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Abstract— Impulsive switched systems encompass various
modes, each exhibiting distinct behaviours. Typically, a switch-
ing sequence orchestrates transitions between these modes,
where state jumps may occur, potentially undermining output
tracking performance or system stability. This work introduces
a funnel controller tailored for relative degree one nonlinear
impulsive switched systems. Notably, this controller operates
solely based on system output without necessitating knowledge
of system dynamics. Unlike classical funnel controllers with
fixed boundaries, the proposed method dynamically adjusts the
funnel boundary for each approaching jump, aiming to preserve
adherence to the original boundary. No precise knowledge
of jump instances or maps is required; approximate jump
intervals and an upper bound for maximum jump height suffice.
Theoretical analysis establishes that the error remains within
the funnel, facilitating successful reference signal tracking. Per-
formance validation is demonstrated via numerical simulation.

Table of Notation

Symbol Description

t−k , t+k Time instants immediately before and after k-th jump.
y−k , z−k , e−k Output, internal states, error values before k-th jump.
y+k , z+k , e+k Output, internal states, error values after k-th jump.
Y max
k , Y min

k
Bounds of output in [tk, tk+1).

Zmax
k Upper bound for internal states norm in (tk, tk+1).

αmax
k Upper bound for k-th jump height.

I. INTRODUCTION

The paper addresses the tracking control of a class
of nonlinear impulsive switched systems characterized by
a global relative degree of one. Impulsive switched sys-
tems are characterized by dynamical equations comprising
continuous-time differential equations augmented by discrete
jumps at specific impulse instances. Specifically, we consider
the following single-input single-output nonlinear impulsive
switched system:

ẋ(t) = Fσ(t)(t, x(t), u(t)), t ̸= tk, x(t−0 ) = x0 ∈ Rn

x(t+k ) = Eσ(t+k )(t
−
k , x(t

−
k )), t = tk, (1)

y(t) = Hσ(t)(t, x).

Here, the impulse time sequence is defined by the set T =
{tk | k ∈ N0, tk ∈ R+, tk+1 > tk}. The switching signal,
σ : [t0,∞) → Σ := {1, 2, . . . ,M}, indicates the current
mode σ(t) of the system at time t ≥ t0 and the system is
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assumed to have M ∈ N modes. The state, input and output
of the system at time t ≥ t0 are denoted by x(t) ∈ Rn,
u(t) ∈ R and y(t) ∈ R, respectively. For each mode m ∈ Σ,
the vector field Fm : R+ × Rn × R → Rn defines the flow
of the system and Em : R+×Rn → Rn represents the jump
rule. Furthermore, the output map is denoted by Hm : Rn →
R. It is noted that even if no impulsive behavior is present in
the state, i.e. Em(t, x) = x, then the output may still exhibit
jumps due to switching output map.

Hybrid behavior is observed in natural phenomena and
engineering systems. Mechanical systems experience sudden
velocity changes due to collisions, as in bouncing balls
and walking robots [1]. Power electronics, such as buck
or boost converters, exhibit switching behavior [2], with
abrupt voltage and current transitions during semiconductor
switching [3]. In networked control systems, communication
delays cause impulsive effects [4].

State jumps degrade performance, causing deviations from
equilibrium and increased errors in trajectory tracking. For
example, consider system (1) with F (t, x, 0) = −0.2x,
H(t, x) = x, jump map E(t, x) = 4x, and jump se-
quence T = {2.70, 6.30, 8.60}. The output in Fig. 1 shows
state jumps consistently push states away from equilibrium.
Adverse effects include delayed equilibrium, excitation of
unwanted modes, movement toward instability, chaotic be-
havior, and reduced performance in accuracy, efficiency, or
desired output.

Fig. 1: An autonomous linear impulsive system.
Impulsive switched systems have been extensively studied,

for an overview see [5], [6], [7]. Optimal control theory
has been applied for disturbance rejection in state-dependent
nonlinear impulsive systems, leading to an optimal nonlinear
hybrid control law [8], but requiring system model knowl-
edge. Finite-time stability for nonlinear time-dependent im-



pulsive systems was examined in [9], showing stabilizing
impulses enhance stability against disturbances, though no
specific controller is proposed.

For nonlinear fully-actuated impulsive systems, a high-
order fully actuated controller is designed [10], but requires
exact system models and full actuation. Sliding mode con-
trollers for stabilizing impulsive systems have been presented
in [11], [12], but the focus is on the linear case or restrictive
jump sequence assumptions.

In perturbed impulsive systems, LMI-based methods are
employed to design a linear state-feedback controller for
robust stabilization [13]. A framework for detecting jumps in
switched differential-algebraic equations is presented in [14].
An average model for linear impulsive switched systems
with pulse width modulation is proposed in [3]. Input-to-
State Stability (ISS) conditions for impulsive systems are
increasingly studied. ISS of nonlinear impulsive systems
under input saturation and disturbance is explored in [15],
and event-triggered impulsive control for ISS is investigated
under various conditions in [16], [17], [18], [19].

An effective approach to address disturbance impulses
within a system is the use of a funnel controller. This
controller does not require knowledge of the system model;
it only relies on the system’s output to track a desired output
trajectory. The concept involves defining a performance fun-
nel boundary and designing the control input to ensure that
the output tracking error remains within this boundary. This
controller enables the characterization of both transient and
steady-state behaviour of the output. The only information
required about the system is its relative degree. Additional
prerequisites include stable internal dynamics and high-gain
characteristics. Originally introduced for relative degree one
systems in [20], the funnel controller has been extended
in numerous directions, see [21] for a recent overview; in
particular, this controller has been expanded to systems with
higher relative degrees [22], to limit the error derivatives
[23], and for achieving synchronization of heterogeneous
multi-agent systems using funnel coupling [24], [25].

In this study, we aim to devise a performance funnel
to mitigate the adverse effects of impulses and switches.
The core idea revolves around adapting the funnel boundary
based on estimated jump intervals and the upper bound of
jump height, both known a priori, together with decreasing
the error as the system approaches the k-th impulse window.
Essentially, a narrower local inner funnel with a steeper slope
compared to the original funnel is established before each
jump interval, to reduce error prior to the jump. Upon the
occurrence of a jump, the error either remains within the
original funnel (then no further action is necessary) or, if
the error jumps outside the funnel, a temporary expansion
of the funnel boundary is necessary. However, following
a significant jump, the funnel is promptly shrunk back to
the desired boundary to restore the desired performance.
This approach ensures that the error consistently remains
within the (extended) funnel boundary: typically within the
desired funnel boundary, and after substantial jumps, within
the locally adjusted boundary.

II. PROBLEM FORMULATION

We restrict our attention here to the case of relative degree
one and input-affine systems, i.e. we assume that there exists
a mode-dependent, nonlinear coordinate change x 7→ (y, z)
such that (1) is equivalent to:

ẏ = fσ(t)(t, y, z) + gσ(t)(t, y, z) · u, t ̸= tk, (2a)

y(t+k ) = Jσ(t+k )(tk, y(t
−
k ), z(t

−
k )), t = tk, (2b)

ż(t) = fzσ(t)(t, y, z), t ̸= tk, (2c)

z(t+k ) = Jz
σ(t+k )

(tk, y(t
−
k ), z(t

−
k )), t = tk, (2d)

where z : [t0,∞) → Rn−1 is the internal state. To ensure
existence and uniqueness of local solutions, we assume for
each mode m ∈ Σ, the functions fm, Jm, fzm, and Jz

m are
sufficiently smooth (at least locally Lipschitz continuous).

The proposed controller offers a significant advantage in
that it eliminates the requirement for explicit knowledge of
the system model, system order, jump map, and the initial
value. However, the structure of the system has to have some
properties as follows:
(PS1) The system (1) has relative degree one in the sense

that it is equivalent to (2).
(PS2) The system has a positive high-frequency gain1 in the

sense that in (2) g(t, y, z) > 0 for all t, y, z.
(PS3) The internal dynamics of each mode m of the system

is BIBO stable in the sense that there exists a contin-
uous function βm : R+ ×R+ → R+ such that for all
continuous y, all solutions of the impulsive switched
system (2c) (driven by y as an input) satisfy:

∥z(t)∥ ≤ βσ(t)(∥y[tk,t)∥∞, ∥z(t
−
k )∥),∀t ∈ (tk, tk+1).

Furthermore, we assume that there exists a compact
set Z0 ⊆ Rn−1, such that z(t−0 ) = z0 ∈ Z0.

These features are commonly observed in various real-
world systems, including chemical reactors, DC motors, and
robotic arms. Additionally, regarding disturbance impulses,
the controller doesn’t have to have precise information about
the exact jump instances and the jump rule; a general
understanding of the approximate intervals is sufficient. The
assumptions regarding the impulses affecting the system
output are outlined below.
(A1) The exact impulse instances are not known, but the

controller has access to time intervals within which
impulses may occur. In other words, tk is not known
precisely, but it is known that tk ∈ Ik := [tk, tk] for
every k ∈ N. Furthermore, let I :=

⋃
k∈N Ik . Addi-

tionally, the mode sequence of the switching signal is
assumed to be known.

(A2) It is supposed that the jump windows do not overlap
and have a minimal distance ∆t > 0 from each other,
i.e., tk+1 − tk ≥ ∆t.

(A3) Jump rules Jσ(t) are not explicitly known;
however, it is assumed that the jump heights

1The term “high-frequency gain” for g(t, y, z) > 0 is borrowed from the
linear case [21].



are upper-bounded by |Jm(tk, y
−
k , z

−
k ) − y−k | ≤

ασ(t+k )(y
−
k , ∥z

−
k ∥)∥(y−k , z

−
k )∥, where αm : R× R+ →

R+ is a mode dependent continuous function.
Remark 1: The jump in the output can also occur due to

the switching itself, as the output map Hσ(t) in (1) varies
with different modes. It is assumed that the overall jump
height, resulting from both the disturbance jump and output
map switching, is bounded by the α function in (A3). On the
other hand, even if there are no state jumps in the original
system (1), the (mode-dependent) coordinate transformation
leading to (2) will in general result in jumps in the internal
states.

Remark 2: In many real-world systems, jump intervals
can often be predicted based on periodic behavior, such as
network protocols in control systems or maintenance sched-
ules in mechanical systems. Additionally, designers typically
have knowledge of the maximum potential disturbances,
which enables the development of control systems capable
of managing worst-case scenarios. Consequently, it is not
uncommon to establish an upper bound for the jump height.

The desired funnel boundary ψdes and desired output yref
needs to satisfy:
(PB1) ψdes : [t0,∞) → (0,∞) is convex, continuously

differentiable and has a bounded derivative.
(PB2) The initial error e(t+0 ) = y(t+0 )− yref(t0) lies within

the prescribed funnel, i.e., |e(t+0 )| ≤ ψdes(t0).
(PB3) The reference signal yref : [t0,∞) → R is bounded

and continuously differentiable, with a bounded
derivative.

Convexity of ψdes together with boundedness implies that
ψdes is a non-increasing function.

For each jump interval [tk, tk] we specify a “pre-jump”
contraction level , γk ∈ (0, ψdes(tk)), whose purpose is to
reduce the output error in anticipation of an output jump.
Employing Assumption (A3), it then becomes feasible to
establish an upper bound for the error following each jump.
Referring to [23, Lem. 2], it is established that as long as
e(t) remains within the funnel, it is possible to determine
lower and upper bounds for y. Thus, before the first jump,
there exists constants Y max

0 , Y min
0 ∈ R such that

Y max
0 > sup

[t0,t1)

yref(t) + ψdes(t0),

Y min
0 < inf

[t0,t1)
yref(t)− ψdes(t0).

Since the exact value of t1 is unknown, the supremum
and infimum values of yref within the interval [t0, t1) is
considered. Consequently, before the first jump, the norm
of internal dynamic states is also bounded as follows:

Zmax
0 ≥ max

y∈[Y min
0 ,Y max

0 ],z0∈Z0

βσ(t+0 )(|y|, ∥z0∥).

To determine the maximum possible jump height within
this interval, we can choose a constant αmax

1 such that:

αmax
1 ≥ max

y∈[Y min
0 ,Y max

0 ],∥z∥≤Zmax
0

|ασ(t+1 )(y, ∥z∥)|.

Thus, for the magnitude of the first jump, we have:

|e+1 − e−1 | = |y+1 − y−1 |
≤ ασ(t+1 )(y

−
1 , ∥z

−
1 ∥)∥(y−1 , z

−
1 )∥

≤ αmax
1 (|y−1 |+ ∥z−1 ∥)

≤ αmax
1 (|e−1 |+ |yref(t1)|+ ∥z−1 ∥)

≤ αmax
1 (|e−1 |+ sup

t∈[t1,t1]

|yref(t)|+ Zmax
0 )

≤ C1(γ1),

where C1(γ1) := αmax
1 (γ1 + sup

t∈[t1,t1]

|yref(t)| + Zmax
0 ). This

bound is valid under the assumption that our controller
ensures that the error remains in the desired funnel until the
first jump occurs and additionally ensures that |e−1 | < γ1.

The corresponding bounds Ck+1(γk+1) for all later jump
intervals can be determined recursively. Therefore, choose
constant Y max

k , Y min
k , Zmax

k , αmax
k+1 such that

Y max
k := sup

t∈[tk,tk+1]

yref(t) + max(Ck(γk), ψ
des(tk))

Y min
k := inf

t∈[tk,tk+1]
yref(t)− max(Ck(γk), ψ

des(tk))

Zmax
k ≥ max

y∈[Y min
k ,Y max

k ],∥z∥≤Zmax
k−1

βσ(t+k )(|y|, ∥z∥)

αmax
k+1 ≥ max

y∈[Y min
k ,Y max

k ],∥z∥<Zmax
k

|ασ(t+k+1)
(y, ∥z∥)|

and let

Ck+1(γk+1) := αmax
k+1(γk+1 + sup

t∈[tk,tk]

|yref(t)|+ Zmax
k ) (3)

The constant Ck(γk) represents the maximum jump height
at the switching time tk. It is crucial to note that this value is
determined independently of the solution and solely relies on
prior available information such as bounds on the reference
signal, internal dynamics bounds via βm, output jump bounds
via αm, jump intervals and mode sequence.

III. DYNAMIC BOUNDARY

Our proposed controller works as follows: As long as there
is no upcoming jump, the controller keeps the error inside
the desired boundary using a classical funnel controller:

k(t) =
1

ψ(t)− |e(t)|
, (4)

u(t) = −k(t)e(t), (5)

where ψ(t) = ψdes(t).
However, if a jump is anticipated within the interval

[tk, tk], it requires a localized adjustment to the funnel
boundary. To achieve this, starting from ∆t/2 seconds before
tk, the funnel boundary should gradually contract until
reaching an appropriate level. The value of ∆t is closely
tied to the maximum allowable control input that an actuator
can deliver. The smaller the permissible control input, the
larger the value of ∆t needs to be assumed. The extent of
height reduction in the funnel boundary during this interval
will be discussed later. Consequently, the function describing



this temporary local funnel boundary must possess certain
properties outlined in the following definition.

Definition 1: Let ψ : [t1, t2] → R be a C1 smooth
decreasing function with ψ(t1) = a, ψ̇(t1) = b, ψ(t2) = c,
and ψ̇(t2) = d, where a, b, c, d ∈ R are given constants with
a > b and c, d ≤ 0. We denote the set of such functions as
F [t1,t2]

a,b,c,d.
Remark 3: An important class of functions belonging

to F [t1,t2]
a,b,c,d are splines, which can be suitable choices for

adjusting funnel boundaries.
The contracting funnel, denoted as ψI

k and defined in
anticipation of the jump at time tk, is chosen from the set
F [tk−∆t/2,tk]

aI
k,b

I
k,c

I
k,d

I
k

. The parameters within this set are defined as
follows. To smoothly guide the error to a lower level, the
reduced funnel starts with the same value as the desired
funnel at t−∆t/2, then gradually decrease to the specified
γk over ∆t/2 seconds. Thus:

aIk = ψI
k(tk −∆t/2) = ψdes(tk −∆t/2), (6)

bIk = ψ̇I
k(tk −∆t/2) = ψ̇des(tk −∆t/2), (7)

cIk = ψI
k(tk) = γk. (8)

During the interval [tk, tk), the local funnel boundary
remains constant at the prescribed level. Therefore, the
derivative of ψI

k at the beginning of the interval is zero.

dIk = ψ̇I
k(tk) = 0. (9)

Given the upper bound Ck(γk) of the upcoming jump
height, as calculated in (3), the maximum value of the error
after the jump is γk + Ck(γk). Based on this value, two
situations may occur, see also Figure 2.

Fig. 2: Adaptive funnel development.
1) γk + Ck(γk) is strictly smaller than ψdes(tk). In that

case, the error will remain within the original funnel ψdes

after the jump, hence the funnel controller with the original
funnel boundary can be used after the jump and no further
action is necessary until the next jump. Although the exact
time tk is not known in advance, the jump can be detected
simply by observing that the error value suddenly is bigger
than γk. In case the jump is not detected (because the error

after the jumps remains smaller than γk), then the funnel
switches back to the original funnel at the end of the k-th
jump interval.

2) γk+Ck(γk) is equal or bigger than ψdes(tk), we need to
expand the boundaries after t+k to the value γk+Ck(γk). We
keep this value constant until the end of the jump interval and
then gradually shrink it back to the original funnel. Although,
the exact jump time is not known a-priori, it is trivially
detectable by observing that the error left the currently active
funnel2. Since the boundaries are precomputed, switching to
a new boundary incurs no additional computation or delay
(as shown by light blue lines in Fig. 2).

To achieve the contraction after the jump interval back
to the originally desired funnel, a new function ψII

k ∈
F [t̄k,t̄k+∆t/2]

aII
k ,bIIk ,cIIk ,dII

k

is defined via:

aIIk = ψII
k (tk) = γk + Ck(γk), (10)

bIIk = ψ̇II
k (tk) = 0,

cIIk = ψII
k (tk +∆t/2) = ψdes(tk +∆t/2),

dIIk = ψ̇II
k (tk +∆t/2) = ψ̇des(tk +∆t/2). (11)

By employing an adaptive funnel boundary determined
by upcoming jumps, the error consistently remains within
the (extended) funnel limits. This result is formalized in the
following theorem.

Theorem 1: Consider the nonlinear system described by
(2), with an output reference signal yref : R+ → R, and a
specified desired funnel boundary ψdes satisfying assump-
tions (PB1) to (PB3). Assuming that impulses adhere to
the conditions outlined in (A1) through (A3), employing
the control input defined in (4) and (5), along with the
discussed procedure to adjust the funnel boundary, ensures
that the error remains within the funnel for all times, i.e.,
−ψ(t) < e(t) < ψ(t) ∀t ≥ 0.

Proof: Firstly, it’s essential to demonstrate that if the
error lies within the funnel before each jump, it will persist
within it after the jump by adjusting the funnel boundary
using the aforementioned procedure. To illustrate this, in the
interval Ik, when γk +Ck(γk) ≤ ψdes(tk) (first case), it can
be stated:

|e+k | = |e+k + e−k − e−k | ≤ |e+k − e−k |+ |e−k |
≤ Ck(γk) + γk ≤ ψdes(tk).

Note that the maximum value of |e−k | before the jump
equals to γk. Given the monotonicity of ψdes(t), if |e+k | is
smaller than ψdes(tk), it implies that |e+k | remains below
ψdes(t) for all t ∈ [tk, tk].

If γk + Ck(γk) > ψdes(tk) (second case), likewise:

|e+k | ≤ |e+k − e−k |+ |e−k | ≤ Ck(γk) + γk

Ck(γk) + γk is equal to the level of adjusted funnel bound-
ary. Now using standard funnel control arguments, we can

2In the jump interval, the active funnel is given by the constant γk . Note
that also in the second case, it can happen that the error after the jump
remains in the desired funnel, in that case we can directly use the desired
funnel instead of the extended funnel.



conclude that the error stays within the funnel on the interval
[tk, tk+1) and the left-limit at tk+1 is well defined.

Remark 4: It is important to note that with this method,
we cannot guarantee that the input will not grow unbounded
as t → ∞. This is because the jump maps depend on both
the internal dynamics and the output. Specifically, the bound
Zmax
k on the internal dynamics depends on the bounds of

the outputs Y max /min
k , which determines the maximal jump

height Ck+1 at the next switching time. This results in larger
bounds Y

max /min
k+1 and an increased bound Zmax

k+1 for the
internal dynamics, requiring larger inputs to compensate for
the internal dynamics and the increasing slope of the adjusted
funnel. However, if the upper bound on the jump map is
independent of the internal dynamics, such as α(y)∥y∥, then
the input will not grow unbounded. Finding less conservative
conditions which ensure boundedness of the input is a topic
of future research.

IV. SIMULATIONS

Example 1: This example investigates the system behavior
described in Fig. (1) under the implementation of the pro-
posed controller. We analyze the system dynamics defined
by F (t, x, u) = −0.2x + u. For this example, we set γk =
1
3ψ

des(tk) and I = {[2.00, 3.00], [6.10, 7.00], [8.30, 8.80]}.
A comparative analysis is performed between the proposed
funnel controller and a proportional (P) controller, with the
P-controller gain set to kp = {0.4, 1} (up = −kpe(t)).

As illustrated in Fig. 3, the funnel controller effectively
mitigates the impact of the second and third jumps on the
system, with the first jump causing a deviation of 0.14 in
y. Additionally, the total control input energy, quantified by∫ t

0
u(t)2 dt, is 101, and the maximum control input is 1.82.

Furthermore, for this system and choice of γk it can be seen
that an extension of the original funnel is not necessary.

For controllers with gains of kp = 1 and kp = 0.4, the
total energy consumption and maximum control inputs are
282 and 2.5, and 187 and 1, respectively.

The controller with a gain of kp = 0.4 offers a more
comparable energy consumption and maximum control input
to the proposed funnel controller. However, as shown in
Fig. 3, the output behavior still experiences jumps. Addition-
ally, this controller cannot provide performance guarantees,
as the error consistently exceeds the funnel boundaries with
each new impulse, and even with closely spaced impulses,
the system could become unstable. In contrast, the funnel
controller successfully keeps the error within the funnel
boundaries.

Example 2. Consider the following nonlinear system with
two modes:

Mode 1:

ẏ(t) = (−z + y + arctan(y))y + (|y|+ 0.25)u, t ̸= tk

y(t+k ) = z(t−k ), t = tk

ż(t) = −z3 + y

Fig. 3: Comparison of the proposed funnel controller on
the system shown in Fig. 1 with proportial controllers with
constant gains.

Mode 2:
ẏ(t) = −2eyz + 2u t ̸= tk

y(t+k ) = y(t−k ) + z(t−k ) t = tk

ż(t) = −z − 2z3 + (1 + z2)y2

The impulse time sequence is given by T =
{2.80, 13.37, 23.40} and the jump intervals are
I = {[2.48, 3.67], [11.12, 14.58], [21.35, 24.33]}. The
jump heights in modes one and two are bounded by
|e+k − e−k | ≤

√
2∥(y, z)∥ and |e+k − e−k | ≤ ∥(y, z)∥

respectively. Additionally, the internal state of modes one
and two are bounded by |z(t)| ≤ |z0| + (∥y[0,t)∥∞/0.9)1/3
and |z(t)| ≤ |z0| + (∥y[0,t)∥∞)2 (Cf. [26, p. 177]).
Also, γk = 10

18ψ
des(tk) and σ(t) = {2, 1, 2, 1}. Initial

conditions are (y(0), z(0)) = (0.20, 0.05) for mode one
and (0.10, 0.10) for mode two. Moreover, yref = sin(t),
ψdes = 2.7e−0.15t + 0.1 and ∆t = 4s. ψI

k and ψII
k are

third-order polynomials. The real-time funnel boundary
adjustment, the error evolution, and the tracking performance
are shown in Fig. 4 and Fig. 5.

As depicted in Figure 4, during the second and third
jumps, although the funnel contracts to the level γk, the jump
height exceeds the desired funnel, leading to an expansion
of the funnel boundary after t+k . Another noteworthy obser-
vation is that the widening of the funnel surpasses the actual
jump height. This discrepancy arises due to the unavailability
of the actual jump map, necessitating the calculation of the
adjusted funnel boundary based on the upper bound of the
jump height.

V. CONCLUSIONS

A funnel controller for relative degree one nonlinear im-
pulsive switched systems is introduced for tracking reference
signals. It does not require knowledge of system model,
making it versatile for applications where only output data
is available. While exact timing of state jumps during mode



Fig. 4: Evolution of error inside the funnel.

Fig. 5: Output tracking of the controller.

changes isn’t needed, knowing the interval for possible
switches and the upper bounds of jump heights allows pre-
calculation of funnel boundaries. The controller ensures that
errors remain within the funnel using classical funnel control
inputs. Simulations show effective performance when there
is mode switching with disturbance jumps. Future work will
explore unbounded input growth, investigate input saturation,
and extend the framework to systems with higher relative
degrees.
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