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Abstract: In water distribution networks instantaneous changes in valve and pump settings
may introduces jumps and peaks in the pressure. In particular, a well known phenomenon in
response to the sudden closing of a valve is the so called water hammer, which (if not taken into
account properly) may destroy parts of the water network. It is classically modeled as a system
of hyperbolic partial differential equations (PDEs). After discussing this PDE model we propose
a simplified model using switched differential-algebraic equations (DAEs). Switched DAEs are
known to be able to produce infinite peaks in response to sudden structural changes. These
peaks (in the mathematical form of Dirac impulses) can easily be predicted and may allow for
a simpler analysis of complex water networks in the future. As a first step toward that goal, we
verify the novel modeling approach by comparing these two modeling techniques numerically
for a simple set up consisting of two reservoirs, a pipe and a valve.
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1 Introduction
The occurrence of hydraulic transients in the operation
of water distribution network is inevitable. Such tran-
sients are planned or accidental changes of the network
configuration. These sudden structural changes can have
dramatic effects in flow regimes, ranging from pump de-
fects to catastrophic pipeline failures. The flow of water in
pipes is usually model as system of nonlinear hyperbolic
balance laws (i.e. partial differential equations, PDEs), see
e.g. Izquierdo et al. (2004), where the sudden structural
changes lead to large peaks and fast transients in the
solution.

We propose to model such fast transients in the frame-
work of switched differential algebraic equation (switched
DAEs). This framework was originally introduced for mod-
eling electrical circuits (Trenn, 2012) and allows a precise
mathematical description of peaks and fast transients in
the form of Dirac impulses and jumps.

Our focus in this paper is on the so-called water hammer,
which results from sudden changes of velocity in pipelines
and can cause large pressures magnitudes. It is usually
created by rapidly closing valves, shutting off or restarting
pumps. Our goal is to show that these pressure peaks oc-
curring in the PDE simulations can be well approximated
by a suitable switched DAE model.

The paper is organized as follows. In Section 2 the water
network and its components are defined as a graph and the
mathematical models of the pipes and other components
(like reservoir and valves) are introduced. Section 3 pro-
vides a brief introduction to the some mathematical pre-
liminaries for system of conservations laws and switched
DAEs. In Section 4 we study in detail a simple water
network which exhibits a water hammer; in particular, we
derive the corresponding PDE model as well as a switched
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DAE model. In Section 5 a numerical comparison of the
PDE and switched DAE model are presented.

2 Water network modeling
The structure of a water network can be modeled as a
finite undirected graph (V,E) where V is the set of nodes
and E ⊆ V × V is the set of edges. Each edge e ∈ E
corresponds to a pipe of the water network and the nodes
v ∈ V are the connections or endpoints of pipes, including
junctions, pumps, valves, or reservoirs.

In the following we will describe the model of some
water network element. The two main physical quantities
involved in the descriptions are pressure and flow, whose
values at the end points of the pipes are related to each
other corresponding to the type of node. Furthermore, the
modeling of the flow in the pipes also involves density of
the water. Usually, water is assumed to be incompressible,
i.e. the density is assumed to be constant. However,
our focus is on modeling the water hammer effect and
for this it is necessary to take into account the (slight)
compressibility of water.

2.1 Models of water flow in pipe
The water flow in a pipe can be modeled in two different
ways depending on whether the compressibility of water
is taken into account or not. In order to study transient
phenomena like water hammer it is necessary to model
compressibility, in particular, density and mass flow be-
come space-dependent quantities. On the other hand, to
understand the qualitative behavior, in particular, in large
networks, it often suffices to model water as incompress-
ible fluid. We will briefly introduce both models in the
following.

2.1.1 Compressible flow in a pipe Following Wylie and
Streeter (1978) and Adami et al. (2012) we use the
following pressure law for compressible fluids :

P (ρ) = Pa +K
ρ− ρa
ρa

, (1)



where K > 0 is the so called bulk modulus, Pa > 0 is
the atmospheric pressure and ρa > 0 is the density at
atmospheric pressure. The bulk modulus is related to the
speed of sound c > 0 as follows:

c2 =
∂P

∂ρ
= K/ρa. (2)

Note that β := 1/K is the so called compressibility
coefficient.

We consider a completely filled pipe of length L > 0 with
mass density ρ(x, t) > 0 and mass flux q(x, t) ∈ R both
defined on [0, L] × R+. The compressible flow of water
in the pipe can be modelled by the balance law of the
following form (Herty et al., 2010, Sec. 2):

∂tρ+ ∂xq = 0,

∂tq + ∂x

(
q2

ρ
+ P (ρ)

)
= −cf

q |q|
2Dρ

,
(3)

with the pressure law P : R+ → R+ given by (1) and where
cf > 0 is the friction against the pipe wall and D > 0 is
the diameter of the pipe. The initial condition for (3) is:

q(x, 0) = q0(x) and P (ρ(x, 0)) = p0(x) x ∈ [0, L], (4)

for some initial flow q0 : [0, L] → R and some initial
pressure p0 : [0, L]→ R+. Note that the initial condition is
given implicitly in terms of the pressure and not explicitly
in terms of the density. The reason is that the pressure
is the more relevant physical quantity, in particular, when
the pipes are coupled with other water network elements.
When the individual pipes are connected with other ele-
ments of the overall water distribution network, additional
boundary conditions will be imposed.

2.1.2 Quasi stationary water flow model After some initial
transient behaviour, the water flow in the pipe may be
assumed to get stationary, i.e. the flow is location inde-

pendent and we write Q(t) = q(x,t)
A (mass flux is mass flow

per unit area), x ∈ [0, L] and where A = πD2/4 is the area
of the pipe. Furthermore the density is assumed constant
in space and time, i.e. ρ(x, t) = ρ for (x, t) ∈ [0, L] × R+
and the pressure variable p(x, t) is not coupled to the
density via (1) anymore (in particular, water is considered
incompressible). The remaining dynamical behavior in the
variables Q(t), P0(t) = p(0, t) and PL(t) = p(L, t) can be
described by the following ODE (Jansen and Pade, 2013;
Jansen and Tischendorf, 2014; Chaudhry and Mays, 2012):

dQ

dt
+
A

L
(PL − P0) +

cfQ |Q|
2DAρa

= 0. (5)

2.2 Other network elements
2.2.1 Reservoir A reservoir is a node in the water network
graph with arbitrary mass flow but with given pressure. In
particular, connecting a pipe with its left side to a reservoir
adds a boundary condition for p(0, t) in the PDE model
(3) and constraints the variable P0 in the ODE-model (5).

PD

(PV , qV )

Fig. 1. Valve in combination with reservoir
2.2.2 Valve For simplicity, a valve here is modeled in
combination with a reservoir, see Figure 1, which imposes
the following algebraic constraints.

valve open: PV = PD, ; valve closed: QV = 0,

where PV , QV denotes the pressure and flow through the
valve and PD is the reservoir pressure. In the next sec-
tion we present some general mathematical preliminaries
related to (3) and (5).

3 Preliminaries
3.1 Systems of hyperbolic balance laws
We consider systems of balance laws in one space dimen-
sion of the following form

Ut + (F (U))x = S(U), on [a, b]× R+, (6a)

U(x, 0) = U0(x), x ∈ Ω, (6b)

Ψ1(t, U(t, a)) = 0, t > 0, (6c)

Ψ2(t, U(t, b)) = 0, t > 0, , (6d)

where U : Ω× R+ → U ⊆ Rn with Ω := [a, b] ⊆ Rn being
the domain and the open connected set U ⊆ Rn being the
range of the problem, F : U → Rn is the flux function,
S : U → Rn is the source term, U0 : Ω → U is the initial
data and Ψi : R+ × U → Rbi , i = 1, 2, b1 + b2 = n, are
the time-varying, implicit boundary conditions. If the flux
F is differentiable, then the PDE (6a) can be written in
quasi-linear form by

Ut +A(U)Ux = S(U), (7)

where A(u) := DF (u) for u ∈ U and DF denotes the
Jacobian of F .

The system (6) does not necessarily admit a classical
(i.e. differentiable) solution, even for “well-behaved” initial
data U0. Hence, weak solutions will be considered defined
as follows (c.f. Bressan (2013)).

Definition 1. (Weak solution). A function U : Ω × R+ →
U , is a weak solution of (6a) if, and only if, U , F (U) and
S(U) are locally integrable and for every φ ∈ C1(R+ ×
Ω→ R) with compact support, one has∫

R+×Ω

(Uφt + F (U)φx)dxdt = −
∫
R+×Ω

S(U)φdxdt. (8)

The boundary values are assumed to be satisfied in the
Godunov/trace sense, i.e. see [Colombo and Garavello
(2008),Colombo and Garavello (2006)] for more details.

When considering weak solutions of (6) uniqueness of
solutions cannot be expected in general. Under certain
assumptions, uniqueness can be recovered by imposing a so
called entropy condition as follows (c.f. Freistuhler (1998)).

Definition 2. (Entropy solution). A differentiable function
η ∈ C1(Rn → R) is called entropy of the PDE (6a) if there
exists an entropy flux q ∈ C1(Rn → R) such that

Dη(u) ·DF (u) = Dq(u) ∀u ∈ U . (9)

For a given entropy η with corresponding entropy flux q,
a weak solution U of (6a) is called entropy solution if it
additionally satisfies

η(U)t + q(U)x ≤ Dη(U) · S(U)

in a weak sense.

Remark 3. For any classical (i.e. differentiable) solution U
of (6a) it is easily seen that (9) implies

η(U)t + q(U)x = Dη(U) · S(U).

For existence and uniqueness of weak entropy solutions of
the initial/boundary value problem (6) the following well-
posedness assumptions are usually imposed (c.f. Borsche
et al. (2012)):

(B-I) Bounded variation
The initial date U0 is a function of bounded variation
with sufficiently small total variation.

(B-II) Strict hyperbolicity
The system of balance laws (6a) in quasi-linear form
(7) is strictly hyperbolic, i.e., for every u ∈ U ⊆ Rn,
the Jacobian matrix A(u) of the flux function F



has n real, distinct eigenvalues denoted by λi(u),
i = 1, · · · , n and are ordered as follows:

λ1(u) < λ2(u) < λ3(u) · · · < λn(u).
(B-III) Genuine nonlinearity and linear degeneracy

For a strictly hyperbolic balance law (6a) consider
the n eigenvalue/eigenvector pairs (λj(u), rj(u)), j =
1, . . . , n with differentiable map u 7→ λj(u). Assume
that for each j either (λj(·), rj(·)) is genuinely non-
linear, i.e.

Dλj(u) · rj(u) 6= 0, ∀u ∈ Rn,
or (λj(·), rj(·)) is linearly degenerate, i.e.

Dλj(u) · rj(u) = 0, ∀u ∈ Rn.
(B-IV) S is locally Lipschitz.
(B-V) Feasible boundary conditions

For a strictly hyperbolic balance law (6a) assume that
λb2(u) < 0 < λb2+1 ∀u ∈ U

and denote with r1
+(u), r2

+(u), . . ., rb1+ (u) the col-
lection of eigenvectors of A(u) corresponding to the
positive eigenvectors of A(u). Assume that for all
u ∈ U tho following feasibility assumption for the
left boundary condition holds (c.f. Colombo and Gar-
avello (2006) for feasibility of general coupling condi-
tions):

∀u ∈ U : det
[
DuΨ1(t, u) ·R+(u)

]
6= 0, (10a)

where R+(u) := [r1
+(u), . . . , rb1+ (u)]. To formulate a

feasibility assumption for the right boundary con-
dition, we can substitute the space variable x by
a + b − x in (6) with variable U : R+ × Ω → U
instead of U . For u ∈ U , let r1

−(u), . . . , rb2− be the
eigenvectors corresponding to the positive eigenvalues
of A(u) = −A(u). With R−(u) := r1

−(u), . . . , rb2− (u)]
we assume
∀u ∈ U : det

[
DuΨ2(t, u) ·R−(u)

]
6= 0. (10b)

3.2 Switched DAEs

A switched linear differential algebraic equations (DAEs)
is of the form

Eσẋ(t) = Aσx(t) + f(t) (11)

where (Ep, Ap) ∈ Rn×n, p ∈ {1, · · · ,P}, P ∈ N and
σ : R → {1, · · · ,P} is a piecewise constant switching
signal, which is assumed to be right continuous and to have
locally finitely many jumps. For existence and uniqueness
of solutions of (switched) DAEs, we need the following
regularity notion of matrix pairs.
Definition 4. (Regularity of a matrix pair). A matrix pair
(E,A) ∈ Rn×n × Rn×n is said to be regular, if the
polynomial det(sE −A) is not the zero polynomial.
Theorem 5. (Trenn (2012, Cor. 6.5.2)). Consider the
switched DAE (11) with regular matrix pairs (Ep, Ap),
p ∈ {1, · · · P} and assume σ(−∞,0) is constant. Then for
every piecewise-smooth f there exists a globally defined
solution x in a distributional sense which is uniquely
determined by x(0−). In particular, jumps and Dirac
impulses at the switching times are uniquely determined.

It is not possible to view (11) as an equation in the general
space of distributions in the sense of Schwartz (1957, 1959);
in fact, it is necessary to restrict the solution space to the
so called space of piecewise-smooth distributions DpwC∞ ,
see Trenn (2009a,b) for details.

For analyzing switched DAEs and obtaining explicit so-
lution formulas for (11), the following quasi-Weierstrass
form (QWF) is helpful see [QWF, c.f. Weierstraß (1868)].

Proposition 6. A matrix pair (E,A) ∈ Rn×n × Rn×n is
regular if and only if there exist invertible transformation
matrices S, T ∈ Rn×n which put (E,A) into QWF [QWF,
c.f. Weierstraß (1868)]

(SET, SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
where N ∈ Rn2×n2 , with 0 ≤ n2 ≤ n is a nilpotent matrix,
J ∈ Rn1×n1 with n1 := n−n2 is some matrix and I is the
identity matrix of the appropriate size. Moreover, index of
the linear DAE is the minimum value ν for which Nν = 0.
The notion of the index of a DAE can be generlized to
nonlinear DAEs in the form of the differential index see
Borutzky (2009) for details.

4 Analysis of a simple water network
We want to study a simple water network consisting of
an upstream reservoirs with given pressure PU , one pipe
of length L and a valve combined with a downstream
reservoir with pressure PD < PU , see Figure 2. This
setup is used in Chen et al. (2015), to study optimal
boundry condition to mitigate water hammer, and in
Szyd lowski (2002) for the construction of accurate finite
volume scheme. Here, this setup is used to compare the
novel modeling approach via switched DAEs with the more
classical PDE models with regard to the water hammer
effect.

PU

PD

PV

x = 0 x = L

Fig. 2. Simple set up for water hammer

It is well known that such a configuration will result in a
water hammer if the valve is instantaneously closed. Our
goal is to compare the PDE model and the switched DAE
model for this configuration with respect to capturing
the water hammer effect. For that we will first discuss
the solution concepts for both approaches for the specific
example water network.

4.1 PDE solution framework

The balance law in the pipe is given by (3), i.e. in terms
of (6a) we have

Ω = [0, L], U ⊆ R+ × R, U(x, t) =
(
ρ(x,t)
q(x,t)

)
,

and, for u = (ρ, q) ∈ U ,

F (u) =
( q
q2

ρ +P (ρ),

)
, S(u) =

(
0

−cf q |q|
2Dρ

)
,

with pressure law (1). The initial condition is given by
(4) where the initial density ρ0 is induced by the usually
considered initial pressure p0 via the invertible pressure
law. The boundary conditions in terms of (6c),(6d) are

Ψ1(t, (ρ, q)) = P (ρ)− PU , ∀t ∈ R+,

and

Ψ2(t, (ρ, q)) =

{
P (ρ)− PD, t ∈ (0, tS),
q, t > tS ,

(12)

Note that the discontinuity induced by the switch only
occurs in the boundary condition, therefore wellposedness
can be studied for each mode individually as the PDE can
be “restarted” at time t = tS with the initial value given
by the final value of the solution on the time interval [0, tS ];
in particular, the wellposedness conditions (B-II), (B-III),
(B-IV) can be checked independently of the valve’s state:



(B-I) For the numerical simulations we will impose con-
stant initial conditions, which has zero total variation.

(B-II) The Jacobian of the flux function in (3) is given by

A(ρ, q) =
(

0 1

− q2
ρ2

+P ′(ρ) 2 qρ

)
and invoking the pressure law (1) we see that P ′(ρ) =
K
ρa

> 0 independently of ρ. Hence the eigenvalues of

A(ρ, q) are

λ1/2(ρ, q) =
q

ρ
±

√
K

ρa
.

Consequently, λ1(u) > λ2(u) for all u = (ρ, q) ∈
U and hence (3) with pressure law (1) is strictly
hyperbolic.

(B-III) The eigenvectors of A(u) are

r1(u) =
(

1
λ1(u)

)
, r2(u) =

(
1

λ2(u)

)
.

Hence

Dλ1(u) · r1(u) =

[
− q

ρ2
,

1

ρ

](
1

q
ρ+
√

K
ρa

)
=

1

ρ

√
K

ρa
6= 0 ∀u = (ρ, q) ∈ U

and, analogously,

Dλ2(u) · r2(u) = −1

ρ

√
K

ρa
6= 0 ∀u = (ρ, q) ∈ U .

Consequently, genuine nonlinearity is established.
(B-IV) Clearly S is locally Lipschitz continuous.
(B-V) In order to have sign-definite eigenvalues, i.e.

λ1(u) > 0 > λ2(u) ∀u ∈ U ,
we have to restrict our attention to the so-called
subsonic case, i.e.

U ⊆

{
(ρ, q) ∈ R+ × R

∣∣∣∣∣ qρ<
√
K

ρa

}
.

In that case we have R+(u) = [r1(u)] and

DuΨ1(t, u) ·R+(u) = [ P ′(ρ) 0 ]
[

1
λ1(u)

]
= P ′(ρ) 6= 0,

i.e. condition (10a) is satisfied for all u = (ρ, q) ∈ U
and t > 0.

For the right boundary consider R−(u) = [r2(u)]
and we have

DuΨ2(t, u) ·R−(u)

=

{
[ P ′(ρ) 0 ]

[
1

λ2(u)

]
= P ′(ρ) 6= 0, t ∈ (0, tS),

[0 1]
[

1
λ2(u)

]
= λ2(u) 6= 0, t > tS ,

for all u = (ρ, q) ∈ U ; hence, due to the restriction to
the subsonic case, condition (10b) is satisfied.

Altogether, we can expect numerical simulations to result
in reasonable approximations of solutions of the corre-
sponding initial/boundary value problem (6) as long as
the solution remain in the subsonic-case.

4.2 Switched DAE framework

The quasi-stationary model (5) together with the valve-
depending boundary conditions (valve open on [0, tS) and
valve closed on [tS ,∞)) for a setup as shown in Figure 2
leads to a switched DAE of the form

Eσẋ = Aσx+ f + gσ(x), (13)

where x = (Q,P0, PL)>, σ(t) =

{
1, t ∈ [0, tS),
2, t ≥ tS ,

and

E1 = E2 =
[

1 0 0
0 0 0
0 0 0

]
, A1 =

[
0 c1 −c1
0 1 0
0 0 1

]
, A2 =

[
0 c1 −c1
0 1 0
1 0 0

]
,

f =

{
(0,−PU ,−PD)>, on [0, tS),

(0,−PU , 0)>, on [tS ,∞),
, g1(x) = g2(x)

= g(x) =
(−c2Q|Q|

0
0

)
, c1 =

A

L
> 0, c2 =

cf
2DAρa

> 0


(14)

Note that the switched DAE (13) contains a nonlinear
term gσ(x) and therefore the distributional solution frame-
work recalled in Section 3.2 cannot be applied directly.
Nonlinear switched DAEs were investigated in Liberzon
and Trenn (2012), but this approach excludes Dirac im-
pulses in x by definition, because if a Dirac impulse occurs
in the solution x of (13) (which we actually desire to
capture the water hammer effect) then it is unclear how
gσ(x) has to be evaluated in general (e.g. what is the sine of
a Dirac impulse). However, for our specific case we see that
the nonlinear term g(x) = g1(x) = g2(x) can be written as
follows:

g(x) = N g(Mx)
where
M = [1 0 0] , N =M> g(Q) = −c2Q|Q|.

This special structure of the nonlinearity g allows us to
extend the distributional theory from the linear case also
to the nonlinear case. In particular, we have a well defined
solution concept:
Definition 7. Consider a general nonlinear switched DAE
of the form (13) with Ei, Ai ∈ Rn×n, i ∈ {1, . . . ,P}, and
gi : Rn → Rn and assume that there exists N ∈ Rn×m,
M∈ Rk×n, gi : Rk → Rm with m, k ≤ n such that

gi(ξ) = N gi(Mξ) ∀ξ ∈ Rn.
Then any pair (x, f)) ∈ (DpwC∞)n×(DpwC∞)n is a solution
of (13) if,

1) Mx is impulse-free, i.e. there exists a piecewise-
smooth function x : R → Rm such that Mx is the
distribution induced by the function x,

2) N gσ(x) is a piecewise-smooth function, and
3) Eσẋ = Aσx + f + Gx holds as an equality within

the space of piecewise-smooth distributions where Gx
is the distribution induced by the piecewise-smooth
function N gσ(x).

Characterizing existence and uniqueness of solution in the
sense of Definition 7 for general nonlinear switched DAEs
(13) is still an open problem and outside the scope of this
contribution. However, it is possible to derive an existence
and uniqueness result for the specific case considered here:
Lemma 8. Consider the nonlinear initial-trajectory prob-
lem (ITP)

x(−∞,0) = x0
(−∞,0)

(Eẋ)[0,∞) = (Aẋ+ f + g(x))[0,∞)

where either (E,A) = (E1, A1) or (E,A) = (E2, A2) and
g(x) = g1(x) = g2(x) as in (14). Then for every initial
trajectory x0 ∈ (DpwC∞)3 and every inhomogeneity f
induced by a piecewise-smooth function, there exists a
unique solution x ∈ (DpwC∞)3 of the ITP in the sense
of Definition 7.

Proof. Case (E,A) = (E1, A1).
The index 1 DAE Eẋ = Ax + f + g(x) with x =
(Q,P0, PL)> and f = (f1, f2, f3)> reads as

Q̇ = c1(P0 − PL) + f1 − c2Q|Q|,
0 = P0 + f2,
0 = PL + f3,



which is equivalent to P0 = −f2, PL = −f3 and

Q̇ = c1(f3 − f2) + f1 − c2Q|Q|. (15)

The latter is an ODE where existence and uniqueness of
(local) solutions is guaranteed. Although the right-hand
side is not globally Lipschitz-continuous we nevertheless
can conclude global existence of solutions, because of the
negative sign in the quadratic term. The corresponding
ITP inherits the existence and uniqueness result, because
inconsistent initial values in P0 and PL just lead to simple
jumps.
Case (E,A) = (E2, A2).
The index 2 DAE Eẋ = Ax + f + g(x) with x =
(Q,P0, PL)> and f = (f1, f2, f3)> reads as

Q̇ = c1(P0 − PL) + f1 − c2Q|Q|
0 = P0 + f2

0 = Q+ f3

For the corresponding ITP with initial trajectory x0 =
(Q0, P 0

0 , P
0
L) we can directly derive the following unique

solution:

Q = Q0
(−∞,0) − f3[0,∞)

P0 = P 0
0 (−∞,0) − (f2)[0,∞)

PL = P 0
L(−∞,0) +

1

c1
(−Q̇+ c1P0 + f1 − c2Q|Q|)[0,∞)

= P 0
L(−∞,0) + 1

c1
Q0(0−)δ0

+ 1
c1

d
dt (f3[0,∞)) + (−f2 + 1

c1
f1 + c2

c1
f3|f3|)[0,∞),

where δ0 denotes the Dirac impulse located at t = 0. 2

Corollary 9. The switched nonlinear DAE (13), (14) has
for every initial conditionQ(0) = Q0 ∈ R a unique solution
in the sense of Definition 7. In particular, the jump and
the Dirac impulse in PL at tS are given by:

PL(t+S ) = PU , PL[tS ] =
1

c1
Q(t−S )δts .

5 Comparison of both modeling approaches
Our longterm goal is to rigorously prove that the solution
(q, P (ρ)) of the balance law (6) given by (3), (1), (4),
(12) converges in an appropriate sense to the solutions
(Q,P0, PL) of the switched DAE (13),(14) as the compress-
ibility coefficient β approaches zero. Here we will focus
on the jump and Dirac impulse in the pressure due to
closing the valve. In particular, we assume that the initial
condition (4) is such that the PDE solution on [0, tS) is
stationary, i.e. q(t, x) is constant in time and space (or in
other words, when the valve is closed the dynamics in the
pipe have settled down). For the numerical simulations we
use a HEOC type ADER scheme of order 3 (Borsche and
Kall, 2014). For the detailed characteristics analysis see
[chapter 5, Kall (2016)]. The upper part of Figure 3 shows
the results for the pressure value at the valve over the time
interval [0.4s, 4s] with initial values

q0(x) ≡ 0, ρ0(x) ≡ 1.4115× 103

and pipe parameters

Pa = 1.01× 106, β =
1

K
= 4× 10−9, ρa = 1000,

L = 5, D = 0.5, cf = 0.02.

Clearly, there is a strong pressure spike just after the
switching time tS = 0.5s and then the pressure periodi-
cally settles to a new pressure value. The frequency of this
periodic behavior is determined by the pipe length L (the
larger L the lower the frequency) and the speed of sound
(higher for smaller compressibility coefficients β).

In order to compare both results, we first have to obtain
an approximation of the pressure value p(t, L) as t tends
to infinity. Instead of running the simulation for a very
long time, we just chose a settling time ε > 0 and take the
average of p(t, L) on the interval (tS+ε, T ] where T > tS+ε
is our overall simulation time, i.e.

PL :=
1

T − (tS + ε)

∫ T

tS+ε

p(t, x)dt.

with
ε = 1.5, T = 4.

we obtain
PL ≈ 8.23× 108

The value predicted by the switched DAE is

PL(t+S ) = PU ≈ 8.23× 108

In Table 1 the relative error between PL and PL(t+S ) is
presented for decreasing compressibility coefficients β.

β PL

∣∣PL−PL(t+
S
)
∣∣

PL(t+
S
)

4.0 · 10−9 8.2336 · 108 5.4678 · 10−04

2.0 · 10−9 8.2329 · 108 4.4046 · 10−04

5.0 · 10−10 8.2305 · 108 7.5942 · 10−05

2.5 · 10−10 8.2303 · 108 4.5565 · 10−05

1.25 · 10−10 8.2299 · 108 1.5188 · 10−05

Table 1. Pressure at valve comparison for long
after switching.

Already for the largest value of β, the value PL(t+S ) is a

very good approximation of PL and the approximation
gets better for decreasing β.

In order to compare the peak in p(t, L) just after the valve
is closed with the Dirac impulse PL[tS ] in response to
the switching time, we recall that a Dirac impulse δts at
ts > 0 can be approximated by a sequence of functions
t 7→ δεts(t) such that δε(t) = 0 for t 6= [ts, ts + ε] and∫ ts+ε
ts

δεts(t)dt = 1. We therefore make the Ansatz

p(t, L) ≈ P imp

tS δε(t) + PL, t ∈ (tS , T ],

hence we can approximate the magnitude of the “smoothed-
out” Dirac impulse occurring in the PDE model as follows:

P
imp

tS :=

∫ tS+ε

tS

p(t, L)− PLdt.

The Dirac impulse induced by the switched DAE is (see
Corollary 9):

PL[tS ] =
1

c1
Q(t−S )δts =: P imp

tS δts .

Similar as for the PDE simulations we assume that the
DAE is stationary before we switch, i.e. Q(t−S ) is obtained
by solving

0 = Q̇ = c1(PU − PD)− c2Q|Q|
With the above chosen parameters we get:

Q(t−s ) = 1.2830 · 106, P imp
tS =

1

c1
Q(t−s ) = 3.2670 · 107.

A comparison between P
imp

tS and P imp
tS for different values

of the compressibility coefficient β is presented in Table 2.
For large β the approximation is not very accurate, how-
ever, for decreasing compressibility the accuracy of the
approximation drastically improves. Finally, we want to
stress that the choice of ε influences the approximation
accuracy, see Table 3.
However, the qualitative behavior of a decreasing error for
decreasing compressibility coefficient remains valid.
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Fig. 3. Comparison of pressure profile at valve (PL) with PDE models (above) and switched DAE model (below)

β P
imp
tS

P imp
tS

RE :=

∣∣P imp
tS

−P
imp
tS

∣∣
P

imp
tS

4.0 · 10−9 4.1251 · 107 3.2670 · 107 0.2626
2.0 · 10−9 3.4758 · 107 3.2670 · 107 0.0639
5.0 · 10−10 3.1817 · 107 3.2670 · 107 0.0261
2.5 · 10−10 3.2069 · 107 3.2670 · 107 0.0184
1.25 · 10−10 3.2398 · 107 3.2670 · 107 0.0083

Table 2. Impulse length comparison

RE RE RE RE
β ε = 1 ε = 1.5 ε = 2 ε = 3

4.0 · 10−9 0.1812 0.2626 0.2616 0.2697
2.0 · 10−9 0.0508 0.0639 0.0809 0.0808
5.0 · 10−10 0.0438 0.0261 0.0253 0.0233
2.5 · 10−10 0.0228 0.0184 0.0016 0.0160
1.25 · 10−10 0.0084 0.0083 0.0078 0.0053

Table 3. Error comparison with different ε

6 Conclusion
We have presented a switched DAEs model for water
hammer on a simple setup, which we compared with a
compressible nonlinear system of balance laws. With the
support of numerical simulations of the PDE model we
justified our conjecture that a switched DAE model is
a good approximation for the PDE model with small
compressibility coefficient. Future work will focus on a
formal proof of convergence as well as the treatment of
larger networks.
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