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a b s t r a c t

In this paper, we introduce a nonlinear time-varying coupling law, which can be designed in a fully
decentralized manner and achieves approximate synchronization with arbitrary precision, under only
mild assumptions on the individual vector fields and the underlying (undirected) graph structure. The
proposed coupling law is motivated by the so-called funnel control method studied in adaptive control
under the observation that arbitrary precision synchronization can be achieved for heterogeneous
multi-agent systems by a high-gain coupling; consequently we call our novel synchronization method
‘(node-wise) funnel coupling.’ By adjusting the conventional proof technique in the funnel control
study, we are even able to obtain asymptotic synchronization with the same funnel coupling law.
Moreover, the emergent collective behavior that arises for a heterogeneous multi-agent system when
enforcing arbitrary precision synchronization by the proposed funnel coupling law, is analyzed in this
paper. In particular, we introduce a single scalar dynamics called ‘emergent dynamics’ which describes
the emergent synchronized behavior of the multi-agent system under funnel coupling. Characterization
of the emergent dynamics is important because, for instance, one can design the emergent dynamics
first such that the solution trajectory behaves as desired, and then, provide a design guideline to each
agent so that the constructed vector fields yield the desired emergent dynamics. We illustrate this
idea via the example of a distributed median solver based on funnel coupling.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Synchronization of multi-agent systems

During the last decade, synchronization and collective behav-
or of a multi-agent system have attracted increasing attention
ecause of numerous applications in diverse areas, e.g., biol-
gy, physics, and engineering. Initial studies focused on iden-
ical multi-agents (Moreau, 2004; Olfati-Saber & Murray, 2004;
en & Beard, 2005; Seo, Shim, & Back, 2009), but the interest
oon transferred to the heterogeneous case motivated by the
act that uncertainty, disturbance, and noise are prevalent in
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practice. Earlier results in this direction such as Wieland, Wu, and
Allgöwer (2013) have found that for synchronization to happen
in a heterogeneous network, each agent must contain a common
internal model. However, recalling that heterogeneity may arise
by noises or parameter perturbations, the assumption of common
internal model may be too ideal, and approximate (practical)
synchronization has been studied as an alternative (Ha, Noh, &
Park, 2015; Montenbruck, Bürger, & Allgöwer, 2015). We want
to note that only recently the emergence of collective behavior
for heterogeneous multi-agent systems that achieve approximate
synchronization is discussed, and some attempts are made to
analyze this behavior (Kim, Yang, Shim, Kim, & Seo, 2016; Lee &
Shim, 2020; Panteley & Loría, 2017).

In this respect, a number of papers have considered the con-
struction of a local controller to achieve arbitrary precision ap-
proximate synchronization (or asymptotic synchronization) for
heterogeneous multi-agent systems. In particular, output regula-
tion theory, backstepping method, high-gain observer, adaptive
control, and optimal control have been utilized. Meanwhile, to
the best of our knowledge, these works either have a common
internal model assumption (Casadei & Astolfi, 2018; De Persis &
Jayawardhana, 2012; Isidori, Marconi, & Casadei, 2014; Modares,
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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ewis, Kang, & Davoudi, 2018), use sufficiently small (or large)
arameters which depend on the global information such as the
etwork topology (Kim et al., 2016; Montenbruck et al., 2015;
anteley & Loría, 2017; Su & Huang, 2014; Zhang, Saberi, Stoorvo-
el, & Grip, 2016), need additional communication channels (Lee,
un, & Shim, 2018; Su, 2019), or assume individual stability in the
road sense such as passivity (Arcak, 2007; DeLellis, di Bernardo,
Liuzza, 2015).

.2. Novel funnel coupling law and system class

In this paper, we introduce a novel nonlinear time-varying
oupling law, which overcomes the above mentioned restrictions,
n particular, which

• can be designed in a fully decentralized manner, especially
without the need of any global information such as the vec-
tor fields of other agents or the structure of communication
graph,

• does not require any additional assumptions on the individ-
ual vector fields such as stability in the broad sense or the
common internal model assumption,

• does not need additional communication and uses only the
given diffusive coupling terms,

• and achieves prescribed performance, in particular, uniform
approximate synchronization with arbitrary precision.

or the set N := {1, . . . ,N} of agents, the individual dynamics
or agent i ∈ N are assumed to be given by

ẋi(t) = fi(t, xi(t)) + ui(t, νi(t)), (1a)

i(t) =

∑
j∈Ni

αij · (xj(t) − xi(t)), (1b)

here Ni is a subset of N whose elements are the indices of the
gents that send the information to agent i. The coefficient αij is
he ijth element of the adjacency matrix that represents the given
raph.

ssumption 1 (Graph). The communication graph induced by the
djacency element αij is undirected and connected, and thus, the
aplacian matrix L is symmetric, having one simple eigenvalue of
ero. ⋄

In the description, the (scalar) state at time t ∈ R is rep-
esented by xi(t) ∈ R, and ui : [t0,∞) × R → R is the
onlinear time-varying coupling law to be presented later on,
hich is a continuous mapping from the diffusive error term νi

to the control input and is possibly time-varying. Note that for
the control design only the knowledge of the diffusive term (1b)
is assumed and that neither the knowledge of the agent’s own
state xi nor the neighbors’ state xj is required. It is a heterogeneous
multi-agent system in the sense that each agent i has its own
vector field fi. We assume the following properties on the open
loop dynamics of each agent.

Assumption 2 (Vector Field). For each i ∈ N , the function fi :

[t0,∞)×R → R is measurable in t , locally Lipschitz with respect
to xi, and bounded on each compact subset of R uniformly in
t ∈ [t0,∞). ⋄

Note that the time-varying fi can include an external input,
a disturbance, and/or noise as well, and we do not assume any
stability of the node dynamics ẋi = fi(t, xi).

Our coupling law to ensure synchronization with prescribed
performance is inspired by the so-called funnel controller (Ilch-
mann, Ryan, & Sangwin, 2002). Given the desired time-varying
 w

2

Fig. 1. Prescribed performance: the diffusive error νi evolves within the funnel
Fψi .

function ψi for each agent i, our goal is to ensure that the diffusive
error term νi of (1b) evolves within the funnel

Fψi := {(t, νi) | |νi| < ψi(t) } ,

as in Fig. 1.
In fact, we can achieve uniform, arbitrary precision approxi-

mate synchronization in the sense that for any arbitrarily small
η > 0 and any given bounded set of initial values, we can
easily choose funnel boundaries ψi such that |νi(t0)| < ψi(t0) and
lim supt→∞ ψi(t) ≤ η which will, using our proposed method,
esult in lim supt→∞ |νi(t)| ≤ η for all i ∈ N with a uniform con-
ergence rate (given by the shape of the funnels). Note that the
roperty lim supt→∞ |νi(t)| ≤ η implies lim supt→∞ ∥Lx(t)∥∞ ≤

which in turn, by Assumption 1, implies that

lim sup
t→∞

|xi(t) − xj(t)| ≤
2
√
N

λ2
η, ∀i, j ∈ N , (2)

where λ2 is the algebraic connectivity of the graph (see (8)).
To achieve this control objective, we propose for each i ∈ N

the following (node-wise) funnel coupling law

ui(t, νi) = µi

(
νi

ψi(t)

)
:= γi

(
|νi|

ψi(t)

)
νi

ψi(t)
∈ R (3)

where the functions ψi and γi satisfy the following assumption.

ssumption 3 (Funnel). Each function ψi : [t0,∞) → R>0 is
ounded and differentiable with bounded derivative; i.e., there
re ψ > 0 and θψ > 0 such that

0 < ψi(t) ≤ ψ and |ψ̇i(t)| ≤ θψ , ∀t ∈ [t0,∞), i ∈ N .

he gain functions γi : [0, 1) → R>0, i ∈ N , are non-decreasing
and satisfy lims→1 γi(s) = ∞. ⋄

A possible (agent independent) choice for γi and ψi is

γi(s) =
1

1 − s
and ψi(t) = (ψ − η)e−(θψ /ψ)(t−t0) + η,

here ψ, θψ > 0 and η ≥ 0.

.3. Related approaches

The idea of funnel coupling has been first proposed in Shim
nd Trenn (2015), however, due to some technical reasons, the
nalysis was conducted only for the weakly centralized funnel
oupling, i.e., ui(t) = maxj γj(|νj|/ψ(t))νi/ψ(t), and only when
he underlying graph is d-regular with d > N/2 − 1, where
is the degree of every node. These technical limitations are

esolved in this paper, and we can now consider fully decen-
ralized coupling law (3) with an arbitrarily given graph which
s undirected and connected. This new approach also allows the
erformance functions ψi to converge asymptotically to zero,
.e., limt→∞ ψi(t) = 0, by which we obtain asymptotic synchro-
ization for heterogeneous multi-agent systems. In particular,
e have lim ν (t) = 0, i ∈ N by the fact that |ν (t)| <
t→∞ i i
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i(t) for all t ≥ t0 and i ∈ N . This, in fact, seems to violate
the common presumption, in the synchronization community,
that heterogeneous multi-agent systems cannot asymptotically
synchronize without a common internal model. This violation
is resolved by observing that we use a time-varying coupling
law, which is not considered in the framework of the internal
model principle for multi-agent systems (Wieland et al., 2013).
In fact, unlike the internal model principle results, it is observed
in this paper, that, as the performance function approaches zero,
the coupling term approaches a possibly non-zero time-varying
signal, which compensates the heterogeneity of the individual
agents. Specific use of this idea to solve distributed consensus
optimization can be found in Lee, Berger, Trenn and Shim (2020a).
We want to emphasize that even when asymptotic synchroniza-
tion is achieved, the input ui(t, νi(t)) can still be bounded. In fact,
ven though the performance functions ψi are asymptotically
onverging to zero, the diffusive term νi, which also converges
symptotically to zero, makes the fraction νi(t)/ψi(t) be strictly

contained inside the interval (−1, 1) uniformly, making the input
µi(νi(t)/ψi(t)) to be uniformly bounded. We refer to Section 2 for
sufficient conditions that guarantee the boundedness of input.

Relying also on the observation that arbitrary precision syn-
chronization can be achieved by the high-gain linear coupling
law, a dynamic coupling law motivated by the λ-tracking studied
in adaptive controls (Ilchmann & Ryan, 1994) given, for instance,
as

ui(t, νi(t)) = ki(t)νi(t),

k̇i(t) =

{
|νi(t)|(|νi(t)| − ηi) if |νi(t)| > ηi,

0 otherwise,

has been introduced in Kim and De Persis (2017), Lee et al. (2018),
Li, Ren, Liu, and Fu (2013), Lv, Li, Duan, and Feng (2017) and Shafi
and Arcak (2014). But, most of them considered homogeneous
networks, and for a heterogeneous network, additional commu-
nication between the coupling gains ki has been introduced to
ensure that the collective behavior of the network is as desired. In
fact, funnel control has advantages compared to λ-tracker such as
that the transient behavior can be directly controlled and that the
gain is not monotonically increasing, and thus, does not amplify
the measurement noise unnecessarily.

1.4. Emergent dynamics

To estimate the behavior of the network when synchroniza-
tion is achieved in this way, as in Kim et al. (2016), Lee and Shim
(2020) and Panteley and Loría (2017), the emergent collective
behavior that arises from the closed loop system (1) with (3) is
analyzed in this paper. In particular, we introduce a single scalar
dynamics which we call ‘emergent dynamics’ (which depends on
the individual vector fields fi and the functions µi, ψi for all i ∈ N )
that is capable of illustrating the emergent synchronized behavior
of the whole network by its solution trajectory.

Characterization of the emergent dynamics is important, for
instance, when synthesizing a heterogeneous network for some
specific purposes. In particular, one can design the emergent
dynamics with the desired behavior, and then, provide a guideline
to each agent (which allows fully decentralized design) so that
the constructed fi and µi yield the desired emergent dynamics.
This scheme of constructing a heterogeneous network with the
desired collective behavior is first introduced in Lee and Shim
(2020) and has many interesting applications, e.g., distributed
state estimation, estimation of the number of agents, and eco-
nomic dispatch problem. For instance, it is analyzed that the
emergent behavior of a heterogeneous network (1) under the

high-gain coupling ui(t, νi) = kνi, follows the ‘blended dynamics’ t

3

given by

ξ̇ =
1
N

N∑
i=1

fi(t, ξ ). (4)

Under this observation, in Lee and Shim (2020), for example,
a network that estimates the number of agents is designed as
ẋ1 = −x1 + 1 + kν1 and ẋi = 1 + kνi for i ̸= 1, which has
ξ̇ = −(1/N)ξ + 1 as its blended dynamics, i.e., the emergent
collective behavior asymptotically converges to the number of
agents N . Now, the emergent dynamics to be introduced later on
takes clearly a different form compared to the blended dynamics,
and by this difference, a new application might occur, which
needs further inspection. A particular example illustrating the
utility of the emergent dynamics is given in Section 4.2.3 as a
distributed median solver.

We emphasize that each agent may be unstable (or mal-
functioning, or even malicious), as long as their combination,
i.e., the emergent dynamics is stable, hence the stability of the
group is maintained. In particular, in a large group of agents
malicious agents cannot destabilize the overall system provided
the majority of agents behaves ‘‘good’’. Synchronization achieved
in this way is also robust against external disturbance, noise,
and/or uncertainty in the agent dynamics due to the stability of
the emergent dynamics.

1.5. Paper organization and notation

The paper is organized as follows. In Section 2, it is proven that
the proposed node-wise funnel coupling law achieves synchro-
nization with respect to the given performance function. Some
sufficient conditions that ensure boundedness of the inputs are
also given at the end of that section. Section 3 analyzes the
emergent collective behavior that arises when enforcing synchro-
nization by the proposed funnel coupling law. Then, in Section 4,
we discover the properties of the emergent dynamics, and also
discuss the possible application related to these properties.

Notation: Laplacian matrix L = [lij] ∈ RN×N of a graph is
defined as L := D − A, where A = [αij] is the adjacency
matrix of the graph and D is the diagonal matrix whose diagonal
entries are determined such that each row sum of L is zero.
y its construction, it contains at least one eigenvalue of zero,
hose corresponding eigenvector is 1N := [1, . . . , 1]⊤ ∈ RN ,
nd all the other eigenvalues have non-negative real parts. For
ndirected graphs, the zero eigenvalue is simple if and only if the
orresponding graph is connected. For vectors or matrices a and
, col(a, b) := [a⊤, b⊤

]
⊤. For matrices A1, . . . , Ak, we denote by

iag(A1, . . . , Ak) the corresponding block diagonal matrix. For a
on-empty set Ξ ⊆ R, |x|Ξ denotes the distance between the

value x ∈ R and Ξ , i.e., |x|Ξ := infy∈Ξ |x − y|.

. Heterogeneous multi-agent systems under node-wise fun-
el coupling

The intuition of the funnel coupling law (3) is simple, follow-
ng that of funnel control, which is to increase the gain infinitely
arge as the diffusive error approaches the funnel boundary. Then,
he high-gain precludes boundary contact. For instance, if agent i
as only one neighbor denoted as agent j, and if the difference
etween two agents, νi(t) = αij(xj(t) − xi(t)), approaches the
unnel boundary ±ψi(t) so that ψi(t) − |νi(t)| becomes closer to
ero, then the gain γi(|νi(t)|/ψi(t)) gets larger towards infinity,
nd the state xi will tend to its neighbor xj since the large coupling
erm dominates the vector field fi(t, xi), and the error νi(t) will
emain inside the funnel. However, with more than one neighbor,

his intuition becomes no longer straightforward because two
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eighbors of agent i may attract xi in the opposite direction
with almost infinite power. In the following, we will prove that
all the errors νi(t) remain inside the funnel, which is however
far more complicated and also requires the following technical
assumption, which guarantees that, as long as the diffusive error
is contained in the funnel, i.e., |νi(t)| < ψi(t), finite time escape
cannot occur.

Assumption 4 (No Finite Time Escape). The dynamical systems
defined by

χ̇ (t) = max
i∈N

fi(t, χ (t)), χ̇ (t) = min
i∈N

fi(t, χ (t)) (5)

ave complete solutions χ, χ : [t0,∞) → R for any initial values
χ (t0), χ (t0) ∈ R and for any initial time t0. ⋄

We stress that if the functions fi are globally Lipschitz in xi,
hen Assumption 4 holds.

emma 1. Under Assumptions 2, 3, and 4, assume that a solution
f the system (1) with (3) exists on [t0, ω) for a finite ω > t0 and
atisfies |νi(t)| < ψi(t), for all t ∈ [t0, ω) and i ∈ N . Then, there
xists M > 0, depending on (t0, ω, x1(t0), . . . , xN (t0)), such that
xi(t)| < M, for all t ∈ [t0, ω) and i ∈ N . ⋄

Before providing the proof of Lemma 1, we stress that the
ound M does not depend on the particular choice of ψi, and that
he boundedness of xi(t) on a finite time interval is established
ithout relying on the boundedness of ui(t, νi(t)) which can be
nbounded when νi(t) approaches the funnel boundary ψi(t).
hese properties will be used in our main result of Theorem 2.

roof. For a solution x : [t0, ω) → RN of (1) with (3), choose
time-varying index J(t) ∈ N such that xJ(t)(t) = maxi xi(t) and

˙J(t)(t) ≥ ẋk(t) for all those k ∈ N with xk(t) = maxi xi(t). Then,
the upper right Dini derivative of xJ(t)(t) denoted as D+xJ(t)(t)
satisfies
D+xJ(t)(t) ≤ ẋJ(t)(t)

= fJ(t)(t, xJ(t)(t)) + γJ(t)

(
|νJ(t)(t)|
ψJ(t)(t)

)
νJ(t)(t)
ψJ(t)(t)

≤ fJ(t)(t, xJ(t)(t)) ≤ max
i

fi(t, xJ(t)(t))

(6)

where the second inequality follows from the fact that γJ(t) and
ψJ(t) are non-negative and νJ(t)(t) is non-positive, because xJ(t)(t)
is a maximum. Hence, by Assumption 4, there exists M+ > 0,
depending on (t0, ω, x1(t0), . . . , xN (t0)), such that xJ(t)(t) is upper
bounded by M+ for t ∈ [t0, ω). Similarly, we can find M− > 0
such that mini xi(t) ≥ −M− for all t ∈ [t0, ω), which concludes
the claim. □

Theorem 2. Consider the system (1) coupled via node-wise funnel
coupling (3). Under Assumptions 1–4, if the initial values xi(t0) are
such that |νi(t0)| < ψi(t0), for all i ∈ N , then the solutions xi(t) exist
for all t ≥ t0 and satisfy

|νi(t)| < ψi(t), ∀t ≥ t0, i ∈ N . (7)

From this, the inequality (2) holds, and thus, approximate (when
η > 0 is small) or asymptotic (when η = 0) synchronization is
achieved. ⋄

While the following proof will ensure (7), we want to de-
rive (2) from (7) here because this will introduce an important
matrix R that will be used frequently. Define a matrix R ∈

RN×(N−1) such that the matrix [(1/
√
N)1N , R] becomes orthogonal

nd [(1/
√
N)1N , R]⊤L[(1/

√
N)1N , R] = diag(0, λ2, . . . , λN ) with

< λ ≤ · · · ≤ λ . Then, we have the following properties:
2 N

4

• Λ = R⊤LR and L = RΛR⊤ where Λ = diag(λ2, . . . , λN )
• RR⊤

= IN − (1/N)1N1⊤

N , and thus, RiR⊤x = xi −xs where Ri is
the ith row of R, x = col(x1, . . . , xN ), and xs := (1/N)

∑N
i=1 xi.

et Lψ = diag(1/ψ1(t), . . . , 1/ψN (t))L. Then,

max
i∈N

|xi(t) − xs(t)| = ∥RR⊤x(t)∥∞

= ∥RΛ−1R⊤diag(ψ1(t), . . . , ψN (t))Lψ (t)x(t)∥∞

≤
√
N∥RΛ−1R⊤

∥2

(
max
i∈N

ψi(t)
)

∥Lψ (t)x(t)∥∞

≤
√
N max

i∈N
ψi(t)/λ2

(8)

f the solution remains inside the funnel; that is, 1 > |νi(t)|/ψi(t)
|Lix(t)|/ψi(t) = |Lψ,i(t)x(t)| in which the subscript i means the

th row. Since xi − xj = (xi − xs) − (xj − xs), (2) follows.

roof. The proof is done by a contradiction. Suppose that there
s a particular solution of (1) and (3) such that the inequality in
7) holds only for a finite time interval [t0, ω) and is violated at
= ω. This implies that there is a time sequence {τk} such that

k is strictly increasing and limk→∞ τk = ω, and

+({τk}) :=

{
i ∈ N : lim

k→∞

νi(τk)
ψi(τk)

= 1
}
is non-empty,

or

I−({τk}) :=

{
i ∈ N : lim

k→∞

νi(τk)
ψi(τk)

= −1
}
is non-empty.

et us first assume that I+({τk}) is non-empty. We will first show
hat a contradiction occurs if I+({τk}) = N . If I+({τk}) ⊊ N ,
e will then show that it is possible to construct another time
equence {τ̄k} (based on {τk}), such that

I+({τk})| < |I+({τ̄k})| (9)

here the notation | · | implies the cardinality of the set. By
epeating this argument (i.e., by replacing the role of {τk} with
τ̄k}), we arrive after finitely many steps at the equality I+({τk}) =

N , which yields a contradiction. This means that there is no such
sequence {τk} that makes I+({τk}) non-empty. Similarly, it can be
seen that there is no sequence that makes I−({τk}) non-empty.
Therefore, we conclude there is no such finite time ω and the
control objective (7) is achieved for all t ≥ t0.

Let us carry out the above described proof steps. For conve-
nience, we write I instead of I+({τk}) in the following. Let

W (t) :=

∑
i∈I

νi(t) =

∑
i∈I

∑
j∈N

αij · (xj(t) − xi(t)).

ote that, by the definition of I, for each i ∈ I, there exists a
sufficiently large k∗

i ∈ N such that νi(τk) > 0 for all k ≥ k∗

i because
ψi(t) > 0 for all t ∈ [t0, ω). Hence there is k such that W (τk) > 0.
However, this inequality is violated if I = N because

W (t) =

∑
i∈N

∑
j∈N

αij(xj(t) − xi(t)) ≡ 0, ∀t ∈ [t0, ω),

hich is a simple consequence from the general property of an
ndirected graph that for any index set K ⊆ N and any vector
= [χi] ∈ RN ,∑

i∈K

∑
j∈K

αij(χj − χi) = 0. (10)

Hence we have shown that I = N is not possible and we
ontinue the proof for the case that I ⊊ N . For this purpose, note
hat W (t) is continuously differentiable, W (t) <

∑
i∈I ψi(t) on

t , ω), and lim W (τ ) =
∑

ψ (ω). Let us now consider a
0 k→∞ k i∈I i



J.G. Lee, S. Trenn and H. Shim Automatica 141 (2022) 110276

s
0

S
t

B
a

R
t
|

p
ψ

p
c
t
a
m

R
r
|

c
a
w
g
n

R
r
g

ν

I
a

u

o

u

Fig. 2. Illustration of the choice of the sequence {sq}q∈N based on {τk}k∈N .

trictly decreasing sequence {εq} ⊆ (0, 1) such that limq→∞ εq =

and that W (t0) < (1 − ε0)
∑

i∈I ψi(t0). Choose a subsequence
{τkq}q∈N of {τk} such that

W (τkq ) ≥

(
1 −

εq

2

)∑
i∈I

ψi(τkq ), ∀q ∈ N. (11)

Based on this subsequence, we now construct a sequence {sq}q∈N

such that (see Fig. 2)

sq := max

{
s ∈ [t0, τkq ]

⏐⏐⏐⏐⏐W (s) = (1 − εq)
∑
i∈I

ψi(s)

}
. (12)

By (11) and (12), the sequence {sq} is strictly increasing and
limq→∞ sq = ω. Moreover, since limq→∞ W (sq)/

∑
i∈I ψi(sq) = 1,

lim
q→∞

νi(sq)
ψi(sq)

= 1, ∀i ∈ I. (13)

In addition, from (11) and (12), it follows that the difference
W (s) − (1 − εq)

∑
i∈I ψi(s) cannot decrease around s = sq < τkq ,

hence by Assumption 3

Ẇ (sq) ≥ (1 − εq)
∑
i∈I

ψ̇i(sq) ≥ −Nθψ , ∀q ∈ N. (14)

On the other hand, if we compute Ẇ , then we have

Ẇ (t) =

∑
i∈I

∑
j∈N

αij(fj(t, xj(t)) − fi(t, xi(t)))

+

∑
i∈I

∑
j∈N

αij(µj(t) − µi(t)),

where µk(t) := µk(νk(t)/ψk(t)), k ∈ N , for simplicity. We can
bound the first sum by M0 :=

∑
i∈N

∑
j∈N αijMf , where the

constant Mf is such that

|fj(t, xj(t)) − fi(t, xi(t))| ≤ Mf , ∀t ∈ [t0, ω), (15)

whose existence follows from Lemma 1 and Assumption 2 be-
cause ω is finite. Invoking (10) for the index set I, we therefore
have that

Ẇ (t) ≤ M0 +

∑
i∈I

∑
j∈N\I

αij(µj(t) − µi(t)). (16)

Let J := N\I (which is non-empty). Then, (14) and (16) yield∑
αijµj(sq) ≥

∑
αijµi(sq) − M0 − Nθψ =: Mq.
i∈I,j∈J i∈I,j∈J

5

By the connectivity of the graph (Assumption 1), at least one αij,
where i ∈ I and j ∈ J , is positive. Thus, it follows from (13) that
Mq → ∞ as q → ∞. Since∑
i∈I,j∈J

αijµj(sq) ≤ |I|ᾱ
∑
j∈J

max
{
µj(sq), 0

}
where ᾱ := maxi,j∈N αij > 0, we have∑
j∈J

max
{
µj(sq), 0

}
≥

Mq

|I|ᾱ
. (17)

Therefore, for each sufficiently large q, there is an index jq ∈ J
such that µjq (sq) ≥ Mq/(|J ||I|ᾱ); hence

µjq

(
νjq (sq)
ψjq (sq)

)
→ ∞, i.e.

νjq (sq)
ψjq (sq)

→ 1.

ince J is a finite set, there is a subsequence {τ̄k} = {sqk} such
hat j∗ = jqk ∈ J and

νj∗ (τ̄k)
ψj∗ (τ̄k)

→ 1. Consequently,

I+({τk})
(13)
⊆ I+({sq}) ⊆ I+({τ̄k}).

y construction, j∗ ∈ I+({τ̄k}) \ I+({τk}) and we can conclude (9)
s desired. □

emark 1 (Finite-Time Synchronization). We want to note that, in
heory, finite-time synchronization (for a given T > 0, limt→t0+T
xi(t) − xj(t)| = 0, for all i, j ∈ N ) can also be achieved by the
roposed method. For this, take ψi(t), for all i ∈ N , such that
i(t) > 0 for t ∈ [t0, t0 + T ) and ψi(t0 + T ) = 0. Then, the
roof of Theorem 2 still holds with ∞ replaced by t0 + T . In this
ase, the proposed coupling law cannot be used after the time
0+T . Another discontinuous coupling, such as Coraggio, DeLellis,
nd di Bernardo (2021), may need to be employed in order to
aintain the synchronization after t0 + T . ⋄

emark 2 (Pseudo-Global Property). The assumption of Theorem 2
equires boundedness of the initial conditions in the sense that
νi(t0)| < ψi(t0). As a matter of fact, we can trivially satisfy this
ondition by taking ψi(t) = 1/(t − t0) so that ψi(t0) = ∞, and
dapt the proof of Theorem 2 to be valid in this case. Anyway,
e note that each agent can pick a sufficiently large individual
ain ψi and hence considering an initially infinite funnel is not
ecessary in most cases. ⋄

emark 3 (High Order Case). The proof technique used for Theo-
em 2 can easily be extended to high order, fully actuated agents
iven by

ẋi(t) = Fi(t, xi(t)) + ui(t, νi(t)) ∈ Rn,

i(t) = col(ν1i (t), . . . , ν
n
i (t)) =

∑
j∈Ni

αij(xj(t) − xi(t)).

n this case, the multi-dimensional funnel coupling can be chosen
s an element-wise type:

i(t, νi) := col
(
µi

(
ν1i

ψi(t)

)
, . . . , µi

(
νni

ψi(t)

))
,

r a maximum gain type:

i(t, νi) := µi

(
νi

ψi(t)

)
= γi

(
|νi|∞

ψi(t)

)
νi

ψi(t)
.

More interesting case is the underactuated case, which is an
ongoing research. ⋄

So far we have seen that Theorem 2 guarantees that the diffu-
sive term resides inside the funnel. The next theorem ensures that
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he control action remains uniformly bounded (even when the
unnel boundaries ψi(t) converges to zero) under mild additional
ssumptions.

heorem 3. In addition to the assumptions of Theorem 2, assume
hat one of the following conditions hold.

(a) fi(t, x) ≡ F (t, x) + gi(t, x) where F (t, x) is globally Lipschitz
with respect to x uniformly in t and there exists Mg such that
|gi(t, x)| ≤ Mg for all i ∈ N , t ≥ t0, and x ∈ R.

(b) There exists Mx such that |xi(t)| ≤ Mx for all i ∈ N and
t ≥ t0.

hen the input ui(t, νi(t)) = µi(νi(t)/ψi(t)) is bounded on [t0,∞),
.e., there exists Mu > 0 (which may depend on (t0, x1(t0), . . . ,
N (t0))) such that for all t ∈ [t0,∞) and i ∈ N , we have
ui(t, νi(t))| ≤ Mu. ⋄

roof. Note that the proof of Theorem 2 is still valid for the case
= ∞ as long as the condition (15) holds with ω = ∞. If this is

he case, then there is no sequence {τk} for ω = ∞ that makes the
ndex sets I+({τk}) and I−({τk}) (in the proof of Theorem 2) non-
mpty, and thus, there exists δ > 0 such that |νi(t)/ψi(t)| < 1−δ,
or all t ≥ t0 and i ∈ N so that the claim follows. Now, it can be
een that condition (a) ensures (15) with ω = ∞, because

fj(t, xj(t)) − fi(t, xi(t))|
≤ |F (t, xj(t)) − F (t, xi(t))| + |gj(t, xj)| + |gi(t, xi)|

≤ L|xj(t) − xi(t)| + 2Mg ≤ 2L
√
Nψ/λ2 + 2Mg

here L is the Lipschitz constant of F and the third inequality
ollows from (8). Condition (b) also guarantees condition (15)
ith ω = ∞. □

We emphasize that the input remains bounded even if the
tate is unbounded as long as condition (a) of Theorem 3 holds
because the condition allows unbounded solution to the homo-
eneous part of the node dynamics ˙̄x = F (t, x̄)). This property is

useful when one considers synchronization of unstable systems.
Also, the term gi can represent a perturbation of the state; even
when the state xi is perturbed as xi + x̃i, the input can remain
bounded if gi(t) = ˙̃xi(t) satisfies condition (a).

We also emphasize that there are cases where condition (b) is
guaranteed a priori before analyzing the effect of coupling inputs.
For example, if all node dynamics ẋi = fi(t, xi), for all i ∈ N , are
contractive (i.e., there exists ci > 0 such that (∂ fi/∂x)(t, xi) ≤ −ci,
for all t ≥ t0 and xi ∈ R), then two dynamics of (5) have the same
property almost everywhere and one can show the boundedness
of all xi’s using an inequality similar to (6).

Remark 4 (Extension to Conventional Funnel Control). In the dis-
cussions so far, the performance function ψi can converge to zero
as time tends to infinity without a positive lower bound. In fact,
even if ψi goes to zero, the ratio νi(t)/ψi(t) remains within a
compact interval in (−1, 1) so that the input remains bounded.
The same idea can be applied for extending the conventional fun-
nel controls, where the performance function has non-zero lower
bounds and thus only practical tracking is guaranteed. The read-
ers are referred to Lee and Trenn (2019) for more on asymptotic
tracking by funnel control with bounded inputs, which utilized
the new funnel gain γi(|νi|/ψi(t)) proposed in this paper. ⋄

3. Emergent behavior under funnel coupling

In Section 2 the system (1) is proven to achieve (practical)
synchronization by the funnel coupling law (3), in the sense that,
for all i and j,

lim sup |xi(t) − xj(t)| ≤
2
√
N

lim supmaxψk(t),

t→∞ λ2 t→∞ k

6

when the right-hand side is small or zero (see (8)). In this sec-
tion, we answer the question: when (practical) synchronization
is achieved, what is the behavior of the agents?

We will show that, if (practical) synchronization is achieved,
each agent behaves similar to the single scalar emergent dynamics
given as

ξ̇ = hψµ (t, f1(t, ξ ), . . . , fN (t, ξ )) =: fem(t, ξ ) (18)

ith suitably chosen initial value, when the emergent dynamics
s stable in a certain sense. Here, the function hψµ that maps
ol(t, f1, . . . , fN ) ∈ [t0,∞) × RN to h = hψµ (t, f1, . . . , fN ) ∈

is defined as the unique solution of the following algebraic
quation 2:

(h, t, f1, . . . , fN ) :=

N∑
i=1

ψi(t)µ−1
i (h − fi) = 0 (19)

here µ−1
i : R → (−1, 1) is well defined since µi : (−1, 1) →

, s ↦→ γi(|s|)s is strictly increasing and surjective due to Assump-
ion 3. An intuition behind this equation is that, if all the states
i are synchronized to ξ , the time derivative ẋi also should be the
ame as ξ̇ across the agents. This means that the difference in the
ector field fi(t, ξ ) across the agents should be compensated by
ndividual µi, so that ξ̇ = ẋi = fi(t, ξ ) + µi(νi/ψi(t)) = fem(t, ξ ),
or all i. Recalling that

∑N
i=1 νi ≡ 0 by construction, (19) follows.

emma 4. Under Assumption 3, there is a unique solution hψµ ∈ R to
19) for each (t, f1, . . . , fN ) ∈ [t0,∞) × RN . Moreover, the solution
atisfies

min
i

fi ≤ hψµ ≤ max
i

fi (20)

or any choice of ψi’s satisfying Assumption 3. If all µi’s are continu-
usly differentiable, then the map (t, f1, . . . , fN ) ↦→ hψµ (t, f1, . . . , fN )
s continuously differentiable. ⋄

By consequence of Lemma 4, fem(t, ξ ) as defined in (18) is
easurable in t and locally Lipschitz in ξ , which guarantees
xistence and uniqueness of solutions of (18).

roof. From (3) and Assumption 3, the functions µi are strictly
ncreasing in the interval (−1, 1). Hence, µ−1

i is continuous and
trictly increasing over R. This implies that, for each (t, f1, . . . , fN )
RN+1, the map h ↦→ H(h, t, f1, . . . , fN ) is strictly increasing.

Because H(h, t, f1, . . . , fN ) is positive if h > maxi fi and is negative
if h < mini fi, there is a unique solution h to (19) between
ini fi and maxi fi for each (t, f1, . . . , fN ). Continuous differentia-
ility of hψµ follows from the Implicit Function Theorem because
H(h, t, f1, . . . , fN )/∂h > 0 which is well-defined because γi(0) >
from Assumption 3. □

emark 5 (Time-Invariant Emergent Dynamics). If all the perfor-
ance functions ψi share the same function ψ as ψi(t) = riψ(t)

where ri > 0 are constants, then ψ(t) can be removed from
(19) so that the emergent dynamics (18) becomes a time-invariant
system which does not depend on ψ but only on ri. ⋄

Example 1. Consider µi(η) = η/(1 − |η|), for all i ∈ N , whose
inverse is µ−1

i (s) = s/(1 + |s|), and suppose that all ψi are the
same as ψ . Then, (19) becomes

H(h, t, f1, . . . , fN ) =

N∑
i=1

ψ(t)
h − fi

1 + |h − fi|
≡ 0.

2 Note that, in (19), fi is not the vector field of agent i but just an arbitrary
scalar argument of the function H .
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or each given (t, f1, . . . , fN ), this equation can be solved by the
following procedure:

1. Find an index set {i1, . . . , iN} such that fij ≤ fij+1 for all
j = 1, . . . ,N − 1. Set j = 1.

2. Solve
j∑

k=1

h − fik
1 + h − fik

+

N∑
k=j+1

h − fik
1 − h + fik

= 0 (21)

which is equivalent to finding roots of a polynomial in h of
order at most N .

3. If there is a root h such that fij ≤ h ≤ fij+1 then return
hψµ (t, f1, . . . , fN ) = h.

4. If not, increase j by 1 and go back to Step 2.

Well-posedness of this algorithm is guaranteed by the uniqueness
of the solution in Lemma 4. ⋄

Example 2. If the funnel coupling law is given as

µi(η) =

{
ln(1/(1 − η)) if η ≥ 0,
ln(1 + η) if η < 0,

then the inverse can be calculated as

µ−1
i (s) =

{
1 − e−s if s ≥ 0,
−1 + es if s < 0.

Proceeding similar to Example 1, we get the same procedure as
before, where (21) is replaced with

j∑
k=1

ψik (t)(1 − e−h+fik ) +

N∑
k=j+1

ψik (t)(−1 + eh−fik ) = 0.

Note that this is simply a second order polynomial in terms of
a new variable h = eh. Uniqueness of the solution follows again
rom Lemma 4. ⋄

emark 6 (Relation to (4)). The intuition, briefly discussed below
19), seems universal and makes a connection between (19) and
he averaged vector field studied in Kim et al. (2016), Lee and
him (2020) and Panteley and Loría (2017). For example, the
lended dynamics (4), which emerges when a linear high-gain
oupling law ui(t, νi) = kνi (k ≫ 1) is used, can also be derived
y (19). That is, imagine that k is pushed towards infinity so that
he states xi are synchronized to ξ and the vector fields are also
ynchronized to fs, i.e., fi(t, ξ ) + kνi = fs, for all i ∈ N . Then, fs
hould satisfy

∑N
i=1(fs − fi(t, ξ )) ≡ 0 by the algebraic constraint∑N

i=1 νi ≡ 0. The solution fs is (4). ⋄

Our argument that emergent dynamics (18) approximates the
synchronized behavior of the network (1) coupled via (3) is based
on the following assumption.

Assumption 5 (Emergent Behavior). For all i ∈ N : (a) ∂ fi/∂t :

[t0,∞) × R → R is bounded on each compact subset of R
uniformly in t ∈ [t0,∞), (b) γi is continuously differentiable on
(0, 1), (c) there exists λψ > 0 such that |ψ̇i(t)| ≤ λψψi(t), for all
t ≥ t0, and (d) there exists rψ > 0 such that ψi(t) ≤ rψ minj ψj(t),
or all t ≥ t0. ⋄

Note that condition (d) of Assumption 5 is not a restriction if
there exists c such that 0 < c ≤ ψi(t) ≤ ψ̄ , for all t ≥ t0 and
∈ N .

heorem 5. Under Assumptions 1–5, assume the following:
7

• There are (normalized) performance functions {ψ̄i} satisfying
Assumptions 3 and 5 which are normalized 3 as |ψ̄i(t)| ≤ 1,
for all t ≥ t0 and i ∈ N , under which the emergent dynamics
(18) is contractive; that is, there exists c > 0 such that
∂ fem(t, ξ )
∂ξ

≤ −c, ∀t ≥ t0, ξ ∈ R. (22)

• The initial condition x(t0) = col(x1(t0), . . . , xN (t0)) of the
system (1) belongs to a compact set C0 ⊂ RN .

With {ψ̄i}, let {ψi}t1,ε be a (parametrized) set of performance func-
tions, where t1 > t0 and ε > 0, such that

(1) there exists d > 0 such that, for all i ∈ N ,

max
x∈C0

|νi| + d = max
x∈C0

⏐⏐⏐⏐⏐⏐
∑
j∈Ni

αij(xj − xi)

⏐⏐⏐⏐⏐⏐ + d < ψi(t0)

(2) ψi(t) = εψ̄i(t), for all t ∈ [t1,∞) and i ∈ N .

Then, for each η > 0 and τ > 0, there exists ε∗ > 0 such that

|xi(t) − ξ (t)| ≤ η, ∀t ≥ t1 + τ , ∀i ∈ N

here

• x is the solution to (1) and (3) from an initial condition x(t0) ∈

C0, with any choice of {ψi}t1,ε such that 0 < ε ≤ ε∗,
• ξ is the solution to4 (18) from the initial condition ξ (t1 +τ ) =

(1/N)
∑N

i=1 xi(t1 + τ ).

If, in addition, limt→∞ ψ̄i(t) = 0, for all i ∈ N , then we further
ave

lim
→∞

|xi(t) − ξ (t)| = 0, ∀i ∈ N . ⋄

The proof is given in Appendix A.
We emphasize that stability of individual agents are not re-

uired as long as the emergent dynamics is stable as in (22).

emark 7 (Point-Wise Convergence). Note also that, according to
ppendix A, even without the contractive assumption (22), we
an show point-wise convergence; for each t > t1, we have

lim
→0
µi

(
νi(t)
ψi(t)

)
= fem(t, xi) − fi(t, xi), i ∈ N ,

which verifies our intuition that the µi term compensates the
heterogeneity to yield the emergent dynamics (18). ⋄

For further utility, we also note the following theorem.

heorem 6. In addition to Assumptions 1–5, assume that |νi(t0)| <
ψi(t0) and limt→∞ ψi(t) = 0, for all i ∈ N , and that the emergent
ynamics (18) is contractive. If the solution xi(t) of (1) with (3), i ∈

, is uniformly bounded, i.e., there exists Mx such that |xi(t)| ≤ Mx,
or all t ∈ [t0,∞) and i ∈ N , then the steady-state behavior of the
etwork follows that of the emergent dynamics, i.e.,

lim
→∞

|xi(t) − ξ (t)| = 0, i ∈ N ,

here ξ (·) is the solution of the emergent dynamics (18) with some
nitial condition ξ (t0) ∈ R.5 ⋄

3 The condition |ψ̄i(t)| ≤ 1 does not restrict the class of performance
unctions because, from (19), scaling all the performance functions with a same
onstant does not change the emergent dynamics (18).
4 Note that the emergent dynamics (18) by {ψ̄i} and by {ψi} are the same

after t1 .
5 Note that the initial condition ξ (t0) is irrelevant in the statement of
heorem 6, as any two trajectories of the emergent dynamics (18) asymptotically
onverge to each other by the assumption that (18) is contractive.
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roof. By Theorem 3, there exists δ > 0 such that |νi(t)/ψi(t)| ≤

−δ for all t ≥ t0 and i ∈ N . Then, by Lemma 8 and Appendix A.1,
the proof concludes. □

Now, given the characterization of the emergent dynamics
(18), and given the analysis which shows that heterogeneous
agents (1) under node-wise funnel coupling (3) behaves accord-
ingly with the emergent dynamics when the performance func-
tion is sufficiently narrow, we can, for instance, construct a het-
erogeneous network achieving a specific purpose as noted in the
Introduction, if the emergent dynamics is contractive. Note that
under the assumption that all agents use the same funnel ψi = ψ

hen the emergent dynamics (18) only depend on the individual
ector field fi and the coupling function µi for all i ∈ N , and
hus, can be designed prior without knowing the performance
unction and the network topology. This scheme of constructing a
etwork with the desired collective behavior is first introduced in
ee and Shim (2020) and has many interesting applications. Since
he blended dynamics (4) introduced in Lee and Shim (2020)
which corresponds to the emergent dynamics in this paper)
akes clearly different form to the emergent dynamics (18), a new
pplication might occur. In fact, for any collection of coupling
unctions µi, the function hψµ can never be linear, i.e., for each
t ≥ t0 and col(a1, . . . , aN ) ∈ RN there exists col(f1, . . . , fN ) ∈ RN

such that hψµ (t, f1, . . . , fN ) ̸=
∑N

i=1 aifi. In this regard, we further
inspect the properties of the emergent dynamics (18), especially
the properties of the function hψµ in the following section.

4. Discussions on the emergent dynamics

4.1. Numerical integration

If the vector fields fi are differentiable, then the solution ξ
of the emergent dynamics (18) can be numerically obtained by
the fact that the time derivative of hψµ (t, f1, . . . , fN ), which is the
solution to (19), is again a function of known quantities like ψi,
µi, and fi. In particular, by invoking the Implicit Function Theorem
to (19), we have

∂hψµ
∂ fi

(t, f1, . . . , fN ) =
ψi(t)(µ−1

i )′(hψµ − fi)∑N
j=1 ψj(t)(µ−1

j )′(hψµ − fj)

and
∂hψµ
∂t

(t, f1, . . . , fN ) = −

∑N
j=1 ψ̇j(t)µ−1

j (hψµ − fj)∑N
j=1 ψj(t)(µ−1

j )′(hψµ − fj)
.

herefore, if we let χ = hψµ (t, f1(t, ξ ), . . . , fN (t, ξ )), then

ξ̇ = χ

χ̇ =

∑N
j=1 ψj(t)(µ−1

j )′(χ − fj(t, ξ ))
[
∂ fj
∂t (t, ξ ) +

∂ fj
∂ξ

(t, ξ )χ
]

∑N
j=1 ψj(t)(µ−1

j )′(χ − fj(t, ξ ))

−

∑N
j=1 ψ̇j(t)µ−1

j (χ − fj(t, ξ ))∑N
j=1 ψj(t)(µ−1

j )′(χ − fj(t, ξ ))
(23)

ith initial value ξ (t0) and χ (t0) = hψµ (t0, f1(t0, ξ (t0)), . . . ,
N (t0, ξ (t0))).

Note that when ψi = riψ (see Remark 5) the partial derivative
of hψµ with respect to time is zero and the dynamics is further
simplified.

Example 3. Let us consider the network used in Shim and Trenn
(2015), which consists of five agents of the form:

ẋi = (−1 + δi)xi + ci(t) + µi(νi/ψ(t))

ci(t) = 10 sin t + 10m1
i sin(0.1t + θ1i ) + 10m2

i sin(10t + θ2i )
8

Fig. 3. Reproduced simulation from Shim and Trenn (2015) with the solution
to (24) plotted as a black dotted curve (behind the colored trajectories of each
agent), which clearly predicts the synchronized behavior. The distinct black
dashed curve is the solution of averaged dynamics ṡ = (1/5)

∑5
i=1 fi(t, s) which

is different from the synchronized behavior. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

where µi(s) = s/(1 − |s|), ψ(t) = 2 + 38e−t , and δi, m
q
i and θ qi

re some constants. Since all the performance functions are the
ame, (23) simply becomes

ξ̇ = χ (24)

˙ =

∑N
i=1[(−1 + δi)χ + ċi]/(1 + |χ + (1 − δi)ξ − ci|)2∑N

i=1 1/(1 + |χ + (1 − δi)ξ − ci|)2

nd the corresponding simulation results are shown in Fig. 3. ⋄

.2. Design of emergent dynamics

Let us now discuss how to utilize the flexibility of choosing µi
nd ψi towards achieving a desired emergent behavior.

.2.1. Electing a leader by designing ψi
From Eq. (19) it is seen that, if ψi∗ (t) is much larger than all

thers ψj(t), then the solution h tends to fi∗ . This means that, in
he situation when the agent i∗ wants to become the leader of the
etworked system, the function ψi∗ can be taken sufficiently large
o that the emergent dynamics becomes similar to ξ̇ = fi∗ (t, ξ ).
nder Theorems 5 or 6, the collective behavior of the network
ecomes similar to the behavior of agent i∗.

.2.2. Effect of locally linear µi
If a particular behavior is desired for a group of heterogeneous

ulti-agent system, the behavior can be achieved by suitably
esigning the emergent dynamics and by Theorems 5 or 6. And
he design becomes easier if the emergent dynamics is simply
linear combination of individual node dynamics, like in (4).

See Lee and Shim (2020) for a few design examples by (4).)
ven with the nonlinear coupling µi, this is possible if µi, i ∈

, are locally linear. Suppose that (4) is stable and ξ (t) of (4)
emains in a certain compact set [−Mx,Mx] ⊂ R. Let Mf :=

upi,t,|x|≤Mx |fi(t, x)| and take

i(s) =

{
4Mf s, if |s| < 0.5,
4Mf s +

s
1−|s| − 4s|s|, if |s| ∈ [0.5, 1),

for all i ∈ N . Then, µ−1
i is linear in the interval [−2Mf , 2Mf ].

Now, let all the performance functions be identical as ψi = ψ .
Then, (19) becomes

0 =

N∑
µ−1

i (hψµ − fi(t, ξ )) =

N∑ hψµ − fi(t, ξ )
4M
i=1 i=1 f
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ecause hψµ − fi(t, ξ ) ∈ [−2Mf , 2Mf ] by (20). It is now clear that,
or all ξ ∈ [−Mx,Mx],

ψ
µ (t, f1(t, ξ ), . . . , fN (t, ξ )) =

1
N

N∑
i=1

fi(t, ξ ).

emark 8. In Lee and Shim (2020), a linear coupling of the
orm ui = kνi is used, which yielded several limitations. The
onvergence is semi-global and practical, and the threshold for
he gain k depends on the global information such as network
tructure. On the contrary, the proposed funnel coupling does not
ely on such global information, leads to asymptotic convergence,
nd can be made pseudo-global as discussed in Remark 2. ⋄

emark 9. In Shim and Trenn (2015), the coupling function
(s) = κs/(1 − |s|) is used with an observation that, when the
arameter κ gets larger, the synchronized behavior gets closer to
he behavior of (4). This observation can now be explained by the
act that µ−1(u) = u/(κ + |u|) gets more linear in a local region
hen κ gets larger. ⋄

.2.3. Finding median agent by µi
For a collection F = {(fi, ψi) : i ∈ N } where fi is a number and

ψi > 0 is a weight, the weighted median is defined as a number
that belongs to the set

MF =

⎧⎪⎨⎪⎩
{fsj}, if ∃j ∈ N ,

∑j
k=1 ψsk > ψhalf

and
∑j−1

k=1 ψsk < ψhalf,

[fsj , fs(j+1) ], if ∃j ∈ N ,
∑j

k=1 ψsk = ψhalf,

where ψhalf := (1/2)
∑N

i=1 ψi and {sk} is the rearrangement of the
sequence {1, . . . ,N} such that fs1 ≤ fs2 ≤ · · · ≤ fsN . Then, there
are finitely many index sets K ⊆ N such that

∑
i∈K ψi > ψhalf.

Take δ > 0 so that it holds for all such sets K that∑
i∈K

ψi ≥

(
1
2

+ δ

)∑
i∈N

ψi. (25)

ow, for any η > 0 and ε such that 0 < ε < 4δ/(2δ+1), consider
n equation
N∑
i=1

ψiµ
−1
i (h − fi) = 0 (26)

here µ−1
i (s) is any function satisfying

−1
i (s) ≥ 1 − ε, s ≥ η,

−1
i (s) ≤ −1 + ε, s ≤ −η.

(27)

hen both ε and η are small, this function looks like a signum
unction.

emma 7. The solution h to (26) satisfies |h|MF ≤ η. ⋄

The proof is found in Appendix B. Based on the lemma, the
mergent dynamics (18) can be made arbitrarily close to a
eighted median of individual vector fields fi. This is useful when,

or example, one is interested in synchronization of a multi-
gent system consisting of mostly identical agents but with a few
utliers, and the effect of those outliers should be rejected. (Refer
o Lee, Kim and Shim (2020b) to see how median operation can
e used for rejecting malicious attack in multi-agent setting.)

xample 4. Suppose that individual agent contains their own
alue f ∗

i , and let us design a network that asymptotically finds
median of the data {f ∗

i }. By taking identical ψi(t) = ψ(t), the
eighted median M ∗ becomes the standard median, and thus,
F

9

we can take δ = 1/(2N) and ε < 2/(N + 1). Let µi, i ∈ N , satisfy
(27), and let ψ satisfy limt→∞ ψ(t) = 0 and Assumptions 3 and
5. Then, the proposed multi-agent system

ẋi(t) = f ∗

i − xi(t) + µi

(
νi(t)
ψ(t)

)
, xi(t0) = x0i , (28)

ensures asymptotic synchronization by Theorem 2. Moreover,
since the solution xi(t) are uniformly bounded (which can be
shown by a similar argument as the proof of Lemma 1), The-
orem 6 ensures that the steady-state behavior of the network
follows that of the contractive emergent dynamics

ξ̇ (t) = hψµ (f
∗

1 − ξ (t), . . . , f ∗

N − ξ (t))

= hψµ (f
∗

1 , . . . , f
∗

N ) − ξ (t)

where hψµ (f ∗

1 , . . . , f
∗

N ) is the solution to (26), because µ−1
i (h−fi) =

µ−1
i ((h − ξ ) − (fi − ξ )). Since ξ (t) converges to the constant

hψµ (f ∗

1 , . . . , f
∗

N ), which can be made arbitrarily close to a median
of {f ∗

i } as shown in Lemma 7, the proposed scalar network finds a
median with arbitrary precision. Note that the design can be done
in a fully decentralized manner, with the only prior agreement on
ε and η, and that the median can be found without communicat-
ing the values f ∗

i to the neighbors, hence preserving privacy and
increasing security. ⋄

5. Conclusion

This paper introduces the funnel coupling law which guar-
antees synchronization for a heterogeneous multi-agent system
under only mild assumptions. Some sufficient conditions which
guarantee boundedness of the inputs are also provided, and the
analysis on the emergent collective behavior that appears as we
enforce synchronization by the proposed funnel coupling law has
been conducted. In fact, the paper introduced emergent dynamics
that can illustrate the synchronized behavior of the whole net-
work, and from its nonlinear structure, some new applications
have been discovered, e.g., distributed median solver. Our future
work is to extend our result to its vector counterpart, hence
utilizing its interesting features, and to further derive useful ap-
plications. Consideration of unknown input gain that may depend
on time and state as in conventional funnel control is also of our
future interest.

Appendix A. Proof of Theorem 5

For the proof, we define two new variables xs ∈ R and y ∈

RN−1 as

xs :=
1
N

N∑
i=1

xi

y := −
1
ψ(t)

ΛR⊤

⎡⎢⎣x1
...

xN

⎤⎥⎦ −
1
ψ(t)

R⊤

⎡⎢⎣ψ1(t)µ−1
1 (f sem − f s1 )
...

ψN (t)µ−1
N (f sem − f sN )

⎤⎥⎦
where ψ(t) := mini ψi(t), the matrices Λ and R are defined
around (8), and f sem and f si denote fem(t, xs) and fi(t, xs), respec-
ively. Then, it always holds that

y∥ ≤ 2rψ
√
N (A.1)

which can be seen from the facts that ΛR⊤x = (R⊤R)ΛR⊤x =

R⊤Lx = −R⊤col(ν1, . . . , νN ), |νi(t)| < ψi(t), ψi(t)/ψ(t) ≤ rψ ,
R∥ = 1, and |µ−1

i (a)| ≤ 1, for all a. In addition, it can be seen
hat
ψ(t)

Riy =
νi(t)

− µ−1
i

(
f sem − f si

)
(A.2)
ψi(t) ψi(t)
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ecause RiR⊤
= e⊤

i − (1/N)1⊤

N where ei is the ith elementary
ector, and

∑N
i=1 ψi(t)µ−1

i (f sem − f si ) = 0 by the definition of fem.
ow, we obtain

˙s = fem(t, xs) +
1
N

N∑
i=1

[fi(t, xi) − fi(t, xs)]

+
1
N

N∑
i=1

[
µi

(
ψ(t)

ψi(t)
Riy + µ−1

i (f sem − f si )
)

−µi
(
µ−1

i (f sem − f si )
)]

(A.3)

nd

˙ =
ψ̇

ψ2ΛR⊤

⎡⎢⎣x1
...

xN

⎤⎥⎦ −
1
ψ
ΛR⊤

⎡⎢⎣ f1(t, x1) − f1(t, xs)
...

fN (t, xN ) − fN (t, xs)

⎤⎥⎦

−
1
ψ
ΛR⊤

⎡⎢⎢⎢⎣
µ1

(
ψ

ψ1
R1y + µ−1

1 (f sem − f s1 )
)

− µ1
(
µ−1

1 (f sem − f s1 )
)

...

µN

(
ψ

ψN
RNy + µ−1

N (f sem − f sN )
)

− µN
(
µ−1

N (f sem − f sN )
)
⎤⎥⎥⎥⎦

− R⊤

⎡⎢⎢⎢⎣
ψψ̇1−ψ̇ψ1

ψ2 µ−1
1 (f sem − f s1 )
...

ψψ̇N−ψ̇ψN

ψ2 µ−1
N (f sem − f sN )

⎤⎥⎥⎥⎦ − R⊤

⎡⎢⎢⎣
ψ1
ψ

d
dtµ

−1
1 (f sem − f s1 )
...

ψN
ψ

d
dtµ

−1
N (f sem − f sN )

⎤⎥⎥⎦
(A.4)

where we used R⊤col(f sem, . . . , f
s
em) = 0). Then, let us introduce

wo functions

(t) := |xs(t) − ξ (t)|, U(t) :=

√
y⊤(t)Λ−1y(t)

for which, V (t1 + τ ) = 0 from the assumption. In the following,
we will show that there is ε∗ > 0 such that, when 0 < ε ≤ ε∗,
we have that

V (t) ≤
η

2
, ∀t ≥ t1 + τ . (A.5)

his yields, with ψ̂(t) := maxi ψi(t) ≤ ε,

xi(t) − ξ (t)| ≤ V (t) + |xs(t) − xi(t)|

≤ V (t) + ∥RR⊤x(t)∥∞ <
η

2
+

√
N
ψ̂(t)
λ2

≤ η
(A.6)

or all t ≥ t1 + τ and i ∈ N , if ε∗
≤ λ2η/(2

√
N) (where we used

R⊤
= I − (1/N)1N1⊤

N and (8)).
In order to obtain (A.5), we will analyze V and U , and their

ime derivatives, for which a few bounds are useful. First, there
xists M0 such that

xi(t)| ≤ M0, ∀t ∈ [t0, t1 + τ ] (A.7)

hich can be found by Lemma 1 since x(t0) ∈ C0. We note thatM0
is independent of the choice of {ψi} (see the proof of Lemma 1).
Now, note that the solution ξ (t) of the emergent dynamics is
uniformly bounded for t ≥ t1 + τ . Indeed, it follows (from (22))
with v(t) := ξ 2(t)/2 that

v̇ = ξ (fem(t, ξ ) − fem(t, 0)) + ξ fem(t, 0)

≤ −cξ 2 + |ξ | sup
t≥t1+τ

|fem(t, 0)| =: −cξ 2 + |ξ |Mem.

Hence, |ξ (t)| ≤ max{|ξ (t1 + τ )|,Mem/c}, for all t ≥ t1 + τ ,
nd since |ξ (t1 + τ )| = |xs(t1 + τ )| ≤ M0, we have |ξ (t)| ≤

ax{M0,Mem/c} =: Mξ . Here we make:
Temporary assumption: |xi(t)| ≤ Mx := Mξ + η, for all t ≥ t0.
This assumption trivially holds both for t0 ≤ t ≤ t1 + τ by

A.7), and for a certain amount of time after t + τ . The latter
1

10
s because |xi(t1 + τ )| ≤ |xi(t1 + τ ) − ξ (t1 + τ )| + |ξ (t1 + τ )| ≤

/2 + Mξ = Mx − η/2 (the second inequality is from (A.6) with
≤ ε∗ since V (t1 + τ ) = 0). We will show that this period of

ime extends to infinity so that the temporary assumption turns
ut to be true.
Now, it follows from the temporary assumption that:

(i) there exist θf , Lf , Mf and δ1 > 0, such that for all a ∈

[−Mx,Mx], t ≥ t0, and i ∈ N ,

|fi(t, a)| ≤ Mf ,

⏐⏐⏐⏐∂ fi∂t (t, a)
⏐⏐⏐⏐ ≤ θf ,

⏐⏐⏐⏐∂ fi∂x (t, a)
⏐⏐⏐⏐ ≤ Lf ,⏐⏐µ−1

i (fem(t, a) − fi(t, a))
⏐⏐ ≤ 1 − 2δ1

in which, δ1 is independent of particular choice of {ψ̄i}

because mini fi(t, a) ≤ fem(t, a) ≤ maxi fi(t, a) by construc-
tion.

(ii) there exists δ2 > 0 such that⏐⏐⏐⏐ νi(t)ψi(t)

⏐⏐⏐⏐ ≤ 1 − δ2, ∀t ∈ [t0, t1 + τ ], i ∈ N (A.8)

with arbitrary performance functions ψi, which follows
from the following argument.
Let

ωi := fi(t, xi) + µi

(
νi

ψi(t)

)
+ λψxi,

from which, we have

ẋi = −λψxi + ωi.

Then, choose a time-varying index J(t) ∈ N such that
ωJ(t)(t) = maxi ωi(t) and ω̇J(t)(t) ≥ ω̇k(t) for all k ∈ N such
that ωk(t) = maxi ωi(t). The upper right Dini derivative of
ωJ(t)(t) satisfies

D+ωJ(t) =
∂ fJ(t)
∂t

+
∂ fJ(t)
∂x

[
ωJ(t) − λψxJ(t)

]
+ µ′

J(t)

(
νJ(t)

ψJ(t)

)
·

[
−
ψ̇J(t)

ψJ(t)
− λψ

]
νJ(t)

ψJ(t)

+ µ′

J(t)

(
νJ(t)

ψJ(t)

)
·

1
ψJ(t)

∑
j∈NJ(t)

αJ(t)j[ωj − ωJ(t)]

+ λψ
[
ωJ(t) − λψxJ(t)

]
.

By the definition of J(t), the third term is non-positive
if and only if νJ(t) ≥ 0, and the fourth term is always
non-positive. Therefore, we can conclude that either

D+ωJ(t) ≤
[
θf + λψLfMx + λ2ψMx

]
+

[
Lf + λψ

]
|ωJ(t)|

when νJ(t) ≥ 0, or from the definition of ωi,

ωJ(t) ≤ fJ(t)(t, xJ(t)) + λψxJ(t) ≤ Mf + λψMx

when νJ(t) < 0. By an analogous argument for the case
when ωJ(t)(t) = mini ωi(t), we can thus find Mω > 0 such
that

|ωi(t)| ≤ Mω, ∀t ∈ [t0, t1 + τ ], i ∈ N .

Now, there exists δ2 > 0 such that for all t ∈ [t0, t1 + τ ]
and i ∈ N ,⏐⏐⏐⏐ νi

ψi(t)

⏐⏐⏐⏐ ≤
⏐⏐µ−1

i

(
ωi − fi(t, xi) − λψxi

)⏐⏐
≤ µ−1

i

(
Mω + Mf + λψMx

)
≤ 1 − δ2.

(iii) Let δ := min{δ1, δ2}. Then, there exists Lµ such that⏐⏐µ′(a)
⏐⏐ ≤ L , ∀a ∈ [−1 + δ, 1 − δ], i ∈ N .
i µ
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emma 8. Under the temporary assumption, we have

V̇ ≤ −cV + MV ψ̂(t) + Lµ
√
λNU (A.9)

˙ ≤ −

(
γ λ2

ψ̂(t)
− λψ

)
U +

MU
√
λN

2
(A.10)

here MV := Lf
√
N/λ2 and MU > 0 (see (A.13)), whenever⏐⏐⏐⏐ νi(t)ψi(t)

⏐⏐⏐⏐ ≤ 1 − δ, ∀i ∈ N . ⋄

Proof. See Appendix A.2. □

Now, with

δη := min
{

cη
6Lµ

, δ, 3rψ

}
let ε∗ > 0 be such that

ε∗
≤ min

{
cη
6MV

,
MUλN

2γ λ2δη
,
γ λ2

2λψ
,
γ λ2δη

2MUλN

}

nd ε∗
≤

γ λ2τ

2 ln
(

4rψ
δη

√
NλN
λ2

)
here γ := mini γi(0) > 0. Then, from (A.1), we have U(t1) ≤

rψ
√
N/λ2. Since ψ̂(t) ≤ ε ≤ ε∗ for t ≥ t1, it can be shown that

inequality (A.10) implies

U(t1 + τ ) ≤
δη

√
λN
. (A.11)

ndeed, we have from (A.10),

(t1 + τ ) ≤ e−λετU(t1) +
MU

√
λN

2λε
here λε := γ λ2/(2ε) ≤ γ λ2/ε − λψ .
Now, we will show that the set

(t) ≤
δη

√
λN
, V (t) ≤

η

2
s positively invariant from t = t1+τ , which concludes our proof.

For this purpose, note first that U(t) ≤ δη/
√
λN implies

y(t)∥ ≤ δ, and V (t) ≤ η/2 ensures our temporary assumption,
rom which we get

νi(t)
ψi(t)

⏐⏐⏐⏐ ≤ 1 − δ, ∀i ∈ N ,

hence we have (A.9) and (A.10), when we are inside the corre-
sponding set.

So, assume that U(t) = δη/
√
λN and V (t) ≤ η/2, then we get

from (A.10),

U̇ ≤ −
γ λ2

2ε
δη

√
λN

+
MU

√
λN

2
< 0.

n the other hand, if U(t) ≤ δη/
√
λN and V (t) = η/2, then we

ave from (A.9),

˙ ≤ −c
η

2
+ MV ε + Lµ

√
λN

δη
√
λN

< 0,

hich makes the set positively invariant. □

.1. Asymptotic convergence

Now, if we have (A.9) and (A.10) for all t ≥ t0 with the
performance functions ψi such that limt→∞ ψi(t) = 0, i ∈ N ,
hen we can show that limt→∞ V (t) = 0, hence

lim |xi(t) − ξ (t)| = 0, ∀i ∈ N .

t→∞

11
In particular, we first have limt→∞ U(t) = 0 because other-
wise, there exists U > 0 such that U(t) ≥ U for all t ≥ t0, which
s a contradiction since we have

˙ ≤
MU

√
λN

2
−

(
γ λ2

ψ̂(t)
− λψ

)
U < −1

whenever U ≥ U for all t ≥ T with some finite but sufficiently
large T ≥ t0 because limt→∞ 1/ψ̂(t) = ∞.

Then, similarly, we can conclude that limt→∞ V (t) = 0 be-
cause otherwise, there exists V > 0 such that V (t) ≥ V for all

≥ t0, which is a contradiction since we have

˙ ≤ −cV + MV ψ̂(t) + Lµ
√
λNU(t) < −cV/2

whenever V ≥ V for all t ≥ T with some finite but sufficiently
large T ≥ t0 because limt→∞ ψ̂(t) = 0 and limt→∞ U(t) = 0.

.2. Proof of Lemma 8

From (A.2) and (A.8), it is seen that⏐⏐⏐⏐µi

(
ψ

ψi
Riy + µ−1

i (f sem − f si )
)

− µi
(
µ−1

i (f sem − f si )
)⏐⏐⏐⏐

≤ Lµ

⏐⏐⏐⏐ψψi
Riy

⏐⏐⏐⏐ ≤ Lµ∥y∥.

hen, we have by (A.1) and (A.3),

ẋs| ≤ Mf +
Lf
N

N∑
i=1

|xi − xs| + Lµ∥y∥

≤ Mf +
Lf

√
N

λ2
ψ + 2rψ

√
NLµ =: Ms.

(A.12)

imilarly,

˙ =
xs − ξ

|xs − ξ |
(ẋs − ξ̇ ) ≤ −cV + MV ψ̂(t) + Lµ∥y∥.

hich comes from the fact that the emergent dynamics (18) is
ontractive so that (xs − ξ )(fem(t, xs) − fem(t, ξ )) ≤ −c|xs − ξ |2.
his proves (A.9).
Now, let W := U2

= y⊤Λ−1y. Then,

˙ ≤ 2

⏐⏐⏐⏐⏐ ψ̇ψ
⏐⏐⏐⏐⏐
⎡⎢⎣W +

1
ψ

⏐⏐⏐⏐⏐⏐⏐y⊤Λ−1R⊤

⎡⎢⎣ψ1µ
−1
1 (f sem − f s1 )
...

ψNµ
−1
N (f sem − f sN )

⎤⎥⎦
⏐⏐⏐⏐⏐⏐⏐
⎤⎥⎦

+
2
ψ

∥y∥

√ N∑
i=1

|fi(t, xi) − fi(t, xs)|2

−
2
ψ

N∑
i=1

Riy
[
µi

(
ψ

ψi
Riy + µ−1

i (f sem − f si )
)

− µi
(
µ−1

i (f sem − f si )
)]

+ 2∥Λ−1y∥
√
N max

i

⏐⏐⏐⏐⏐ψi

ψ

d
dt
µ−1

i (fem(t, xs(t)) − fi(t, xs(t)))

⏐⏐⏐⏐⏐
+

2
ψ2 ∥Λ−1y∥

√
N2λψ ψ̂(t)2

≤
2N
λ2

(
λψ + Lf

)
rψ∥y∥ + 2λψW +

4
√
N

λ2
λψ r2ψ∥y∥

−
2
ψ

N∑
i=1

Riy
[
µi

(
ψ

ψi
Riy + µ−1

i (f sem − f si )
)

− µi
(
µ−1

i (f sem − f si )
)]

+ 2∥y∥

√
N
λ2

rψ max
i

⏐⏐⏐⏐ d
dt
µ−1

i (fem(t, xs(t)) − fi(t, xs(t)))
⏐⏐⏐⏐
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here the first inequality follows from the identity:

− y⊤R⊤x = y⊤Λ−1 (
−ΛR⊤x

)
= ψ(t)y⊤Λ−1y

+ y⊤Λ−1R⊤col(ψ1µ
−1
1 (f sem − f s1 ), . . . , ψNµ

−1
N (f sem − f sN )).

Now, note that, for a ̸= 0,

(µ−1
i )′(a) =

1
µ′

i(µ
−1
i (a))

=
1

γ ′

i (|µ
−1
i (a)|)|µ−1

i (a)| + γi(|µ−1
i (a)|)

≤
1
γi(0)

≤
1
γ

where the first equality follows by differentiating µi(µ−1
i (a)) = a

nd γ = mini γi(0). The assumption that γi is non-decreasing is
tilized for this derivation. Then, by the above inequality, we now
ave⏐⏐⏐⏐ d
dt
µ−1

i (fem(t, xs(t)) − fi(t, xs(t)))
⏐⏐⏐⏐

= (µ−1
i )′(f sem − f si ) ·

⏐⏐⏐⏐ d
dt

[fem(t, xs(t)) − fi(t, xs(t))]
⏐⏐⏐⏐

≤
1
γ

·

[
2Lf |ẋs(t)| + 2θf +

λψ

γ

]
where γ := min|a|≤1−2δ minj(µ−1

j )′(a) > 0, and (23) may be
elpful to digest the inequality.
Now, note that µi(b)−µi(a) = µ′

i(c)(b−a) with some c ∈ (a, b)
by the mean value theorem. Since µ′

i(c) = γ ′

i (|c|)|c| + γi(|c|) ≥

γi(0) ≥ γ , we have

(b − a)(µi(b) − µi(a)) ≥ γ (b − a)2

for all −∞ < a ≤ b < ∞. Therefore, we finally obtain

Ẇ ≤
2N
λ2

(
λψ + Lf

)
rψ∥y∥ + 2λψW −

2
ψ̂

N∑
i=1

γ (Riy)2

+ 2∥y∥

√
N
λ2

rψ
γ

[
2LfMs + 2θf +

λψ

γ
+ 2λψ rψγ

]
=: MU∥y∥ + 2λψW −

2
ψ̂
γ ∥y∥2 (A.13)

≤ MU

√
λNW + 2λψW −

2
ψ̂
γ λ2 W

here we used
∑N

i=1(Riy)2 = y⊤R⊤Ry = y⊤y. This proves
A.10). □

ppendix B. Proof of Lemma 7

Wewill prove that if |h|MF > η, then we have a contradiction.
o, without loss of generality assume that

> f + η, ∀f ∈ MF .

his ensures that the index set K ⊂ N , which consists of all the
ndexes i ∈ N such that h − fi > η, satisfies

i∈K

ψi >
1
2

∑
i∈N

ψi,

according to the definition of MF . Now, by the constraint (27),
we have

µ−1
i (h − fi) ≥ 1 − ε, ∀i ∈ K,

and this gives

0 =

N∑
ψiµ

−1
i (h − fi) ≥

∑
ψi(1 − ε) −

∑
ψi
i=1 i∈K i∈N\K

12
= (2 − ε)
∑
i∈K

ψi −
∑
i∈N

ψi

≥

[
(2 − ε)

(
1
2

+ δ

)
− 1

]∑
i∈N

ψi > 0

here the last term is positive by the definition of ε. □
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