {10.1002/rnc.5623},
year = {2021},
date = {2021-04-13},
urldate = {2021-04-13},
journal = {International Journal of Robust and Nonlinear Control},
volume = {2021},
number = {31},
pages = {6562-6584},
abstract = {In this paper, we propose two normal forms for nonlinear differential-algebraic control systems (DACSs) under external feedback equivalence, using a notion called maximal controlled invariant submanifold. The two normal forms simplify the system structures and facilitate understanding the various roles of variables for nonlinear DACSs. Moreover, we study when a given nonlinear DACS is internally regularizable, i.e., when there exists a state feedback transforming the DACS into a differential-algebraic equation (DAE) with internal regularity, the latter notion is closely related to the existence and uniqueness of solutions of DAEs. We also revise a commonly used method in DAE solution theory, called the geometric reduction method. We apply this method to DACSs and formulate it as an algorithm, which is used to construct maximal controlled invariant submanifolds and to find internal regularization feedbacks. Two examples of mechanical systems are used to illustrate the proposed normal forms and to show how to internally regularize DACSs.},
note = {open access},
keywords = {DAEs, nonlinear, normal-forms, solution-theory},
pubstate = {published},
tppubtype = {article}
}
In this paper, we propose two normal forms for nonlinear differential-algebraic control systems (DACSs) under external feedback equivalence, using a notion called maximal controlled invariant submanifold. The two normal forms simplify the system structures and facilitate understanding the various roles of variables for nonlinear DACSs. Moreover, we study when a given nonlinear DACS is internally regularizable, i.e., when there exists a state feedback transforming the DACS into a differential-algebraic equation (DAE) with internal regularity, the latter notion is closely related to the existence and uniqueness of solutions of DAEs. We also revise a commonly used method in DAE solution theory, called the geometric reduction method. We apply this method to DACSs and formulate it as an algorithm, which is used to construct maximal controlled invariant submanifolds and to find internal regularization feedbacks. Two examples of mechanical systems are used to illustrate the proposed normal forms and to show how to internally regularize DACSs. |
Chen, Yahao; Trenn, Stephan On geometric and differentiation index of nonlinear differential-algebraic equations Proceedings Article In: IFAC-PapersOnLine (Proceedings of the MTNS 2020/21), pp. 186-191, IFAC Elsevier, 2021, (open access). @inproceedings{ChenTren21b,
title = {On geometric and differentiation index of nonlinear differential-algebraic equations},
author = {Yahao Chen and Stephan Trenn},
url = {https://stephantrenn.net/wp-content/uploads/2022/03/ChenTren21b.pdf, Paper},
doi = {10.1016/j.ifacol.2021.06.075},
year = {2021},
date = {2021-04-06},
urldate = {2021-04-06},
booktitle = {IFAC-PapersOnLine (Proceedings of the MTNS 2020/21)},
volume = {54},
number = {9},
pages = {186-191},
publisher = {Elsevier},
organization = {IFAC},
abstract = {We discuss two notions of index, i.e., the geometric index and the differentiation index for nonlinear differential-algebraic equations (DAEs). First, we analyze solutions of nonlinear DAEs by revising a geometric reduction method (see e.g. Rabier and Rheinboldt (2002),Riaza (2008)). Then we show that although both of the geometric index and the differentiation index serve as a measure of difficulties for solving DAEs, they are actually related to the existence and uniqueness of solutions in a different manner. It is claimed in (Campbell and Gear, 1995) that the two indices coincide when sufficient smoothness and assumptions are satisfied, we elaborate this claim and show that the two indices indeed coincide if and only if a condition of uniqueness of solutions is satisfied (under certain constant rank assumptions). Finally, an example of a pendulum system is used to illustrate our results on the two indices.},
note = {open access},
keywords = {DAEs, nonlinear, solution-theory},
pubstate = {published},
tppubtype = {inproceedings}
}
We discuss two notions of index, i.e., the geometric index and the differentiation index for nonlinear differential-algebraic equations (DAEs). First, we analyze solutions of nonlinear DAEs by revising a geometric reduction method (see e.g. Rabier and Rheinboldt (2002),Riaza (2008)). Then we show that although both of the geometric index and the differentiation index serve as a measure of difficulties for solving DAEs, they are actually related to the existence and uniqueness of solutions in a different manner. It is claimed in (Campbell and Gear, 1995) that the two indices coincide when sufficient smoothness and assumptions are satisfied, we elaborate this claim and show that the two indices indeed coincide if and only if a condition of uniqueness of solutions is satisfied (under certain constant rank assumptions). Finally, an example of a pendulum system is used to illustrate our results on the two indices. |
Iervolino, Raffaele; Trenn, Stephan; Vasca, Francesco Asymptotic stability of piecewise affine systems with Filippov solutions via discontinuous piecewise Lyapunov functions Journal Article In: IEEE Transactions on Automatic Control, vol. 66, no. 4, pp. 1513-1528, 2021. @article{IervTren21,
title = {Asymptotic stability of piecewise affine systems with Filippov solutions via discontinuous piecewise Lyapunov functions},
author = {Raffaele Iervolino and Stephan Trenn and Francesco Vasca},
url = {https://stephantrenn.net/wp-content/uploads/2020/02/Preprint-ITV200204.pdf, Preprint},
doi = {10.1109/TAC.2020.2996597},
year = {2021},
date = {2021-04-01},
urldate = {2021-04-01},
journal = {IEEE Transactions on Automatic Control},
volume = {66},
number = {4},
pages = {1513-1528},
abstract = {Asymptotic stability of continuous-time piecewise affine systems defined over a polyhedral partition of the state space, with possible discontinuous vector field on the boundaries, is considered. In the first part of the paper the feasible Filippov solution concept is introduced by characterizing single-mode Caratheodory, sliding mode and forward Zeno behaviors. Then, a global asymptotic stability result through a (possibly discontinuous) piecewise Lyapunov function is presented. The sufficient conditions are based on pointwise classifications of the trajectories which allow the identification of crossing, unreachable and Caratheodory boundaries. It is shown that the sign and jump conditions of the stability theorem can be expressed in terms of linear matrix inequalities by particularizing to piecewise quadratic Lyapunov functions and using the cone-copositivity approach. Several examples illustrate the theoretical arguments and the effectiveness of the stability result.},
keywords = {LMIs, Lyapunov, nonlinear, solution-theory, stability, switched-systems},
pubstate = {published},
tppubtype = {article}
}
Asymptotic stability of continuous-time piecewise affine systems defined over a polyhedral partition of the state space, with possible discontinuous vector field on the boundaries, is considered. In the first part of the paper the feasible Filippov solution concept is introduced by characterizing single-mode Caratheodory, sliding mode and forward Zeno behaviors. Then, a global asymptotic stability result through a (possibly discontinuous) piecewise Lyapunov function is presented. The sufficient conditions are based on pointwise classifications of the trajectories which allow the identification of crossing, unreachable and Caratheodory boundaries. It is shown that the sign and jump conditions of the stability theorem can be expressed in terms of linear matrix inequalities by particularizing to piecewise quadratic Lyapunov functions and using the cone-copositivity approach. Several examples illustrate the theoretical arguments and the effectiveness of the stability result. |
Chen, Yahao; Trenn, Stephan An approximation for nonlinear differential-algebraic equations via singular perturbation theory Proceedings Article In: Proceedings of 7th IFAC Conference on Analysis and Design of Hybrid Systems (ADHS21), IFAC-PapersOnLine, pp. 187-192, Brussels, Belgium, 2021, (open access). @inproceedings{ChenTren21c,
title = {An approximation for nonlinear differential-algebraic equations via singular perturbation theory},
author = {Yahao Chen and Stephan Trenn},
url = {https://stephantrenn.net/wp-content/uploads/2022/03/ChenTren21c.pdf, Paper
},
doi = {10.1016/j.ifacol.2021.08.496},
year = {2021},
date = {2021-03-26},
urldate = {2021-03-26},
booktitle = {Proceedings of 7th IFAC Conference on Analysis and Design of Hybrid Systems (ADHS21), IFAC-PapersOnLine},
volume = {54},
number = {5},
pages = {187-192},
address = {Brussels, Belgium},
abstract = {In this paper, we study the jumps of nonlinear DAEs caused by inconsistent initial values. First, we propose a simple normal form called the index-1 nonlinear Weierstrass form (INWF) for nonlinear DAEs. Then we generalize the notion of consistency projector introduced in Liberzon and Trenn (2009) for linear DAEs to the nonlinear case. By an example, we compare our proposed nonlinear consistency projectors with two existing consistent initialization methods (one is from the paper Liberzon and Trenn (2012) and the other is given by a MATLAB function) to show that the two existing methods are not coordinate-free, i.e., the consistent points calculated by the two methods are not invariant under nonlinear coordinates transformations. Next we propose a singular perturbed system approximation for nonlinear DAEs, which is an ordinary differential equation (ODE) with a small perturbation parameter and we show that the solutions of the proposed perturbation system approximate both the jumps resulting from the nonlinear consistency projectors and the C1-solutions of the DAE. At last, we use a numerical simulation of a nonlinear DAE model arising from an electric circuit to illustrate the effectiveness of the proposed singular perturbed system approximation of DAEs.},
note = {open access},
keywords = {DAEs, nonlinear, normal-forms, solution-theory},
pubstate = {published},
tppubtype = {inproceedings}
}
In this paper, we study the jumps of nonlinear DAEs caused by inconsistent initial values. First, we propose a simple normal form called the index-1 nonlinear Weierstrass form (INWF) for nonlinear DAEs. Then we generalize the notion of consistency projector introduced in Liberzon and Trenn (2009) for linear DAEs to the nonlinear case. By an example, we compare our proposed nonlinear consistency projectors with two existing consistent initialization methods (one is from the paper Liberzon and Trenn (2012) and the other is given by a MATLAB function) to show that the two existing methods are not coordinate-free, i.e., the consistent points calculated by the two methods are not invariant under nonlinear coordinates transformations. Next we propose a singular perturbed system approximation for nonlinear DAEs, which is an ordinary differential equation (ODE) with a small perturbation parameter and we show that the solutions of the proposed perturbation system approximate both the jumps resulting from the nonlinear consistency projectors and the C1-solutions of the DAE. At last, we use a numerical simulation of a nonlinear DAE model arising from an electric circuit to illustrate the effectiveness of the proposed singular perturbed system approximation of DAEs. |
Chen, Yahao; Trenn, Stephan The differentiation index of nonlinear differential-algebraic equations versus the relative degree of nonlinear control systems Proceedings Article In: PAMM · Proc. Appl. Math. Mech. 2020, pp. e202000162, Wiley-VCH GmbH, 2021, (Open Access.). @inproceedings{ChenTren21a,
title = {The differentiation index of nonlinear differential-algebraic equations versus the relative degree of nonlinear control systems},
author = {Yahao Chen and Stephan Trenn},
url = {https://stephantrenn.net/wp-content/uploads/2021/01/pamm.202000162.pdf, Paper},
doi = {10.1002/pamm.202000162},
year = {2021},
date = {2021-01-25},
booktitle = {PAMM · Proc. Appl. Math. Mech. 2020},
volume = {20},
number = {1},
pages = {e202000162},
publisher = {Wiley-VCH GmbH},
abstract = {It is claimed in [1] that the notion of the relative degree in nonlinear control theory is closely related to that of the differen- tiation index for nonlinear differential-algebraic equations (DAEs). In this paper, we give more insights on this claim via a recent proposed concept (see [2]) called the explicitation of DAEs. The explicitation attaches a class of control systems to a given DAE, we show that the relative degree of the systems in the explicitation class is invariant in some sense and that the differentiation index of the original DAE coincides with the maximum of the relative degree of the explicitation systems.},
note = {Open Access.},
keywords = {DAEs, nonlinear, normal-forms, relative-degree},
pubstate = {published},
tppubtype = {inproceedings}
}
It is claimed in [1] that the notion of the relative degree in nonlinear control theory is closely related to that of the differen- tiation index for nonlinear differential-algebraic equations (DAEs). In this paper, we give more insights on this claim via a recent proposed concept (see [2]) called the explicitation of DAEs. The explicitation attaches a class of control systems to a given DAE, we show that the relative degree of the systems in the explicitation class is invariant in some sense and that the differentiation index of the original DAE coincides with the maximum of the relative degree of the explicitation systems. |
2020
|
Lee, Jin Gyu; Berger, Thomas; Trenn, Stephan; Shim, Hyungbo Utility of edge-wise funnel coupling for asymptotically solving distributed consensus optimization Proceedings Article In: Proc. European Control Conference (ECC 2020), pp. 911-916, Saint Petersburg, Russia, 2020. @inproceedings{LeeBerg20,
title = {Utility of edge-wise funnel coupling for asymptotically solving distributed consensus optimization},
author = {Jin Gyu Lee and Thomas Berger and Stephan Trenn and Hyungbo Shim},
url = {https://stephantrenn.net/wp-content/uploads/2020/02/Preprint-LBTS200204.pdf, Preprint},
doi = {10.23919/ECC51009.2020.9143983},
year = {2020},
date = {2020-05-14},
booktitle = {Proc. European Control Conference (ECC 2020)},
pages = {911-916},
address = {Saint Petersburg, Russia},
abstract = {A new approach to distributed consensus optimization is studied in this paper. The cost function to be minimized is a sum of local cost functions which are not necessarily convex as long as their sum is convex. This benefit is obtained from a recent observation that, with a large gain in the diffusive coupling, heterogeneous multi-agent systems behave like a single dynamical system whose vector field is simply the average of all agents' vector fields. However, design of the large coupling gain requires global information such as network structure and individual agent dynamics. In this paper, we employ a nonlinear time-varying coupling of diffusive type, which we call `edge-wise funnel coupling.' This idea is borrowed from adaptive control, which enables decentralized design of distributed optimizers without knowledge of global information. Remarkably, without a common internal model, each agent achieves asymptotic consensus to the optimal solution of the global cost. We illustrate this result by a network that asymptotically finds the least-squares solution of a linear equation in a distributed manner.},
keywords = {funnel-control, networks, nonlinear, synchronization},
pubstate = {published},
tppubtype = {inproceedings}
}
A new approach to distributed consensus optimization is studied in this paper. The cost function to be minimized is a sum of local cost functions which are not necessarily convex as long as their sum is convex. This benefit is obtained from a recent observation that, with a large gain in the diffusive coupling, heterogeneous multi-agent systems behave like a single dynamical system whose vector field is simply the average of all agents' vector fields. However, design of the large coupling gain requires global information such as network structure and individual agent dynamics. In this paper, we employ a nonlinear time-varying coupling of diffusive type, which we call `edge-wise funnel coupling.' This idea is borrowed from adaptive control, which enables decentralized design of distributed optimizers without knowledge of global information. Remarkably, without a common internal model, each agent achieves asymptotic consensus to the optimal solution of the global cost. We illustrate this result by a network that asymptotically finds the least-squares solution of a linear equation in a distributed manner. |
Chen, Yahao; Trenn, Stephan On geometric and differentiation index of nonlinear differential algebraic equations Miscellaneous Book of Abstracts - 39th Benelux Meeting on Systems and Control, 2020. @misc{ChenTren20m,
title = {On geometric and differentiation index of nonlinear differential algebraic equations},
author = {Yahao Chen and Stephan Trenn},
editor = {Raffaella Carloni and Bayu Jayawardhana and Erjen Lefeber},
url = {https://www.beneluxmeeting.nl/2020/uploads/papers/boa.pdf, Book of Abstracts
https://stephantrenn.net/wp-content/uploads/2021/03/ChenTren20.pdf, Extended Abstract},
year = {2020},
date = {2020-03-12},
howpublished = {Book of Abstracts - 39th Benelux Meeting on Systems and Control},
keywords = {DAEs, nonlinear, solution-theory},
pubstate = {published},
tppubtype = {misc}
}
|
Hu, Jiaming; Trenn, Stephan Sliding mode observer based hysteresis compensation control for piezoelectric stacks Miscellaneous Book of Abstracts - 39th Benelux Meeting on Systems and Control, 2020. @misc{HuTren20m,
title = {Sliding mode observer based hysteresis compensation control for piezoelectric stacks},
author = {Jiaming Hu and Stephan Trenn},
editor = {Raffaella Carloni and Bayu Jayawardhana and Erjen Lefeber},
url = {https://www.beneluxmeeting.nl/2020/uploads/papers/boa.pdf, Book of Abstracts
https://stephantrenn.net/wp-content/uploads/2021/03/HuTren20.pdf, Extended Abstract},
year = {2020},
date = {2020-03-12},
howpublished = {Book of Abstracts - 39th Benelux Meeting on Systems and Control},
keywords = {application, nonlinear},
pubstate = {published},
tppubtype = {misc}
}
|
2018
|
Kausar, Rukhsana; Trenn, Stephan Water hammer modeling for water networks via hyperbolic PDEs and switched DAEs Proceedings Article In: Klingenberg, Christian; Westdickenberg, Michael (Ed.): Theory, Numerics and Applications of Hyperbolic Problems II, pp. 123-135, Springer, Cham, 2018, ISBN: 978-3-319-91548-7, (Presented at XVI International Conference on Hyperbolic Problems (HYP2016), Aachen). @inproceedings{KausTren18,
title = {Water hammer modeling for water networks via hyperbolic PDEs and switched DAEs},
author = {Rukhsana Kausar and Stephan Trenn},
editor = {Christian Klingenberg and Michael Westdickenberg},
url = {https://stephantrenn.net/wp-content/uploads/2017/09/Preprint-KT170418.pdf, Preprint},
doi = {10.1007/978-3-319-91548-7_9},
isbn = {978-3-319-91548-7},
year = {2018},
date = {2018-06-27},
urldate = {2018-06-27},
booktitle = {Theory, Numerics and Applications of Hyperbolic Problems II},
pages = {123-135},
publisher = {Springer},
address = {Cham},
abstract = {In water distribution network instantaneous changes in valve and pump settings introduce jumps and sometimes impulses. In particular, a particular impulsive phenomenon which occurs due to sudden closing of valve is the so called water hammer. It is classically modeled as a system of hyperbolic partial differential equations (PDEs). We observed that under some suitable assumptions the PDEs usually used to describe water flows can be simplified to differential algebraic equations (DAEs). The idea is to model water hammer phenomenon in the switched DAEs framework due to its special feature of studying such impulsive effects. To compare these two modeling techniques, a system of hyperbolic PDE model and the switched DAE model for a simple set up consisting of two reservoirs, six pipes and three valve is presented. The aim of this contribution is to present results of both models as motivation for the claim that a switched DAE modeling framework is suitable for describing a water hammer.},
note = {Presented at XVI International Conference on Hyperbolic Problems (HYP2016), Aachen},
keywords = {application, DAEs, nonlinear, PDEs, piecewise-smooth-distributions, solution-theory, switched-DAEs, switched-systems},
pubstate = {published},
tppubtype = {inproceedings}
}
In water distribution network instantaneous changes in valve and pump settings introduce jumps and sometimes impulses. In particular, a particular impulsive phenomenon which occurs due to sudden closing of valve is the so called water hammer. It is classically modeled as a system of hyperbolic partial differential equations (PDEs). We observed that under some suitable assumptions the PDEs usually used to describe water flows can be simplified to differential algebraic equations (DAEs). The idea is to model water hammer phenomenon in the switched DAEs framework due to its special feature of studying such impulsive effects. To compare these two modeling techniques, a system of hyperbolic PDE model and the switched DAE model for a simple set up consisting of two reservoirs, six pipes and three valve is presented. The aim of this contribution is to present results of both models as motivation for the claim that a switched DAE modeling framework is suitable for describing a water hammer. |
2017
|
Kausar, Rukhsana; Trenn, Stephan Impulses in structured nonlinear switched DAEs Proceedings Article In: Proc. 56th IEEE Conf. Decis. Control, pp. 3181 - 3186, Melbourne, Australia, 2017. @inproceedings{KausTren17b,
title = {Impulses in structured nonlinear switched DAEs},
author = {Rukhsana Kausar and Stephan Trenn},
url = {http://stephantrenn.net/wp-content/uploads/2017/09/Preprint-KT170920.pdf, Preprint},
doi = {10.1109/CDC.2017.8264125},
year = {2017},
date = {2017-12-14},
booktitle = {Proc. 56th IEEE Conf. Decis. Control},
pages = {3181 - 3186},
address = {Melbourne, Australia},
abstract = { Switched nonlinear differential algebraic equations (DAEs) occur in mathematical modeling of sudden transients in various physical phenomenons. Hence, it is important to investigate them with respect to the nature of their solutions. The few existing solvability results for switched nonlinear DAEs exclude Dirac impulses by definition; however, in many cases this is too restrictive. For example, in water distribution networks the water hammer effect can only be studied when allowing Dirac impulses in a nonlinear switched DAE description. We investigate existence and uniqueness of solutions with impulses for a general class of nonlinear switched DAEs, where we exploit a certain sparse structure of the nonlinearity.},
keywords = {application, DAEs, nonlinear, piecewise-smooth-distributions, solution-theory, switched-DAEs, switched-systems},
pubstate = {published},
tppubtype = {inproceedings}
}
Switched nonlinear differential algebraic equations (DAEs) occur in mathematical modeling of sudden transients in various physical phenomenons. Hence, it is important to investigate them with respect to the nature of their solutions. The few existing solvability results for switched nonlinear DAEs exclude Dirac impulses by definition; however, in many cases this is too restrictive. For example, in water distribution networks the water hammer effect can only be studied when allowing Dirac impulses in a nonlinear switched DAE description. We investigate existence and uniqueness of solutions with impulses for a general class of nonlinear switched DAEs, where we exploit a certain sparse structure of the nonlinearity. |
Trenn, Stephan Edge-wise funnel synchronization Proceedings Article In: PAMM - Proc. Appl. Math. Mech., pp. 821 - 822, WILEY-VCH Verlag, 2017, ISSN: 1617-7061. @inproceedings{Tren17,
title = {Edge-wise funnel synchronization},
author = {Stephan Trenn},
url = {http://stephantrenn.net/wp-content/uploads/2017/09/Preprint-Tre170523.pdf, Preprint},
doi = {10.1002/pamm.201710378},
issn = {1617-7061},
year = {2017},
date = {2017-06-01},
booktitle = {PAMM - Proc. Appl. Math. Mech.},
volume = {17},
number = {1},
pages = {821 - 822},
publisher = {WILEY-VCH Verlag},
abstract = {Recently, it was suggested in [Shim & Trenn 2015] to use the idea of funnel control in the context of synchronization of multi-agent systems. In that approach each agent is able to measure the difference of its own state and the average state of its neighbours and this synchronization error is used in a typical funnel gain feedback law, see e.g. [Ilchmann & Ryan 2008]. Instead of considering one error signal for each node of the coupling graph (corresponding to an agent) it is also possible to consider one error signal for each edge of the graph. In contrast to the node-wise approach this edgewise funnel synchronization approach results (at least in simulations) in a predictable consensus trajectory.},
keywords = {funnel-control, networks, nonlinear, synchronization},
pubstate = {published},
tppubtype = {inproceedings}
}
Recently, it was suggested in [Shim & Trenn 2015] to use the idea of funnel control in the context of synchronization of multi-agent systems. In that approach each agent is able to measure the difference of its own state and the average state of its neighbours and this synchronization error is used in a typical funnel gain feedback law, see e.g. [Ilchmann & Ryan 2008]. Instead of considering one error signal for each node of the coupling graph (corresponding to an agent) it is also possible to consider one error signal for each edge of the graph. In contrast to the node-wise approach this edgewise funnel synchronization approach results (at least in simulations) in a predictable consensus trajectory. |
Kall, Jochen; Kausar, Rukhsana; Trenn, Stephan Modeling water hammers via PDEs and switched DAEs with numerical justification Proceedings Article In: Proc. 20th IFAC World Congress 2017, pp. 5349 - 5354, Toulouse, France, 2017, ISSN: 2405-8963. @inproceedings{KallKaus17,
title = {Modeling water hammers via PDEs and switched DAEs with numerical justification},
author = {Jochen Kall and Rukhsana Kausar and Stephan Trenn},
url = {http://stephantrenn.net/wp-content/uploads/2017/09/Preprint-KKT170324.pdf, Preprint},
doi = {10.1016/j.ifacol.2017.08.927},
issn = {2405-8963},
year = {2017},
date = {2017-03-23},
booktitle = {Proc. 20th IFAC World Congress 2017},
journal = {IFAC-PapersOnLine},
volume = {50},
number = {1},
pages = {5349 - 5354},
address = {Toulouse, France},
abstract = {In water distribution networks instantaneous changes in valve and pump settings may introduces jumps and peaks in the pressure. In particular, a well known phenomenon in response to the sudden closing of a valve is the so called water hammer, which (if not taken into account properly) may destroy parts of the water network. It is classically modeled as a system of hyperbolic partial differential equations (PDEs). After discussing this PDE model we propose a simplified model using switched differential-algebraic equations (DAEs). Switched DAEs are known to be able to produce infinite peaks in response to sudden structural changes. These peaks (in the mathematical form of Dirac impulses) can easily be predicted and may allow for a simpler analysis of complex water networks in the future. As a first step toward that goal, we verify the novel modeling approach by comparing these two modeling techniques numerically for a simple set up consisting of two reservoirs, a pipe and a valve.},
keywords = {application, DAEs, nonlinear, PDEs, solution-theory, switched-DAEs, switched-systems},
pubstate = {published},
tppubtype = {inproceedings}
}
In water distribution networks instantaneous changes in valve and pump settings may introduces jumps and peaks in the pressure. In particular, a well known phenomenon in response to the sudden closing of a valve is the so called water hammer, which (if not taken into account properly) may destroy parts of the water network. It is classically modeled as a system of hyperbolic partial differential equations (PDEs). After discussing this PDE model we propose a simplified model using switched differential-algebraic equations (DAEs). Switched DAEs are known to be able to produce infinite peaks in response to sudden structural changes. These peaks (in the mathematical form of Dirac impulses) can easily be predicted and may allow for a simpler analysis of complex water networks in the future. As a first step toward that goal, we verify the novel modeling approach by comparing these two modeling techniques numerically for a simple set up consisting of two reservoirs, a pipe and a valve. |
2016
|
Camlibel, Kanat; Iannelli, Luigi; Tanwani, Aneel; Trenn, Stephan Differential-algebraic inclusions with maximal monotone operators Proceedings Article In: Proc. 55th IEEE Conf. Decis. Control, Las Vegas, USA, pp. 610–615, 2016. @inproceedings{CamlIann16,
title = {Differential-algebraic inclusions with maximal monotone operators},
author = {Kanat Camlibel and Luigi Iannelli and Aneel Tanwani and Stephan Trenn},
url = {http://stephantrenn.net/wp-content/uploads/2017/09/Preprint-CITT160923.pdf, Preprint},
doi = {10.1109/CDC.2016.7798336},
year = {2016},
date = {2016-12-01},
booktitle = {Proc. 55th IEEE Conf. Decis. Control, Las Vegas, USA},
pages = {610--615},
abstract = {The term differential-algebraic inclusions (DAIs) not only describes the dynamical relations using set-valued mappings, but also includes the static algebraic inclusions, and this paper considers the problem of existence of solutions for a class of such dynamical systems described by the inclusion ddt Px in -M(x) for a symmetric positive semi-definite matrix P in R^(n x n), and a maximal monotone operator M:R^n => R^n. The existence of solutions is proved using the tools from the theory of maximal monotone operators. The class of solutions that we study in the paper have the property that, instead of the whole state, only Px is absolutely continuous and unique. This framework, in particular, is useful for studying passive differential-algebraic equations (DAEs) coupled with maximal monotone relations. Certain class of irregular DAEs are also covered within the proposed general framework. Applications from electrical circuits are included to provide a practical motivation.},
keywords = {DAEs, nonlinear, solution-theory},
pubstate = {published},
tppubtype = {inproceedings}
}
The term differential-algebraic inclusions (DAIs) not only describes the dynamical relations using set-valued mappings, but also includes the static algebraic inclusions, and this paper considers the problem of existence of solutions for a class of such dynamical systems described by the inclusion ddt Px in -M(x) for a symmetric positive semi-definite matrix P in R^(n x n), and a maximal monotone operator M:R^n => R^n. The existence of solutions is proved using the tools from the theory of maximal monotone operators. The class of solutions that we study in the paper have the property that, instead of the whole state, only Px is absolutely continuous and unique. This framework, in particular, is useful for studying passive differential-algebraic equations (DAEs) coupled with maximal monotone relations. Certain class of irregular DAEs are also covered within the proposed general framework. Applications from electrical circuits are included to provide a practical motivation. |
2015
|
Shim, Hyungbo; Trenn, Stephan A preliminary result on synchronization of heterogeneous agents via funnel control Proceedings Article In: Proc. 54th IEEE Conf. Decis. Control, Osaka, Japan, pp. 2229–2234, 2015. @inproceedings{ShimTren15,
title = {A preliminary result on synchronization of heterogeneous agents via funnel control},
author = {Hyungbo Shim and Stephan Trenn},
url = {http://stephantrenn.net/wp-content/uploads/2017/09/Preprint-ST150902.pdf, Preprint},
doi = {10.1109/CDC.2015.7402538},
year = {2015},
date = {2015-12-01},
booktitle = {Proc. 54th IEEE Conf. Decis. Control, Osaka, Japan},
pages = {2229--2234},
abstract = {We propose a new approach to achieve practical synchronization for heterogeneous agents. Our approach is based on the observation that a sufficiently large (but constant) gain for diffusive coupling leads to practical synchronization. In the classical setup of high-gain adaptive control, the funnel controller gained popularity in the last decade, because it is very simple and only structural knowledge of the underlying dynamical system is needed. We illustrate with simulations that “funnel synchronization” may be a promising approach to achieve practical synchronization of heterogeneous agents without the need to know the individual dynamics and the algebraic connectivity of the network (i.e., the second smallest eigenvalue of the Laplacian matrix). For a special case we provide a proof, but the proof for the general case is ongoing research.},
keywords = {funnel-control, networks, nonlinear, stability, synchronization},
pubstate = {published},
tppubtype = {inproceedings}
}
We propose a new approach to achieve practical synchronization for heterogeneous agents. Our approach is based on the observation that a sufficiently large (but constant) gain for diffusive coupling leads to practical synchronization. In the classical setup of high-gain adaptive control, the funnel controller gained popularity in the last decade, because it is very simple and only structural knowledge of the underlying dynamical system is needed. We illustrate with simulations that “funnel synchronization” may be a promising approach to achieve practical synchronization of heterogeneous agents without the need to know the individual dynamics and the algebraic connectivity of the network (i.e., the second smallest eigenvalue of the Laplacian matrix). For a special case we provide a proof, but the proof for the general case is ongoing research. |
2014
|
Gross, Tjorben B.; Trenn, Stephan; Wirsen, Andreas Topological solvability and index characterizations for a common DAE power system model Proceedings Article In: Proc. 2014 IEEE Conf. Control Applications (CCA), pp. 9–14, IEEE 2014. @inproceedings{GrosTren14,
title = {Topological solvability and index characterizations for a common DAE power system model},
author = {Tjorben B. Gross and Stephan Trenn and Andreas Wirsen},
url = {http://stephantrenn.net/wp-content/uploads/2017/09/Preprint-GTW140904.pdf, Preprint},
doi = {10.1109/CCA.2014.6981321},
year = {2014},
date = {2014-10-10},
booktitle = {Proc. 2014 IEEE Conf. Control Applications (CCA)},
pages = {9--14},
organization = {IEEE},
abstract = {For the widely-used power system model consisting of the generator swing equations and the power flow equations resulting in a system of differential algebraic equations (DAEs), we introduce a sufficient and necessary solvability condition for the linearized model. This condition is based on the topological structure of the power system. Furthermore we show sufficient conditions for the linearized DAE-system and a nonlinear version of the model to have differentiation index equal to one.},
keywords = {application, DAEs, networks, nonlinear, solution-theory},
pubstate = {published},
tppubtype = {inproceedings}
}
For the widely-used power system model consisting of the generator swing equations and the power flow equations resulting in a system of differential algebraic equations (DAEs), we introduce a sufficient and necessary solvability condition for the linearized model. This condition is based on the topological structure of the power system. Furthermore we show sufficient conditions for the linearized DAE-system and a nonlinear version of the model to have differentiation index equal to one. |
Defoort, Michael; Djemai, Mohamed; Trenn, Stephan Nondecreasing Lyapunov functions Proceedings Article In: Proc. 21st Int. Symposium Math. Theory Networks Systems (MTNS), pp. 1038–1043, 2014. @inproceedings{DefoDjem14,
title = {Nondecreasing Lyapunov functions},
author = {Michael Defoort and Mohamed Djemai and Stephan Trenn},
url = {https://stephantrenn.net/wp-content/uploads/2024/01/DefoDjem14.pdf, Paper
http://fwn06.housing.rug.nl/mtns/?page_id=38, Proceedings Website},
year = {2014},
date = {2014-07-01},
urldate = {2014-07-01},
booktitle = {Proc. 21st Int. Symposium Math. Theory Networks Systems (MTNS)},
pages = {1038--1043},
abstract = {We propose the notion of nondecreasing Lyapunov functions which can be used to prove stability or other properties of the system in question. This notion is in particular useful in studying switched or hybrid systems. We illustrate the concept by a general construction of such a nondecreasing Lyapunov function for a class of planar hybrid systems. It is noted that this class encompasses switched systems for which no piecewise-quadratic (classical) Lyapunov function exists.},
keywords = {Lyapunov, nonlinear, stability, switched-systems},
pubstate = {published},
tppubtype = {inproceedings}
}
We propose the notion of nondecreasing Lyapunov functions which can be used to prove stability or other properties of the system in question. This notion is in particular useful in studying switched or hybrid systems. We illustrate the concept by a general construction of such a nondecreasing Lyapunov function for a class of planar hybrid systems. It is noted that this class encompasses switched systems for which no piecewise-quadratic (classical) Lyapunov function exists. |
2013
|
Liberzon, Daniel; Trenn, Stephan The bang-bang funnel controller for uncertain nonlinear systems with arbitrary relative degree Journal Article In: IEEE Trans. Autom. Control, vol. 58, no. 12, pp. 3126–3141, 2013. @article{LibeTren13b,
title = {The bang-bang funnel controller for uncertain nonlinear systems with arbitrary relative degree},
author = {Daniel Liberzon and Stephan Trenn},
url = {http://stephantrenn.net/wp-content/uploads/2017/09/Preprint-LT130702.pdf, Preprint},
doi = {10.1109/TAC.2013.2277631},
year = {2013},
date = {2013-08-16},
journal = {IEEE Trans. Autom. Control},
volume = {58},
number = {12},
pages = {3126--3141},
abstract = {The paper considers output tracking control of uncertain nonlinear systems with arbitrary known relative degree and known sign of the high frequency gain. The tracking objective is formulated in terms of a time-varying bound-a funnel-around a given reference signal. The proposed controller is bang-bang with two control values. The controller switching logic handles arbitrarily high relative degree in an inductive manner with the help of auxiliary derivative funnels. We formulate a set of feasibility assumptions under which the controller maintains the tracking error within the funnel. Furthermore, we prove that under mild additional assumptions the considered system class satisfies these feasibility assumptions if the selected control values are sufficiently large in magnitude. Finally, we study the effect of time delays in the feedback loop and we are able to show that also in this case the proposed bang-bang funnel controller works under slightly adjusted feasibility assumptions.},
keywords = {funnel-control, input-constraints, nonlinear, relative-degree},
pubstate = {published},
tppubtype = {article}
}
The paper considers output tracking control of uncertain nonlinear systems with arbitrary known relative degree and known sign of the high frequency gain. The tracking objective is formulated in terms of a time-varying bound-a funnel-around a given reference signal. The proposed controller is bang-bang with two control values. The controller switching logic handles arbitrarily high relative degree in an inductive manner with the help of auxiliary derivative funnels. We formulate a set of feasibility assumptions under which the controller maintains the tracking error within the funnel. Furthermore, we prove that under mild additional assumptions the considered system class satisfies these feasibility assumptions if the selected control values are sufficiently large in magnitude. Finally, we study the effect of time delays in the feedback loop and we are able to show that also in this case the proposed bang-bang funnel controller works under slightly adjusted feasibility assumptions. |
Liberzon, Daniel; Trenn, Stephan The bang-bang funnel controller: time delays and case study Proceedings Article In: Proc. 12th European Control Conf. (ECC) 2013, Zurich, Switzerland, pp. 1669–1674, 2013. @inproceedings{LibeTren13a,
title = {The bang-bang funnel controller: time delays and case study},
author = {Daniel Liberzon and Stephan Trenn},
url = {http://stephantrenn.net/wp-content/uploads/2017/09/Preprint-LT130320.pdf, Preprint
http://ieeexplore.ieee.org/document/6669120, IEEE Xplore Article Number 6669120},
year = {2013},
date = {2013-07-01},
booktitle = {Proc. 12th European Control Conf. (ECC) 2013, Zurich, Switzerland},
pages = {1669--1674},
abstract = {We investigate the recently introduced bang-bang funnel controller with respect to its robustness to time delays. We present slightly modified feasibility conditions and prove that the bang-bang funnel controller applied to a relative-degree-two nonlinear system can tolerate sufficiently small time delays. A second contribution of this paper is an extensive case study, based on a model of a real experimental setup, where implementation issues such as the necessary sampling time and the conservativeness of the feasibility assumptions are explicitly considered.},
keywords = {application, funnel-control, input-constraints, nonlinear, relative-degree},
pubstate = {published},
tppubtype = {inproceedings}
}
We investigate the recently introduced bang-bang funnel controller with respect to its robustness to time delays. We present slightly modified feasibility conditions and prove that the bang-bang funnel controller applied to a relative-degree-two nonlinear system can tolerate sufficiently small time delays. A second contribution of this paper is an extensive case study, based on a model of a real experimental setup, where implementation issues such as the necessary sampling time and the conservativeness of the feasibility assumptions are explicitly considered. |
Hackl, Christoph M.; Hopfe, Norman; Ilchmann, Achim; Mueller, Markus; Trenn, Stephan Funnel control for systems with relative degree two Journal Article In: SIAM J. Control Optim., vol. 51, no. 2, pp. 965–995, 2013. @article{HackHopf13,
title = {Funnel control for systems with relative degree two},
author = {Christoph M. Hackl and Norman Hopfe and Achim Ilchmann and Markus Mueller and Stephan Trenn},
url = {http://stephantrenn.net/wp-content/uploads/2017/09/HackHopf13.pdf, Paper},
doi = {10.1137/100799903 },
year = {2013},
date = {2013-03-19},
journal = {SIAM J. Control Optim.},
volume = {51},
number = {2},
pages = {965--995},
abstract = {Tracking of reference signals y_ref(.) by the output y(.) of linear (as well as a considerably large class of nonlinear) single-input, single-output systems is considered. The system is assumed to have strict relative degree two with (weakly) stable zero dynamics. The control objective is tracking of the error e=y-y_ref and its derivative e' within two prespecified performance funnels, respectively. This is achieved by the so-called funnel controller u(t) = -k_0(t)^2 e(t) - k_1(t) e'(t), where the simple proportional error feedback has gain functions k_0 and k_1 designed in such a way to preclude contact of e and e' with the funnel boundaries, respectively. The funnel controller also ensures boundedness of all signals. We also show that the same funnel controller (i) is applicable to relative degree one systems, (ii) allows for input constraints provided a feasibility condition (formulated in terms of the system data, the saturation bounds, the funnel data, bounds on the reference signal, and the initial state) holds, (iii) is robust in terms of the gap metric: if a system is sufficiently close to a system with relative degree two, stable zero dynamics, and positive high-frequency gain, but does not necessarily have these properties, then for small initial values the funnel controller also achieves the control objective. Finally, we illustrate the theoretical results by experimental results: the funnel controller is applied to a rotatory mechanical system for position control.},
keywords = {application, funnel-control, input-constraints, nonlinear, relative-degree},
pubstate = {published},
tppubtype = {article}
}
Tracking of reference signals y_ref(.) by the output y(.) of linear (as well as a considerably large class of nonlinear) single-input, single-output systems is considered. The system is assumed to have strict relative degree two with (weakly) stable zero dynamics. The control objective is tracking of the error e=y-y_ref and its derivative e' within two prespecified performance funnels, respectively. This is achieved by the so-called funnel controller u(t) = -k_0(t)^2 e(t) - k_1(t) e'(t), where the simple proportional error feedback has gain functions k_0 and k_1 designed in such a way to preclude contact of e and e' with the funnel boundaries, respectively. The funnel controller also ensures boundedness of all signals. We also show that the same funnel controller (i) is applicable to relative degree one systems, (ii) allows for input constraints provided a feasibility condition (formulated in terms of the system data, the saturation bounds, the funnel data, bounds on the reference signal, and the initial state) holds, (iii) is robust in terms of the gap metric: if a system is sufficiently close to a system with relative degree two, stable zero dynamics, and positive high-frequency gain, but does not necessarily have these properties, then for small initial values the funnel controller also achieves the control objective. Finally, we illustrate the theoretical results by experimental results: the funnel controller is applied to a rotatory mechanical system for position control. |
2012
|
Liberzon, Daniel; Trenn, Stephan Switched nonlinear differential algebraic equations: Solution theory, Lyapunov functions, and stability Journal Article In: Automatica, vol. 48, no. 5, pp. 954–963, 2012. @article{LibeTren12,
title = {Switched nonlinear differential algebraic equations: Solution theory, Lyapunov functions, and stability},
author = {Daniel Liberzon and Stephan Trenn},
url = {http://stephantrenn.net/wp-content/uploads/2017/09/Preprint-LT111011.pdf, Preprint},
doi = {10.1016/j.automatica.2012.02.041},
year = {2012},
date = {2012-05-01},
journal = {Automatica},
volume = {48},
number = {5},
pages = {954--963},
abstract = {We study switched nonlinear differential algebraic equations (DAEs) with respect to existence and nature of solutions as well as stability. We utilize piecewise-smooth distributions introduced in earlier work for linear switched DAEs to establish a solution framework for switched nonlinear DAEs. In particular, we allow induced jumps in the solutions. To study stability, we first generalize Lyapunov’s direct method to non-switched DAEs and afterwards obtain Lyapunov criteria for asymptotic stability of switched DAEs. Developing appropriate generalizations of the concepts of a common Lyapunov function and multiple Lyapunov functions for DAEs, we derive sufficient conditions for asymptotic stability under arbitrary switching and under sufficiently slow average dwell-time switching, respectively.},
keywords = {DAEs, nonlinear, solution-theory, stability, switched-DAEs, switched-systems},
pubstate = {published},
tppubtype = {article}
}
We study switched nonlinear differential algebraic equations (DAEs) with respect to existence and nature of solutions as well as stability. We utilize piecewise-smooth distributions introduced in earlier work for linear switched DAEs to establish a solution framework for switched nonlinear DAEs. In particular, we allow induced jumps in the solutions. To study stability, we first generalize Lyapunov’s direct method to non-switched DAEs and afterwards obtain Lyapunov criteria for asymptotic stability of switched DAEs. Developing appropriate generalizations of the concepts of a common Lyapunov function and multiple Lyapunov functions for DAEs, we derive sufficient conditions for asymptotic stability under arbitrary switching and under sufficiently slow average dwell-time switching, respectively. |
Hackl, Christoph M.; Trenn, Stephan The bang-bang funnel controller: An experimental verification Proceedings Article In: PAMM - Proc. Appl. Math. Mech., pp. 735–736, GAMM Annual Meeting 2012, Darmstadt Wiley-VCH Verlag GmbH, Weinheim, 2012. @inproceedings{HackTren12,
title = {The bang-bang funnel controller: An experimental verification},
author = {Christoph M. Hackl and Stephan Trenn},
url = {http://stephantrenn.net/wp-content/uploads/2017/09/Preprint-HT120427.pdf, Preprint},
doi = {10.1002/pamm.201210356},
year = {2012},
date = {2012-03-01},
booktitle = {PAMM - Proc. Appl. Math. Mech.},
volume = {12},
number = {1},
pages = {735--736},
publisher = {Wiley-VCH Verlag GmbH},
address = {Weinheim},
organization = {GAMM Annual Meeting 2012, Darmstadt},
abstract = {We adjust the newly developed bang-bang funnel controller such that it is more applicable for real world scenarios. The main idea is to introduce a third “neutral” input value to account for the situation when the error is already small enough and no control action is necessary. We present experimental results to illustrate the effectiveness of our new approach in the case of position control of an electrical drive.},
keywords = {application, funnel-control, input-constraints, nonlinear, relative-degree},
pubstate = {published},
tppubtype = {inproceedings}
}
We adjust the newly developed bang-bang funnel controller such that it is more applicable for real world scenarios. The main idea is to introduce a third “neutral” input value to account for the situation when the error is already small enough and no control action is necessary. We present experimental results to illustrate the effectiveness of our new approach in the case of position control of an electrical drive. |
2010
|
Liberzon, Daniel; Trenn, Stephan The bang-bang funnel controller Proceedings Article In: Proc. 49th IEEE Conf. Decis. Control, Atlanta, USA, pp. 690–695, 2010. @inproceedings{LibeTren10,
title = {The bang-bang funnel controller},
author = {Daniel Liberzon and Stephan Trenn},
url = {http://stephantrenn.net/wp-content/uploads/2017/09/Preprint-LT100806.pdf, Preprint
http://stephantrenn.net/wp-content/uploads/2017/09/Preprint-LT100806longVersion.pdf, Preprint (long version)},
doi = {10.1109/CDC.2010.5717742},
year = {2010},
date = {2010-12-15},
booktitle = {Proc. 49th IEEE Conf. Decis. Control, Atlanta, USA},
pages = {690--695},
abstract = {A bang-bang controller is proposed which is able to ensure reference signal tracking with prespecified time-varying error bounds (the funnel) for nonlinear systems with relative degree one or two. For the design of the controller only the knowledge of the relative degree is needed. The controller is guaranteed to work when certain feasibility assumptions are fulfilled, which are explicitly given in the main results. Linear systems with relative degree one or two are feasible if the system is minimum phase and the control values are large enough.},
keywords = {funnel-control, input-constraints, nonlinear, relative-degree},
pubstate = {published},
tppubtype = {inproceedings}
}
A bang-bang controller is proposed which is able to ensure reference signal tracking with prespecified time-varying error bounds (the funnel) for nonlinear systems with relative degree one or two. For the design of the controller only the knowledge of the relative degree is needed. The controller is guaranteed to work when certain feasibility assumptions are fulfilled, which are explicitly given in the main results. Linear systems with relative degree one or two are feasible if the system is minimum phase and the control values are large enough. |
2006
|
Mandaloju, Nagendra P.; Trenn, Stephan Analogue Implementation of the funnel controller Proceedings Article In: PAMM - Proc. Appl. Math. Mech., pp. 823–824, WILEY-VCH Verlag, 2006, ISSN: 1617-7061. @inproceedings{MandTren06,
title = {Analogue Implementation of the funnel controller},
author = {Nagendra P. Mandaloju and Stephan Trenn},
url = {http://stephantrenn.net/wp-content/uploads/2017/09/Preprint-MT060428.pdf, Preprint},
doi = {10.1002/pamm.200610391},
issn = {1617-7061},
year = {2006},
date = {2006-05-01},
booktitle = {PAMM - Proc. Appl. Math. Mech.},
volume = {6},
number = {1},
pages = {823--824},
publisher = {WILEY-VCH Verlag},
abstract = {In many tracking control problems, pre-specified bounds for the evolution of the tracking error should be met. The ‘funnel controller’ addresses this requirement and guarantees transient performance for a fairly large class of systems. In addition, only structural assumptions on the underlying system are made; the exact knowledge of the system parameters is not required. This is in contrast to most classical controllers where only asymptotic behaviour can be guaranteed and the system parameters must be known or estimated. Until now, the funnel controller was only studied theoretically. We will present the results of an analogue implementation of the funnel controller. The results show that the funnel controller works well in reality, i.e. it guarantees the pre-specified error bounds. The implementation is an analogue circuit composed of standard devices and is therefore suitable for a broad range of applications.},
keywords = {application, funnel-control, nonlinear},
pubstate = {published},
tppubtype = {inproceedings}
}
In many tracking control problems, pre-specified bounds for the evolution of the tracking error should be met. The ‘funnel controller’ addresses this requirement and guarantees transient performance for a fairly large class of systems. In addition, only structural assumptions on the underlying system are made; the exact knowledge of the system parameters is not required. This is in contrast to most classical controllers where only asymptotic behaviour can be guaranteed and the system parameters must be known or estimated. Until now, the funnel controller was only studied theoretically. We will present the results of an analogue implementation of the funnel controller. The results show that the funnel controller works well in reality, i.e. it guarantees the pre-specified error bounds. The implementation is an analogue circuit composed of standard devices and is therefore suitable for a broad range of applications. |
2004
|
Ilchmann, Achim; Ryan, Eugene P.; Trenn, Stephan Adaptive tracking within prescribed funnels Proceedings Article In: Proc. 2004 IEEE Int. Conf. Control Appl., pp. 1032–1036, 2004. @inproceedings{IlchRyan04b,
title = {Adaptive tracking within prescribed funnels},
author = {Achim Ilchmann and Eugene P. Ryan and Stephan Trenn},
url = {http://stephantrenn.net/wp-content/uploads/2017/09/Preprint-IRT040512.pdf, Preprint},
doi = {10.1109/CCA.2004.1387507},
year = {2004},
date = {2004-09-01},
booktitle = {Proc. 2004 IEEE Int. Conf. Control Appl.},
volume = {2},
pages = {1032--1036},
abstract = {Output tracking of a reference signal (an absolutely continuous bounded function with essentially bounded derivative) is considered in a context of a class of nonlinear systems described by functional differential equations. The primary control objective is tracking with prescribed accuracy: given lambda > 0 (arbitrarily small), ensure that, for every admissible system and reference signal, the tracking error e is ultimately smaller than lambda (that is, ||e(t)|| < lambda for all t sufficiently large). The second objective is guaranteed transient performance: the evolution of the tracking error should be contained in a prescribed performance funnel F. Adopting the simple feedback control structure u(t) = -k(t)e(t), it is shown that the above objectives can be achieved if the gain k(t) = K_F(t,e(t)) is generated by any continuous function K_F exhibiting two specific properties formulated in terms of the distance of e(t) to the funnel boundary.},
keywords = {funnel-control, nonlinear, stability},
pubstate = {published},
tppubtype = {inproceedings}
}
Output tracking of a reference signal (an absolutely continuous bounded function with essentially bounded derivative) is considered in a context of a class of nonlinear systems described by functional differential equations. The primary control objective is tracking with prescribed accuracy: given lambda > 0 (arbitrarily small), ensure that, for every admissible system and reference signal, the tracking error e is ultimately smaller than lambda (that is, ||e(t)|| < lambda for all t sufficiently large). The second objective is guaranteed transient performance: the evolution of the tracking error should be contained in a prescribed performance funnel F. Adopting the simple feedback control structure u(t) = -k(t)e(t), it is shown that the above objectives can be achieved if the gain k(t) = K_F(t,e(t)) is generated by any continuous function K_F exhibiting two specific properties formulated in terms of the distance of e(t) to the funnel boundary. |