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Abstract— Output tracking of a reference signal (an abso- F (given by the graph of a suitably chosen set-valued map
lutely continuous bounded function with essentially bounded ¢ F(t)).
derivative) is considered in a context of a class of nonlinear The goal is a control structure which, for every admissible

systems described by functional differential equations. The ¢ d ref . I that th h of th
primary control objective is tracking with prescribed accu- ~ SYS!EM and reierence signai, ensures that the grapn ot the

racy: given A > 0 (arbitrarily small), ensure that, for every  tracking errore(-) is contained in the funnef. In [1],
admissible system and reference signal, the tracking erroe  this goal was achieved by the simple control structure

is ultimately smaller than A (that is, [[e(t)|| < A for all ¢ ¢(t) = —k(t)e(t) with the gain generated by a feedback
sufficiently large). The second objective is guaranteed transi¢n law of the formk(t) = K (¢, e(t)), where K= is a contin-

performance: the evolution of the tracking error should be functi h that. | | i th . |
contained in a prescribed performance funnel 7. Adopting ~YOUS function such that, loosely speaxing, theé reciproca

the simple feedback control structureu(t) = —k(t)e(t), it is ~ 1/Kx(t,e) provides a particular measure of distance of
shown that the above objectives can be achieved if the gain (¢,¢e) from the boundary of the funneF (with the effect

k(t) = Kr(t e(t)) is generated by any continuous function that, if the error approaches the boundary, then the gain
Kr gxhlbltlng two specific properties formulated in terms of increases which, in conjunction with a high-gain property
the distance ofe(t) to the funnel boundary. ! .
of the underlying system class, precludes contact with the
I. INTRODUCTION boundary).

In a precursor [1] to the present paper, a proportional
output feedback controller has been introduced that guaran
tees prespecified tracking behaviour for a class of nonlinea
systems described by functional differential equationthef
form

y(t) = f(p@t), (Ty)(t),u®), Yi-no =19",

where, loosely speaking, the parameter> 0 quantifies
system “memory”,p may be thought of as a (bounded)
disturbance term, and@ is a nonlinear causal operator, for

Fig. 2. Performance funnef.

: w="Ty : In [1], the choice of feasible gains includes the scaled

: w System | (scale factorl /) vertical distance to the funnel
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— here p € W and its reciprocall /o(t) specifies the
—|u t)=— Kr(t,e(t))e(t where ¢ P @
®) #(L eft)) el )| 7 radius of the ballF'(¢) (F = graph(F)), see Figure 2.

Error feedback

Fig. 1. Universal error feedback control. The purpose of the present papes a vis its precursor

[1], is to extend the class of admissible gain functidts

any reference signal in the spadé-> of locally absolutely by determining structural assumptions on the gain function
continuous bounded functions € L> with essentially which allow for great flexibility in the choice of measure
bounded derivative € L>°, the problem of tracking with of the distance to the funnel boundary (flexibility which,
prescribed asymptotic accuracy and prescribed transidff €xample, permits the control to anticipate the future

behaviour was formulated in terms of a performance funnéhape of the funnel and to adjust the current control gain
accordingly), and which may be of relevance in certain ap-
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(wherein 0F (t) denotes the boundary of the sEft)) or bounds on the nonlinearities of the system need to be
gains K » based on the future distance (see Figure 4) to thenown.

funnel [3] have introduced a controller which guarantees pre-
_ : 5 specified transient behaviour. However, their controlker i
dy(t,e(t)) = inf/(r = )%+ (dist(e(t), OF (7)) adaptive with monotonically non-decreasing gain, invokes

: . . . a piecewise constant switching strategy.
Furthermore, we investigate gains based on a numerical

future distance (a numerical approximation of the abovéhe proposed controller also tolerawstput measurement
future distance), and “direction-dependent” gains asgedi disturbancen, provided that the disturbance belongs to

with non-axially-symmetric funnels. the same function class as the reference signals. With
reference to Figure 1, the disturbed error signal is then
R e=(y+n)—r=y— (r—n). Therefore, from a strictly

analytical viewpoint, in the presence of output disturlzsnc
of classW!1>(R »o; RM), the disturbance-free analysis is
immediately applicable on replacing the reference signal
by the signalr — n. Even though the reference signaand
disturbance signah are assumed to be of the same class,
practically, these signals might be distinguished by their
respective spectran( typically having “high-frequency”
content). Moreover, from a practical viewpoint, one might
S o reasonably expect that the disturbancds “small”. For
______ example, if an upper bound > 0 of the magnitude of
the disturbance is known, vign|. < e, andA > 0 is

0 t the prescribed measure of asymptotic tracking accuracy (fo

the disturbance free case), then the actual tracking acgura

Fig. 3. The distancels (¢, e(t)) to the future funnel, and the unscaled achieved in the presence of disturbance is quantified by
vertical distance digt(t), 0F(t)) to the funnel. A = X +e¢. For simplicity of presentation, we consider only
the disturbance-free case in the analysis.
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R The paper is organised as follows. In Section I, we make
precise the underlying system class. The control problem is
formulated in Section lll, wherein the class of referencg si
nals and the performance funnel are described. Section IV
elucidates the proposed output feedback control and, in the
main result (Theorem 1), establishes the requisite trahsie
and asymptotic behaviour of the closed-loop system. Fi-
nally, in Section V, the flexibility in the choice of gain
functions K 7, alluded to above, is illustrated via diverse
examples determined by a variety of measures of distance
~~~~~~ to the funnel boundary. Owing to page restrictions on this
conference paper, all proofs are omitted.
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We close the present section with some remarks on

Fig. 4. The numerical distanag, s to the future funnel. ’
notation.

The control strategy investigated in [1] and the present
paper, is essentially applicable to the same system clsss al Define R
studied for high-gain adaptive control. Roughly speakinw
. :I‘ x?
the system class encompasses relative degree one systems
with “weakly stable” zero dynamics and known sign of
the high-frequency gain. The main difference to adaptive dist(x,A) := inf,c4 ||z — a||, the Euclidean dis-

>0 = [0,00), Ryg = (0,00), [|z|| :=
z € R?, and

control strategies (see [2] and the reference therein) is tance ofz € R"from a non-empty set
that in the present paper we (i) obey prespecified transient A C Rm, dist-, A) is Lipschitz with

behaviour, (ii) the gaint — k(t) is not a monotonically constant 1,

non-decreasing function, (iii) the gain is not tuned by a Bs(€) — {x c Rn‘ e — || < 5}, the open

dynamical system (e.g: = ||e]|? in the adaptive context)

] ’ ball of radiusé > 0 centred a € R",
and hence may not even be called adaptive, and (iv) no



C(S;R™)  the set of continuous functiorts — R™, Property (iv)(a) is a crucial “bounded-input, bounded-
L>(I;R™) the space of measurable essentially output” assumption on the operatot

bounded functiond — R", I € R an Property (iv)(b) is an assumption of causality; and Prop-
interval, with norm erty 4c is a technical assumption dh of a “locally
L Lipschitz” nature.
1lloo o ess;ﬁ?”x(t)”' Numerous examples can be found in [1], [4] and, fur-
Le(I;R™) the space of measurable, locally essen- thermore, diverse phenomena are incorporated within the
tially bounded functiond — R"™, I C class including, for example, diffusion processes, delays
R an interval. (both point and distributed) and hysteretic effects. The pr
Whoo(Ro;RM) the set of bounded locally abso- totypical example is the class of finite-dimensional, linea
lutely continuous functions: : minimum-phase systems of relative degree one described
R>o — RM with essentially by

bounded derivative and norm G(t) = Avy(t) + Asz(t) + CBu(t), y(0) = 4",

1,00 = [2floo + 2 oo - 2(t) = Asy(t) + Aaz(t), 2(0) = 2°,

[l

Il. SYSTEM CLASSY with real matrices of conforming formats, ard'B)” +
Consider the clas¥ of infinite-dimensional, nonlinear, ,CB >0, 0(A4) ¢ C_. We may rewrite the above system
M-input u, M-output y systems (p, f,T), given by a N termsof (2) by
controlled nonlinear functional differential equation tbe §(t)= Az exp(Ayt) 2"+ (Ty)(t)+CBu(t), y(0)=y°

form (Ty)(t) := Ay (t) + Asfiexp(As(t — 5)) Azy(s)ds.
y(t) = f(p@), (Ty)(t),u(t), Y_no = 0 (2 [1l. PROBLEM FORMULATION
with b > 0, y° € C([-h,0;RM), and satisfying the A. The performance funnel .
(i) pe L%(R oo RP); W (R >o;R) which are positive-valued 010, co) and
(i) fe C(RP_xO}RQ ><,RM- ]RM) . bounded away from zero “at infinity”, i.e.,
(i) for every non-empty compact subsétC R” x R? ) o(s) >0Vs>0
and every sequenc@,) in RM\{0} the following ®: =9 € W"=(R>p;R)|
property (akin to radial unboundedness or weak co- liminfs o ¢(s) € (0,00).
ercivity) holds: With ¢ € ®, we associate a set-valued map (defined on
R >0)
ltn|| = 00 @as n— oo =
lm  min (uy,, f(v,w,u,))/||us| = o0} Fite F(t):={eeRY| ot)]e] <1},

n—oo (v,w)eC .
" the graph of which we refer to as the performance funnel
(iv) T : C([~h,00);RM) — L2 (R>0; R?) denotes an

operator of clasg, i.e. F = graph(F) := {(t,e) € R>o x RM | e € F(t)}.

a) V6 >03A>0Vz e C([—h,00);RM) : Observe that (i}p(0) = 0 is permissible, in which case,
|2loe < 6 = ||(T2)(t)]| < A for a.at > 0; F(_O) = RM, and (ii) for everyp € ® andr > 0, there

b) Vt>0 V¢ e C([_h’oo);RM) : exists u > 0 such thaty(¢) > p for all ¢ > 7, and so

N F(t) Cc By/,(0) for all t > 7.

ling) = El-ny = As a concrete example, for > 0, 7 > 0 ande € (0, 1),
(Tz)(s) = (T€)(s) for a.a.s € [0, t]} ; the choice t

) Vt > 0V¢ € C([=h,t];RM)37,6,¢> 0 topt) = —
W, & € C([—h,00); RM) with ({1 —eft +em)A
z|_py = ¢ =E|—ny and yields an associated performance funtfélwhich reflects
z(s),&(s) € Bs(C(t)Vs € [t,t + 7] : an overall objective of attaining tracking accuragyin
esssup,cpy, 4 (T2)(s) — (T€)(s)]l <  prescribed timer.

C SUPse[t,t+7] ||:E(S) - f(S)” :

The functionp in (2) may be thought of as a (bounded)
disturbance term; the non-negative consfaquantifies the
“memory” of the system. - . . . _ o
Property (iii) generalizes the positive “high-frequenajirg re WL. (R 20;R™) with norm given by ||r,co :=
concept in linear systems and, in particular, that (2) ha'l;’“”oo +7lloc -
strict relative degree one. Given ¢ € & and its associated performance funifg

B. Class of reference signals and control objective

As reference signalg, we allow bounded locally ab-
solutely continuous functions with bounded derivative, i.



the control objective is a single feedback strategy engurirEvery solution can be extended to a maximal extension
that, for each reference signak W' and every system y : [~h,w) — R™ and every maximal solution has the
of classY, the tracking errore = y — r has graph inF following properties

(equivalently:e(t) € F(t) for all t > 0), and all variables (i) w = o0,

are bounded. (i) t— k(t) = Kz(t,y(t) —r(t)) is bounded,
V. O (iii) there existse > 0 such that, for allt € [0,00),
. OUTPUT FEEDBACK CONTROL dist(y(t) — (1), OF (1)) > ¢ .

Let ¢ € ® determine a performance funngland letr €
Whee(Ro; RM). We seek to achieve the above control
objectiveivia the simple proportional time-varying output [N this section we describe various choices of continuous
error feedback gain function K =, with the requisite Properties A and B,

which are feasible for the feedback (3).
A. Scaled vertical distance

where e(t) = y(t) — r(t), whilst ensuring boundedness ere we base the gain function on measurements of the
of the gaink. Here, K : 7 — R>¢ is a continuous gjstance of the instantaneous eregt) from the boundary
function chosen tq ensure the mtwhon underlying the congs the setF(¢): this approach uses only funnel information
trol approach:Kz is such that, if(z, e(t)) approached the 4t current timer and, in particular, does not anticipate the
boundary of the funnef, then the gairk(t) = Kz (t,e(t))  future shape of the funnel boundary.
increases at a rate sufficient to preclude — via an implicit \wjith reference to Figure 3, fdt, e) € F, we refer to the
high-gain stability property of underlying system class- jistance dise, 9F (t)) = 1/(t)— ||e|| (with the convention
bqundary contact, thereby maintaining the error evolutiogh ot diste, 0F(0)) = oo if ¢(0) = 0) as the vertical
within the performance funnel. Next, we elucidate tWQyistance frontt, e) to the funnel boundary: in incorporating
properties which, when imposed on the gain functioR,  thjs distance in the design of gain functiofis-, we allow
confirm this intuition. for scaling by a suitable function and refer to the quantity
Y (t)dist(e, 0F(t)) as a scaled vertical distance.

Proposition 2:  Let ¢, € ® such that

Let p € @, with associated map — F'(t) and perfor- Jim, o, 4 (t)(t)~' =: 4y € (0,00], and letF be the
mance funnelF = graph(F"). For eacht € R >0, we denote performance funnel associated with Assume that3 :
the boundary of the sét(t) by 0F (t). Let Kr : ¥ — R>0  R., — R is continuous, unbounded and non-increasing.
be a continuous function. We impose only the followingThen
additional properties ot . .
Property A: VK >0 Je>0 V(te) e F: Kz : 7 =Rz, () =

[ diSt(e, 8F(t)) <e = K]:(t, 6) > K ] ﬂ(dl(t) diSt(e, 8F(t))), t>0
B(vo = (0)ell), t =0 andiy < oo
By = lims 00 B(3), t =0 andygy = oo
is continuous and has Properties A and B.

The essence of these properties is as follows. Property Altcan be shown, that the strategy introduced in [1] is also
ensures that, in (3), if the tracking erreft) is close to covered by a functiork+ satisfying Properties 1 and 2.

V. GAIN FUNCTIONS

A. Requisite properties of the gain function

Property B: Ve >0V > 03K >0 V(te) e F:
[dist(e, 0F(t)) >e A t>6= Kgz(t,e) < K].

the funnel boundary, then the associated gain valig is The simplest example, covered by Proposition 2, is the
large. Property B, loosely speaking, obviates the need fscaled vertical distance: fer=1and: s — 1/s, we
large gain values away from the funnel boundary. have, for all(t,e) € 7,

. Kx(t,e) S S
B. The main result dist(e,0F (1))

0, t=p(0)=0,

Theorem 1:  Let (f,p,T) € X. Let € & with -1 .
(/,p, T) i (ﬁ—HGH) , otherwise

associated map’ and performance funnef = grapH F).
Let Kr : F — R>( be continuous with Properties A andg  The distance to the future funnel

B. As already mentioned, the scaled vertical distance, inves-
For any reference signal € W1 > (R >o; RM) and initial . ready : ’ . : ’
d 0 M =0 tigated in the previous sub-section, uses only instaniaseo
atay’ € C([-h,0;RM) such thaty®(0) — r(0) € : : i o
h . L funnel information. It is of theoretical interest, and alsio
F(0), there exists a solution of the closed-loop initial-value : . o .
roblem (2), (3), that is relevance in certain applications, to incorporate aritgm
P A ' of the future funnel shape in determining the current gain
() e(t)), value. To this end, we next investigate the adoption of the
0
h

a=y". distanced(t, e) of (¢,e) € F to the future funnel boundary



in the design of gain function& s with Properties A and ¢. Assume that3 : (0,00) — R>q is a continuous, non-
B. For ¢ € &, with associated mag’ and performance increasing and unbounded function. Then
funnel F, this distance is defined for alt,e) € F, with Kr:F—Rso, (te)r Bu(t)dns(te))

reference to Figure 3, as follows
is continuous and satisfies the Properties A and B in Sub-
ds(t,e) = inf \/ (1 — )2 + (dist(e, OF (7). section IV-A.
. . . D. A direction-depending gain
In contrast with the (scaled) vertical distance of the ) P g g )
previous subsection (which is infinite 40,¢) in cases All gains K~ of the previous Sub-sections V-A-V-C de-
where (0) = 0), the distanced;(t,e) is finite for all pend only on the norm of the error. Now a gain is introduced
(t.e) € F. ’ ’ which allows a scaling depending on the directigije|| by
' the continuous function

M-1,
Proposition 3:  Lety € ®, with associated map' and s€C(S R>o0).
performance funnelF. Then the functiondy : 7 — Ryq Proposition 5: Let ¢ € & with associated performance
is continuous. funnel 7, and K = denote any of the the gain functions in
Let, furthermorey € ® be such that)(0) > 0 and assume Sub-sections V-A-V-C. Thei » defined onF by
itsg:egs'iifoTaerFZO is continuous, unbounded and non Kore) o { S(G/HGH) lell K7 (t.¢). ng

Kr:F—Rxo, (te)— B(v(t)ds(te)) is continuous and satisfies Properties A and B in Sub-
section IV-A.

is continuous and has Properties A and B.
VI. CONCLUSIONS

C. A numerical future distance We have studied an output feedback lamt) =
The following distance is less sensitive to the changek(t)e(t) which ensures tracking with prespecified accu-
of the funnel boundary but easier to calculate. Choose, foacy and, more importantly, guarantees transient behaviou

N € N, the partition of the evolution of the tracking error within a prescribed
performance funnel. The feedback law is simple in its
O=ho < hi <...<hy<L design: the gaink(t) = Kx(t,e(t)) depends on time

gt and errore(t) where, loosely speaking, the reciprocal
1/K#(t,e) provides a particular measure of the distance
of (¢,e) from the boundary of the funnef. The effect is
d(t,e) :=dist(e, 0F (1)) < o0 that, if the error approaches the boundary, then the gain
) ) . _increases which, in conjunction with a high-gain property
and the numerical future distance, with reference to Figss the underlying system class, precludes contact with the
ure 4, as boundary.
dns(t,e) = ' Co(m[:ﬁlrﬁd to lljbiquitr:)us high—g;’:\in ad?ptivell control strate-)
. ) gies (which apply to the same class of nonlinear systems
ming<<ndist((t, ”eH)’(tthid(t’e)’l/@(t+hid(;’e))) it may be surprising that the gain is not a monotone
TS ) 1 _ function and, most importantly, the feedback law ensures
mmOSZSN\/(hld(t’e)) +<“’(t+h'id(t’e)) ”e”) ' a prespecified transient behaviour.
The numerical future distance calculates, at any time 1he main result of the present note is a feedback law
the distance to the funnel boundary at finitely many futuréhich allows for a great flexibility of the measures of the
pointst + h;d(t, e). Since dist(t, [[e]|), (t+0, 1/¢(t+8)) > distance to the_ boundary of the funnel. This permits the
§ for all § > 0, it is not necessary to look further into control to anticipate the future shape of the funnel and to

the future than the value of the actual “vertical” distancédjust the current control gain accordingly.

Let ¢ € ® such thatp(0) > 0, and letF be the associate
performance funnel. Define for alt,e) € F

dist(e, 0F (t)) = d(t,e). Note that, sincehy = 0, the REFERENCES
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