On geometric and differentiation index of nonlinear differential algebraic equations

Yahao Chen Bernoulli Institute, RUG yahao.chen@rug.nl

1 Introduction

We consider differential-algebraic equations DAEs of the following form

$$\Xi: E(x)\dot{x} = F(x), \tag{1}$$

where $x \in X$ is called the generalized state and X is an open subset of \mathbb{R}^n , and where $E: X \to \mathbb{R}^{l \times n}$ and $F: X \to \mathbb{R}^l$ are \mathcal{C}^{∞} -smooth maps. A DAE of form (1) will be denoted by $\Xi_{l,n} = (E, F)$ or, simply, Ξ . A solution of Ξ is a \mathcal{C}^1 -curve $\gamma: I \to X$ with an open interval I such that for all $t \in I, \gamma(t)$ solves (1). To characterize different properties of nonlinear DAEs, various notions of index are proposed, see the survey or survey-like papers on index of DAEs: [1],[2],[3]. The most commonly used notions of index in DAEs theory seem to be the geometric index (see e.g., [4]) and the differentiation index (see [2] and [1]).

The main idea of geometric analysis of DAEs is to view the DAE as a vector field on a submanifold M^* , the later is called the maximal invariant submanifold, it is where the solutions of DAEs exist. The following locally maximal invariant submanifold algorithm is a recursive way to construct M^* [5]:

For a DAE $\Xi_{l,n} = (E, F)$, set $M_0 = X$, assume that a point $x_0 \in M_0$ satisfies $F(x_0) \in \text{Im } E(x_0)$. Step 1: set

$$M_1 = \{x \in X : F(x) \in \operatorname{Im} E(x)\};\$$

Step k: assume that $M_{k-1} \subsetneq \cdots \subsetneq M_0$, for a certain $k \ge 1$, have been constructed and for some open neighborhood $U_{k-1} \subseteq X$ of x_0 that the intersection $M_{k-1} \cap U_{k-1}$ is a smooth submanifold and denote by M_{k-1}^c the connected component of $M_{k-1} \cap U_{k-1}$ satisfying $x_0 \in M_{k-1}^c$. Set

$$M_{k} = \left\{ x \in M_{k-1}^{c} \, | \, F(x) \in E(x)T_{x}M_{k-1}^{c} \right\}$$

Definition 1. (Geometric index) The geometric index of $\nu_g \in \mathbb{N}$ of a DAE Ξ is defined by

$$\nu_d := \min \left\{ k \ge 0 \, | \, (M_k = M_{k+1}) \land (M_k \neq \emptyset) \right\}.$$

The differentiation index of DAEs is defined via the differential array shown in equation (2) below. Consider a nonlinear DAE $\Xi_{l,n} = (E, F)$, let $H(x, \zeta_1) = E(x)\zeta_1 - F(x)$, denote $(\frac{d^k}{dt^k}H) = H^{(k)}$ and define

Stephan Trenn Bernoulli Institute, RUG s.trenn@rug.nl

$$H_k(x, \bar{\zeta}_{k+1}) = \begin{bmatrix} H^{(0)}(x, \zeta_1) \\ H^{(1)}(x, \zeta_1, \zeta_2) \\ \vdots \\ H^{(k)}(x, \bar{\zeta}_{k+1}) \end{bmatrix} = 0, \qquad (2)$$

where $\overline{\zeta}_{k+1} = (\zeta_1, \dots, \zeta_{k+1})$, set $\mathcal{M}_0 = X$, assume that for k > 0,

$$\mathcal{M}_k = \left\{ x \in X \mid H_{k-1}(x, \bar{\zeta}_k) = 0 \right\} \text{ and} \\ \mathcal{Z}_1^k = \left\{ \zeta_1 \in \mathbb{R}^n \mid H_{k-1}(x, \bar{\zeta}_k) = 0, \ x \in \mathcal{M}_k \right\}$$

are smooth submanifolds of X and \mathbb{R}^n , respectively. **Definition 2.** (Differentiation index) For a DAE $\Xi_{l,n} = (E, F)$, the differentiation index ν_d is defined by $\nu_d := 0$ if $(l = n) \land (E : X \to Gl(l, \mathbb{R}))$; otherwise, ν_d is the smallest integer such that $(\mathcal{M}_k \neq \emptyset) \land (\mathcal{Z}_1^k = \mathcal{Z}_1^k(x))$ is a singleton) $\land (\mathcal{Z}_1^k(x) \in T_x \mathcal{M}_k, \forall x \in \mathcal{M}_k)$.

The aim of the present work is to have a comprehensive understanding of the two notions of DAE index. Both of the two indices serve as a measure of the difficulties of solving DAEs, but we show that they are actually related to the existence and uniqueness of solutions in a different manner. We also show that the two DAE indices have close relations with each other when some assumptions of smoothness and constant rankness are satisfied.

References

[1] Griepentrog, E., Hanke, M., and März, R. (1992). Toward a better understanding of differential algebraic equations (Introductory survey). Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II.

[2] Campbell, S.L. and Gear, C.W. (1995). The index of general nonlinear DAEs. *Numerische Mathematik*, 72(2), 173–196.

[3] Mehrmann, V. (2015). Index concepts for differential-algebraic equations. *Encyclopedia of Applied and Computational Mathematics*, 676–681.

[4] Rabier, P.J. and Rheinboldt, W.C. (2002). *Theoretical and Numerical Analysis of Differential-Algebraic Equations*. Elsevier.

[5] Chen, Y. and Respondek, W. (2019). Geometric analysis of nonlinear differential-algebraic equations by nonlinear control theory. Preprint.