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On contraction analysis of switched systems with mixed
contracting-noncontracting modes via mode-dependent average dwell

time
Hao Yin, Bayu Jayawardhana and Stephan Trenn

Abstract— This paper studies contraction analysis of switched
systems that are composed of a mixture of contracting and non-
contracting modes. The first result pertains to the equivalence of
the contraction of a switched system and the uniform global ex-
ponential stability of its variational system. Based on this equiva-
lence property, sufficient conditions for a mode-dependent average
dwell/leave-time based switching law to be contractive are estab-
lished. Correspondingly, LMI conditions are derived that allow for
numerical validation of contraction property of nonlinear switched
systems, which include those with all non-contracting modes.

I. INTRODUCTION

For the past two decades, analysis and control of switched systems
(as an important and special class of hybrid systems) have been
well studied due to their relevance in representing numerous modern
engineering systems where an abrupt change of parameters can occur
or a jump in systems dynamics can happen as a response to the
sudden change in their environment. Some well-known examples of
such engineering systems are the dynamics of aircraft [1], of power
electronics [2].Typically, switched systems are described by a family
of subsystems, which can either be continuous-time or discrete-
time dynamics, and a switching signal σ(t) with switching sequence
{t1, t2, . . .} that determines which subsystem is active over each time
interval [ti, ti+1) for all i ≥ 0. Such switching sequence can depend
on particular state events [25], or time events [3]–[5]. In the time-
dependent switching sequence, the dwell time (DT) [3] and average
dwell time (ADT) notions [4] are two basic and important concepts
in switched systems, both of which refer to the time interval or the
average time interval, respectively, between consecutive switching
times being lower bounded by a certain positive constant. A more
general and flexible switching sequence, so-called mode dependent
average dwell time (MDADT), was introduced in [5], which allows
each mode to have its own ADT.

The stability of switched systems has been widely investigated
in the literature [3]–[11] with a large body of works concern with
switched systems comprising of stable subsystems. The common
Lyapunov function technique [6] and multiple Lyapunov function
technique [7] are commonly used to analyze the stability of these
systems. In recent years, analysis of switched systems has also
covered those with both stable and unstable subsystems [10], [11].
The main idea of these studies is to check whether the dwell-time
of the stable subsystems is sufficiently large to offset the diverging
trajectories caused by the unstable subsystems that are dwelt for a
sufficiently short time. This approach of having a trade-off between
stable and unstable subsystems is no longer applicable when all
subsystems are unstable. In [8], [9], a discretized Lyapunov function
technique is presented that can be used to analyze the stability of
switched systems with all unstable subsystems. In this paper, we
present another approach using contraction analysis to analyze the
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stability switched systems which encompass all cases including those
with all unstable modes.

As one of stability analysis methods that has received a growing
interest lately, contraction analysis is concerned with the relative
trajectories of a systems than to a particular attractor equilibrium
point in standard Lyapunov stability analysis. There are many differ-
ent methods to analyze the contractivity of non-switched systems
in literature, such as [12]–[21] among many others. In [16], the
contraction property can be guaranteed if the largest eigenvalue of the
symmetric part of the associated variational systems matrix (which
is loosely termed as the Jacobian) is uniformly strictly negative.
Finsler–Lyapunov functions were introduced in [17] to analyze the
incremental stability of the system. A hierarchical approach to study
convergence using matrix norm was discussed in [18]. In the context
of switched systems, the contraction analysis thereof has recently
been presented in [22]–[26]. Using contraction analysis method in
[16], sufficient conditions for the convergence behavior of reset
control systems have been studied in [24]. The extension of matrix
norm-based contraction analysis [18] to piecewise smooth continuous
systems is formalized in [22]. In [25], the singular perturbation
theory and matrix norm are used to study the contraction property of
switched Filippov systems, which include piecewise smooth systems.

In all of above mentioned results on contraction analysis for
switched systems, it is assumed that all subsystems are contracting.
It remains non-trivial to analyze contractivity of switch systems with
all non-contracting subsystems, where in each dwell time interval the
trajectories diverge from each other. Following the fact that a switched
system with all unstable modes can be made asymptotically stable by
an appropriate switching signal, we study in this paper whether the
contraction of these systems, as a particular class of switched systems
with mixed contracting-noncontracting modes, can be established by
using the right switching signals.

As our first main result in this paper, we present contraction
analysis for switched systems with mixed contracting-noncontracting
modes. We establish that the stability of the corresponding variational
dynamics is a sufficient and necessary condition to the contrac-
tion of the original switched systems. Subsequently, as our second
contribution, we provide sufficient conditions on the time-varying
Lyapunov function and on the mode dependent average dwell-time for
switched nonlinear systems such that they are contracting. In general,
these conditions ensure that the growth of time-varying Lyapunov
function due to the noncontracting modes can be compensated by the
switching behavior and the decaying Lyapunov function due to the
contracting modes. In addition, we also consider all noncontracting
subsystems case, where the increment can only be compensated
by the switching behavior. Based on these conditions, as our third
contribution, we propose a time-varying quadratic Lyapunov function
that can be used to establish the contraction of switched systems via
LMI conditions. Our result is more general and less conservative than
the discretized Lyapunov function technique as proposed and used in
[8], [9]. This result implies also that we can establish the stability of
switched linear systems with all unstable modes.

The paper is organized as follows. In Section 2, we present
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preliminaries and problem formulation. Necessary and sufficient
conditions for the contractivity of nonlinear switched systems are
presented in Sections 3. The switching law design strategy is provided
in Section 4. The numerical simulations are provided in Section 5.
The conclusions are given in Section 6.

Notation. The symbols R, R≥0, N denote the set of real, non-
negative real, natural numbers, respectively. Rn denotes the n-
dimensional Euclidean space. We denote the identity matrix with
appropriate dimension by I . Given a matrix A, A⊤ refers to the
transpose of A. For a square matrix A, λ(A) refers to the set of
eigenvalues of A. For symmetric metrics B and C, B > 0 (B ≥ 0)
indicates that B is positive definite (positive semidefinite) and B < 0
(B ≤ 0) indicates that B is negative definite (negative semidefinite),
B < C (B ≤ C) means B−C < 0 (B−C ≤ 0). τ , τ represent the
upper bound, and the lower bound of τ . For vector valued functions
F : x 7→ F (x) with x ∈ Rn, and Fp : x 7→ Fp(x) with x ∈ Rn, we
define the Jacobian matrix ▽xF : Rn → Rn×n by ▽xF :=

∂F (x)
∂x ,

and ▽xFp : Rn → Rn×n by ▽xFp :=
∂Fp(x)

∂x , respectively. For a
vector or a matrix, ∥ · ∥ denotes the Euclidean vector norm or the
induced matrix norm, respectively.

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider switched systems in the form of

ẋ(t) = fσ(t)(x(t), t), x(t0) = x0, (1)

where x(t) ∈ X ⊆ Rn is the state vector, t0 ∈ R is the
initial time and x0 ∈ X is the initial value. Define an index set
M :=

{
1, 2, · · · , N

}
, where N is the number of modes. The

signal σ : [t0,∞) → M denotes the switching signal, which is
assumed to be a piece-wise constant function continuous from the
right. The vector field fi : X × [t0,∞) → Rn, (x, t) 7→ fi(x, t),
i ∈ M is continuous in t and continuously differentiable in x.
The switching instants are expressed by a monotonically increasing
sequence S :=

{
t1, t2, · · · , tk, · · ·

}
, where tk denotes the k-th

switching instant. The length between successive switching instants
is commonly referred to as the dwell time and given by τk =
tk+1 − tk, k = 0, 1, 2, · · · . We assume that (1) is forward complete,
which means for each x0 ∈ X there exists a unique solution of (1)
and no jump occurs in the state at a switching time.

Definition 2.1: For a switched system given by (1) with a given
switching signal σ(t), it is called

(i) incrementally uniformly globally asymptotically stable (iU-
GAS) if there exists a class of KL function β, such that for
all solutions x1(t), x2(t) of (1) in t ∈ [t0,+∞) we have

∥x1(t)− x2(t)∥ ≤ β(∥x1(t0)− x2(t0)∥, t), (2)

(ii) uniformly contracting if there exists positive numbers c and
α such that for all solutions x1(t), x2(t) of (1) we have

∥x1(t)− x2(t)∥ ≤ ce−αt∥x1(t0)− x2(t0)∥. (3)

In order to study contractivity of the switched systems (1), as
usual, we will analyse the (uniform) stability of the corresponding
variational systems, in which case, the following definition is relevant
(note that by assumption for each time t ≥ t0 the map x 7→
fσ(t)(x, t) is continuously differentiable at all x ∈ X ).

Definition 2.2: The family of (time-varying) linear switched sys-
tem

ξ̇(t) = Fσ(t)(x(t), t)ξ(t), ξ(t0) = ξ0 ∈ Rn (4)

with Fp(x(t), t) = ▽xfp(x(t), t) and x(·) ∈ Rn be any given
solution trajectory of (1) is called

(i) uniformly globally asymptotically stable (UGAS), if there
exist a class of KL function β, (independently of the chosen
solution x(·)) such that for every solution ξ(t) ∈ Rn of (4)
the following inequality holds,

∥ξ(t)∥ ≤ β(∥ξ(t0)∥, t), ∀t ≥ t0, (5)

(ii) uniformly globally exponentially stable (UGES), if there
exist positive numbers c, α (independently of the chosen
solution x(·)) such that for every solution ξ(t) ∈ Rn of (4)
the following inequality holds,

∥ξ(t)∥ ≤ ce−αt∥ξ(t0)∥, ∀t ≥ t0. (6)

The contraction analysis problem for switched systems with all
contracting modes has attracted considerable attentions. For example,
in [23], [24], a common contraction region is required between
each subsystem. Then, contracting can be achieved by activating the
subsystems for a sufficient long time. However, for noncontracting
subsystems, you can not find such common contraction region, to be
precise, you can not find any contraction region for a noncontracting
subsystem. Then, the results in [23], [24] cannot be applied. The
objective of this paper is to propose a sufficient condition that
guarantees the switched system (1) is contracting with respect to
switching law σ(t) when not all modes of (1) are contracting,
including the case where none of the modes is contracting.

III. A NECESSARY AND SUFFICIENT CONDITION FOR THE
CONTRACTION OF SWITCHED SYSTEMS

Since switched systems with fixed switching signal can be consid-
ered as time-varying systems, tools for time-varying systems can be
used to analyse of such switched systems. In this section, inspired
by contraction analysis of time-varying systems as presented in [14],
[16], we have the following proposition that establish the relations
between (1) being iUGAS/contracting and (4) being UGAS/UGES.

Proposition 3.1: For a given switching signal σ(t), the following
properties hold

(i) the system (1) is iUGAS if the family of systems (4) is
UGAS,

(ii) the system (1) is uniformly contracting if, and only if, the
family of systems (4) is UGES.

PROOF. We first establish a relationship between the solutions of
(1) and (4). Let x(t) = φ(t, x0), x̂(t) = φ(t, x0 + δξ0) be two
trajectories of (1) with initial conditions x(t0) = φ(t0, x0) = x0 ∈
Rn and x̂(t0) = φ(t0, x0 + δξ0) = x0 + δξ0, respectively, where δ
is a sufficiently small positive constant and ξ0 will later be related
to the initial condition of (4). We will now show that

ξ(t) := lim
δ→0

φ(t, x0 + δξ0)− φ(t, x0)

δ
(7)

is a solution of (4) with initial value ξ(t0) = ξ0. For any t, let
i ∈ N be such that t ∈ [ti, ti+1), so that the semiflow φ(t, x0) of
(1) satisfies

φ(t, x0) = x0 +

i−1∑
k=0

∫ tk+1

tk

fσ(tk)(φ(s, x0), s)ds

+

∫ t

ti

fσ(ti)(φ(s, x0), s)ds,

(8)
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and similarly, the semiflow φ(t, x0 + δξ0) satisfies

φ(t, x0 + δξ0) = x0 + δξ0 +

i−1∑
k=0

∫ tk+1

tk

fσ(tk)(φ(s, x0 + δξ0), s)ds

+

∫ t

ti

fσ(ti)(φ(s, x0 + δξ0), s)ds.

(9)
Hence,

ξ(t) = ξ0+

i−1∑
k=0

∫ tk+1

tk

lim
δ→0

fσ(tk)(φ(s, x0 + δξ0), s)− fσ(tk)(φ(s, x0), s)

δ
ds

+

∫ t

ti

lim
δ→0

fσ(ti)(φ(s, x0 + δξ0), s)− fσ(ti)(φ(s, x0), s)

δ
ds.

(10)
Clearly, for j ∈ {0, 1, . . . , i}

lim
δ→0

fσ(tj)(φ(s, x0 + δξ0), s)− fσ(tj)(φ(s, x0), s)

δ

=
∂

∂ x0

[
fσ(tj)(φ(s, x0), s)

]
· ξ0

=
[
∇xfσ(tj)(φ(s, x0), s) · ∇x0φ(s, x0)

]
· ξ0.

Here we used the fact that the map x0 7→ φ(t, x0) is differentiable for
all t ∈ [t0,∞) which is a consequence from the ability to write φ as
a concatenation of the smooth solution flows φσ(ti)

(t, ti, xi) of the
(non-switched) differential equations ẋ = fσ(ti)(x, t), x(ti) = xi. In
fact, φ(t, x0) = φσ(tj)

(t, ti, φ(ti, x0)) and, recursively for k = i−
1, . . . , 2, 1, we have φ(tk, x0) = φσ(tk−1)

(tk, tk−1, φ(tk−1, x0)).
Hence

ξ(t) = ξ0 +

i−1∑
k=0

∫ tk+1

tk

∇xfσ(tk)(φ(s, x0), s)∇x0φ(s, x0)ξ0ds

+

∫ t

ti

∇xfσ(ti)(φ(s, x0), s)∇x0φ(s, x0)ξ0ds (11)

and consequently

ξ̇(t) = ∇xfσ(ti)(φ(t, x0), t)∇x0φ(t, x0)ξ0

= F (t, x(t)))∇x0φ(t, x0)ξ0,

where the last equality follows from σ(ti) = σ(t) for all t ∈
[ti, ti+1). Furthermore, from (8),

∇x0φ(t, x0)

= I +

i−1∑
k=0

∫ tk+1

tk

∇xfσ(tk)(φ(s, x0), s)∇x0φ(s, x0)ds

+

∫ t

ti

∇xfσ(ti)(φ(s, x0), s)∇x0φ(s, x0)ds

which when multiplied with ξ0 and in view of (11) leads to

∇x0φ(t, x0)ξ0 = ξ(t).

Altogether this shows that indeed ξ given by (7) is a solution of (4).
In particular, ∇x0φ(t, x0) is the transition matrix for (4), i.e.

d
dt∇x0φ(t, x0) = ∇xfσ(t)(x(t), t)∇x0φ(t, x0). (12)

Proof of (i) on UGAS ⇒ iUGAS. Let us consider two solutions
x(t) = φ(·, x0) and x̂(t) = φ(t, x̂0) of (1). We already highlighted
in the first part of the proof that the map x0 7→ φ(t, x0) is

differentiable for each fixed t ∈ [t0,∞). Consequently, we can utilize
the fundamental theorem of calculus for line integrals to obtain

x̂(t)− x(t) =

∫ x̂0

x0

∇yφ(t, y)dy. (13)

From UGAS of (4) and (12) it follows that there exists a class of
KL function β, such that

∥∇yφ(t, y)∥ ≤ β(∥∇yφ(t0, y)︸ ︷︷ ︸
=I

∥, t) = β(1, t),
(14)

for all y ∈ X . Using (14) to get the upper bound of (13), we have

∥x̂(t)− x(t)∥ ≤ β(1, t)∥x̂0 − x0∥ = β′(∥x̂0 − x0∥, t), (15)

where β′(∥x̂0 − x0∥, t) is a class of KL function.
Proof of (ii) on Contracting ⇔ UGES. As we show φ(t, x0) is

differentiable respect to x0 for each fixed t ∈ [t0,∞). The rest of
the proof follows Proposition 1 in [14]. 2

In Proposition 3.1 we establish the concept of UGAS for variational
system, which is not presented before in [14], [16]. Note that the
variational system (4) being UGAS is only a sufficient condition
for system (1) being iUGAS. The reverse implication is not trivial
to establish and it cannot follow the same line of proof as in
[14]. Particularly, we can not conclude that δβ′(∥ξ(T )∥, T ) ≥
β′(δ∥ξ(T )∥, T ) = β′(∥ξ(t0)∥, T ) holds.

IV. SWITCHING LAW DESIGN

In general, when individual systems are contracting, the switched
systems can be made contracting by activating each subsystem
sufficiently long. Instead of considering this situation, in this section,
we study the property of contraction of switched systems whose
modes are composed of a mixture of contracting and non-contracting
modes. The switched systems under study include also the worst case,
where all individual systems are not contracting1, and we provide
sufficient conditions on MDADT/MDALT (whose precise definition
will shortly be given below) that guarantee the contraction of the
switched systems. The use of MDADT/MDALT property in this paper
is in contrast to the existing results in literature that are based on
common dwell time. For this purpose, we define S as the set of all
stable modes and U as the set of all unstable modes. In our main
result, we propose a new class of switching signals that is suited for
switched systems with stable and unstable modes.

Denoting Nσp(t1, t2) as the number of times that the pth mode
is activated in the interval [t1, t2), and Tp(t1, t2) as the sum of
the running time of the pth mode in the interval [t1, t2), p ∈ M =
{1, 2, ..., N}. We revisit the following definitions of mode dependent
average dwell time in [5].

Definition 4.1: A constant τap > 0 is called (slow) mode depen-
dent average dwell time (MDADT) for mode p ∈ M of a switching
signal σ : [t0,∞) → M, if there exist a constant N0p such that for
all finite time intervals [t1, t2) ⊆ [t0,∞) we have

Nσp(t1, t2) ≤ N0p +
Tp(t1,t2)

τap
. (16)

Definition 4.2: A constant τap > 0 is called mode dependent
average leave time (MDALT) for mode p ∈ M of a switching signal
σ : [t0,∞) → M, if there exist a constant N0p such that for all
finite time intervals [t1, t2) ⊆ [t0,∞),

Nσp(t1, t2) ≥ N0p +
Tp(t1,t2)

τap
. (17)

1Equivalently, the corresponding variational system (4) is not UGES [12],
[14].
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Remark 4.3: In Definition 4.2 we refer to τap as the mode depen-
dent average leave time (MDALT) instead of fast mode dependent
average dwell time as e.g. in [5]. We prefer the former, because τap
in Definition 4.2 is not related to how long (at least, on average) the
system dwells (remains) in a certain mode, but when the system has
to leave a certain mode at the latest (on average). So “leave time”
seems a better naming choice for τap than “fast dwell time”.

We present now the following theorem on the contracting proper-
ties of switched systems (1) with MDADT and/or MDALT.

Theorem 4.4: Consider switched nonlinear system (1) with switch-
ing signal σ : [0,∞) → M and corresponding switching times
S := {t0, t1, . . . , ti, . . .}. Assume that we can classify each mode
p as being either stable or unstable, i.e. assume M = S ∪̇ U
and, correspondingly, assume the switching signal σ has a MDADT
τap > 0 for each stable mode p ∈ S and a MDALT τap > 0
for each unstable mode p ∈ U . Furthermore, assume that for each
mode p ∈ M there exist a continuously differentiable function
Vp : Rn × Rn × R≥0 → R≥0 with

V̇p(x, ξ, t) := ∇(x,ξ)Vp(x, ξ, t)
(

fp(x,t)

Fp(x,t)ξ

)
+∇tVp(x, ξ, t)

such that for all (x, ξ, t) ∈ Rn × Rn × R≥0

V̇p(x, ξ, t) ≤ ηpVp(x, ξ, t), ∀p ∈ M, (18)

with ηp ≥ 0 if p ∈ U or ηp < 0 otherwise. Finally, assume that for
every p ∈ M, there exists µp > 0 such that

Vσ(ti)(x, ξ, ti) ≤ µ
σ(t−i )

V
σ(t−i )

(x, ξ, ti), ∀ti ∈ S . (19)

Without loss of generality, we let µp > 1 for p ∈ S. Then, with the
following switching law

τap > τap := − lnµp
ηp

, ∀p ∈ S,
τap < τap := − lnµp

ηp
, ∀p ∈ U .

 (20)

the switched nonlinear system (1) is
(i) incrementally uniformly globally asymptotically stable (iU-

GAS) if there exist class K∞ functions vp, vp, such that
Vp(x, ξ, t) satisfies

vp(∥ξ∥) ≤ Vp(x, ξ, t) ≤ vp(∥ξ∥), ∀p ∈ M, (21)

(ii) uniformly contracting if there exist vp ≥ vp ≥ 0, such that
Vp(x, ξ, t) satisfies

vp∥ξ∥
2
2 ≤ Vp(x, ξ, t) ≤ vp∥ξ∥22, ∀p ∈ M. (22)

We note that τap < τap in (20) can only be satisfied if µp ∈ (0, 1)
for p ∈ U .

PROOF. Let x(·) be a solution of (1) and let ξ(·) be a solution of
the corresponding system (4). We will show in the following that
there exists k > 0 and λ > 0 (independent from x(·) and ξ(·)) such
that

Vσ(t)(x(t), ξ(t), t) ≤ ke−λ(t−t0)Vσ(t0)(x0, ξ0, t0). (23)

From From (21) we can then conclude that

∥ξ(t)∥ ≤ v−1
σ(tn)

◦ Vσ(tn)(x(t), ξ(t), t)

≤ v−1
σ(tn)

(
ke−λ(t−t0)Vσ(t0)(x0, ξ0, t0)

)
≤ v−1

σ(tn)

(
ke−λ(t−t0)v−1

σ(t0)
(∥ξ0∥)

)
.

(24)

It is easy to see that v−1
σ(tn)

(
ke−λ(t−t0)v−1

σ(t0)
(∥ξ0∥)

)
is a class KL

function.

From (22) we can then conclude that

∥ξ(t)∥ ≤ 1
√vσ(tn)

V
1
2
σ(tn)

(x(t), ξ(t), t)

≤
√

k

vσ(tn)
e−

λ
2 (t−t0)V

1
2
σ(t0)

(x0, ξ0, t0)

≤

√
k
vσ(t0)

vσ(tn)
e−

λ
2 (t−t0)∥ξ0∥.

(25)

According to (24), (25), Proposition 3.1 and Definition 2.2, we can
then conclude that (i) system (4) is UGAS the system (1) is iUGAS,
(ii) system (4) is UGES the system (1) is contracting.

Towards showing (23) first observe that for any t ∈ [ti−1, ti) and
p := σ(t−i ) we have

d
dtVp(x(t), ξ(t), t) = V̇p(x(t), ξ(t), t).

Consequently, in view of (19) and (18),

Vσ(ti)(x(ti), ξ(ti), ti)

≤ µ
σ(t−i )

V
σ(t−i )

(x(ti), ξ(ti), ti)

= µσ(ti−1)
Vσ(ti−1)

(x(ti), ξ(ti), ti)

≤ µσ(ti−1)
e
ησ(ti−1)

(ti−ti−1)Vσ(ti−1)
(x(ti−1), ξ(ti−1), ti−1).

Recursively applying this inequality, we arrive at, for t ∈ [ti, ti+1),

Vσ(ti)(x(t), ξ(t), t) ≤ cσ(t)Vσ(t0)(x, ξ, t0), (26)

with

cσ(t) = e
ησ(ti)

(t−ti)
i−1∏
k=0

µσ(tk)
e
ησ(tk)(tk+1−tk)

=
∏

p∈M
µ
Nσp(t,t0)
p eηpTp(t,t0)

=
∏

p∈M
eNσp(t,t0) lnµp+ηpTp(t,t0).

By assumption, we have for p ∈ S that lnµp > 0 and hence by (16)

Nσp(t, t0) lnµp+ηpTp(t, t0) ≤ N0p lnµp+(ηp+
lnµp
τap

)Tp(t, t0);

and for p ∈ U we have lnµp < 0 and hence by (17) we arrive
at the same inequality as above. Let λp := ηp +

lnµp
τap

, then from
(20) together with lnµp > 0 for p ∈ S and lnµp < 0 for p ∈ U ,
we have that λp < 0 for all p ∈ M. With k =

∏
p∈M µ

N0p
p and

λ := minp∈M(−λp) > 0 we obtain

cσ(t) ≤ k
∏

p∈M
e−λTp(t,t0) = ke−λ(t−t0),

where we used the fact that
∑

p∈M Tp(t, t0) = t−t0. This concludes
the proof.

2

Different from Corollary 1 in [5], we do not need here to consider
the ordering of stable and unstable subsystems. Some Lyapunov
methods of incremental stability have recently appeared in the lit-
erature. Let us compare our results to these works. In this paper
we do not exclude the case that the system switches from a non-
contracting mode q to another non-contracting mode p and then back
to mode q again (Example 5.2). In this case, according to (18), the
variational system of each subsystem is divergent with a bounded rate
ηp. Therefore, we need condition (19) to compensate for the divergent
trajectory by having µp < 1. This is not possible if Vp(x, ξ, t) is time
independent. Indeed, otherwise we have Vp(x, ξ) < µqVq(x, ξ) <
µqµpVp(x, ξ) < Vp(x, ξ), which is a contradiction. In [17], the
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authors study the incremental stability of time-varying system based
on the Finsler distance. A sufficient and necessary condition for
incremental stability of time-invariant system with input is given in
[19], which shows that the time-invariant system is incrementally
stable if and only if there exists an incremental Lyapunov function
with respect to the manifold {x1 = x2}). Neither [17] nor [19]
study the stability properties of the variational systems. In addition,
the Lyapunov functions in [17], [19] are all time-independent, which
cannot solve switched systems with all non-contracting subsystems.
By means of Proposition 3.1 and Theorem 4.4, we can analyze
the contraction of switched systems with all non-contracting sub-
systems by finding multiple time-dependent Lyapunov functions for
its variational system. Since constructing time-dependent Lyapunov
functions is much more difficult than constructing time-independent
Lyapunov functions, a LMI method is established in Theorem 4.10
to construct time-dependent Lyapunov functions for a family of
nonlinear switched systems.

Remark 4.5: The results for all modes are contracting in [23], [26],
can be considered as a particular case of Theorem 4.4. In particular, if
we assume that M = S in Theorem 4.4 then the switched nonlinear
system (1) is contracting for any MDADT switching signals satisfying
τap > τap = − lnµp

ηp
,∀p ∈ M, which recovers the results of

Theorem 1 in [23] and Proposition 1 in [26].

For switched system (1), if all subsystems are non-contracting,
which represents the worst case scenario, the distance increment
between two trajectories will not be contracting in each mode and it
can only be compensated by at the switching events. In this case, we
have the following corollary from Theorem 4.4.

Corollary 4.6: Using the notation of Theorem 4.4, assume that
M = U , i.e. we assume all modes are non-contracting. Then
the switched nonlinear system (1) is contracting for any MDALT
switching signals satisfying

τap ≤ τap = − lnµp

ηp
, ∀p ∈ M. (27)

Although Theorem 4.4 provides a general framework to handle
the contraction analysis problem, it is impractical for actual use,
since it does not provide means to construct the Lyapunov functions
Vp(x, ξ, t) using existing computational techniques. In addition, when
noncontracting subsystems are involved, we cannot find a monoton-
ically decreasing Lyapunov function for each subsystem. Inequality
(18) implies that the value of Vp(x, ξ, t) may increase in some time
interval with a bounded rate ηp > 0. The same as switched systems
with all subsystems unstable, it is not easy to find a Lyapunov func-
tion and the corresponding parameter ηp satisfying (18). Different
from [8, Thm. 1] that uses the DT to ensure asymptotic stability for
all unstable mode switching systems, we consider here the use of
MDALT to ensure exponentially stability of the switched systems.
Based on Theorem 4.4, we will establish a sufficient condition that
is easily verifiable for analysing the contraction property of switched
systems.

As pursued in recent literature, the contraction analysis pertains
to the stability analysis of nonlinear system using linear systems
theory via its variational system (4). As the variational system
can be regarded as a state-dependent linear system with the state
ξ, quadratic Lyapunov function can directly be used to prove the
stability. Hence let us consider a time dependent Lyapunov function
of the quadratic form Vp(x, ξ, t) = ξ⊤Mp(t)ξ for some matrix
function Mp : [0,∞) → Rn×n with symmetric, positive definite
values. The following lemma provides conditions on such Lyapunov
functions to ensure the contracting property of switched system (1).

Lemma 4.7: Consider a switched nonlinear system (1) with given
switching times S := {t0, t1, . . . , ti, . . . tn, . . .} generated by σ :
[0,∞) → M. Let each mode p be classified as either stable or
unstable, i.e. M = S ∪̇ U and correspondingly assume that there
exists τap > 0 such that (16) holds for the stable mode p ∈ S or
(17) holds for the unstable mode p ∈ U . Suppose that for each mode
p ∈ M there exist mp ≥ mp ≥ 0 and a time dependent symmetric
matrix Mp(t) such that

mpI ≤ Mp(t) ≤ mpI, ∀p ∈ M, (28)

Fp(x, t)
⊤Mp(t) + Ṁp(t) +Mp(t)Fp(x, t) ≤ ηpMp(t), ∀p ∈ M,

(29)
with ηp ≥ 0 if p ∈ U or ηp < 0 otherwise. Assume that for every
p ∈ M, there exists µp > 0, such that

Mσ(ti)
(ti) ≤ µ

σ(t−i )
M

σ(t−i )
(t−i ), ∀ti ∈ S . (30)

Then the switched nonlinear system (1) is contracting for any
MDADT/MDALT switching signals satisfying (20).

PROOF. By taking a Lyapunov function in the form of Vp(x, ξ, t) =
ξ⊤p Mp(t)ξp, it follows that (28) and (30) satisfy (22) and (19) in
Theorem 4.4, respectively. By differentiating Vp(x, ξ, t) along the tra-
jectory of system (4), we have V̇p(x, ξ, t) = ξ⊤p

(
Fp(x, t)

⊤Mp(t)+

Ṁp(t)+Mp(t)Fp(x, t)
)
ξp. Using (29), it follows that V̇p(x, ξ, t) ≤

ηpVp(x, ξ, t), e.g. (18) holds. By Theorem 4.4, it implies that (1) is
contracting for any switching signals satisfying (20). 2

We note that the most popular quadratic Lyapunov function in
contraction analysis literature is Vp(x, ξ, t) = ξ⊤Mpξ, where Mp is
a positive definite constant matrix [15]. In this case, Ṁp(t) in (29)
is vanished. However, in the contraction analysis problem, since
F (x) in (4) is time-varying and state-dependent, the existence of
such a constant matrix Mp is not always possible. In addition, in
this paper, we allow subsystems are all non-contracting, Mp should
be time-dependent. Hence, in general, allowing for time-varying
matrix Mp(t) in Lemma 4.7 leads to a significantly less conservative
stability condition. For a general time dependent matrix Mp(t),
the inequality (30) is not trivial to solve. Another well-known
technique to solve such a problem is the discretized Lyapunov
function technique which is widely used in the stabilization of
linear switched systems [8], [9]. The basic idea of the discretized
Lyapunov function technique is to linearize Mp(t) into the form
of t−ti

τdp
Pp + (1 − t−ti

τdp
)Qp. However, it can be difficult to find

such Mp(t) for some simple systems, e.g. for the switched system

p = 1 :

{
ẋ1 = −1.9x1 + 0.6x2,
ẋ2 = 0.5x1 + 0.7x2,

p = 2 :

{
ẋ1 = 0.5x1 − 0.9x2,
ẋ2 = 0.1x1 − 1.4x2.

.

If we apply discretized Lyapunov function technique as presented in
[8] to this switched system, the corresponding LMIs are not feasible
or τdp > − lnµp

ηp
. We will present later in Corollary 4.12 a method

to design stabilizing switching signals for this switched system.
In order to compensate the conservativity brought by the Matrix

Young inequality, in the following, we propose a construction of
Mp(t) in a nonlinear fashion by the addition of ϕp(t)

(
1−ϕp(t)

)
Gp

to Mp(t), which is more general than the discretized Lyapunov
function proposed in [8], [9]. by considering the class of switching
signals with mode dependent strict dwell time τdp > 0, i.e., each
mode p is active at least for τdp time before switching to another
mode, we can transform the inequality condition of (28)-(30) into
LMI conditions in Theorem 4.10 presented below. This is achieved by
introducing a time-varying Lyapunov function that interpolates two
quadratic constant Lyapunov functions in a prescribed dwell time τdp.
Before stating our main result, we first recall two technical lemmas
on matrix algebra.
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Lemma 4.8: (Matrix Young inequality): For any X,Y ∈ Rn×m

and any symmetric positive-definite matrix S ∈ Rn×n,

X⊤Y + Y ⊤X ≤ X⊤SX + Y ⊤S−1Y (31)

holds.
Lemma 4.9: (Lemma 2 in [9]) Consider the matrix polynomial

f : [0, 1]n → R defined by

f(τ1, τ2, · · · , τn) = Σ0 + τ1Σ1 + τ1τ2Σ2 + · · ·

+ (

n∏
k=1

τk)Σn, ∀τk ∈ [0, 1].
(32)

If the matrices Σk, k ∈ N, are symmetric and satisfy
∑d

k=0 Σk < 0

(or
∑d

k=0 Σk > 0) for all d = 0, 1, · · · , n, then f(τ1, τ2, · · · , τn) <
0 (or f(τ1, τ2, · · · , τn) > 0).

Theorem 4.10: Consider switched nonlinear system (1) with glob-
ally Lipschitz fp, p ∈ M and with given switching times S :=
{t0, t1, . . . , ti, . . . tn, . . .} generated by σ : [0,∞) → M. Assume
that the modes can be classified as stable or unstable, i.e. M = S ∪̇ U
and assume that for every mode p there exists τap > 0 such that
(16) for p ∈ S or (17) for p ∈ U holds. Suppose that for each
mode p ∈ M there exist a minimum mode dependent dwell time
τdp > 0, a constant matrix Ap, a semipositive definite matrix Γp,
symmetric constant matrices Pp, Qp, Gp, and positive constants
mp > 0, ϵp ≥ 0 such that fp is decomposed2 into the following
form

fp(x, t) = Apx+ gp(x, t), (33)

with ▽xgp(x, t)
⊤▽xgp(x, t) ≤ Γp, for all x ∈ Rn, t ≥ 0, and

0 < Qp < mpI, 0 < Pp < mpI, 0 < Pp +Gp < mpI,
(34)

A⊤
p Qp +QpAp +

1

τdp
(Gp + Pp −Qp) + ϵ−1

p Γp

+ ϵpmpQp ≤ ηpQp,

(35)

A⊤
p (Pp +Gp) + (Pp +Gp)Ap +

1

τdp
(Pp −Qp −Gp)

+ ϵ−1
p Γp + ϵpmp(Pp +Gp) ≤ ηp(Pp +Gp),

(36)

A⊤
p Pp + PpAp +

1

τdp
(Pp −Qp −Gp) + ϵ−1

p Γp

+ ϵpmpPp ≤ ηpPp,

(37)

A⊤
p Pp + PpAp + ϵ−1

p Γp + ϵpmpPp ≤ ηpPp, (38)

hold with ηp ≥ 0 if p ∈ U or ηp < 0 otherwise. Assume that for
every p ∈ M, there exists µp > 0 such that

Qσ(ti)
≤ µ

σ(t−i )
P
σ(t−i )

, ∀ti ∈ S . (39)

Then the switched nonlinear system (1) is contracting for any
MDADT/MDALT switching signals satisfying (20), and which have
mode dependent dwell time τdp > 0.

PROOF. Let us define Mp(t) in the following form

Mp(t) =


ϕp(t)

(
1− ϕp(t)

)
Gp + ϕp(t)Pp +

(
1− ϕp(t)

)
Qp,

t ∈ [ti, ti + τdp),
Pp, t ∈ [ti + τdp, ti+1),

(40)
where ϕp(t) =

t−ti
τdp

, so that Mp(ti) = Qp and Mp(ti+τdp) = Pp.
Note that Mp(t) is positive definite according to (34) and Lemma

2This decomposition is well-posed since the vector field fp is assumed to be
globally Lipschitz. The matrix Ap in this decomposition can be non-Hurwitz,
which is relevant for the unstable modes.

4.9. Now, let us consider Mp(t) in the time interval [ti, ti + τdp).
The time derivative of Mp(t) is given by

Ṁp(t) =
1

τdp
(Gp + Pp −Qp)− ϕp(t)

2

τdp
Gp. (41)

For t ∈ [ti, ti + τdp), we obtain from (29), (40) and (41) that

Fp(x, t)
⊤Mp(t) + Ṁp(t) +Mp(t)Fp(x, t)− ηpMp(t) =

Σ1 + ϕp(t)Σ2 + ϕ2
p(t)Σ3,

(42)

where

Σ1 = F⊤
p Qp +QpFp +

1

τdp
(Gp + Pp −Qp)− ηpQp,

Σ2 = F⊤
p (Gp + Pp −Qp) + (Gp + Pp −Qp)Fp

− 2

τdp
Gp − ηp(Gp + Pp −Qp),

Σ3 = −F⊤
p Gp −GpFp + ηpGp.

(43)

According to (33), and Lemma 4.8 (for S = ϵpI), we have

Σ1 =
(
Ap + ▽xgp

)⊤
Qp +Qp

(
Ap + ▽xgp

)
+

1

τdp
(Gp + Pp −Qp)− ηpQp

≤ A⊤
p Qp +QpAp + ϵ−1

p ▽xg
⊤
p ▽xgp + ϵpQpQp+

1

τdp
(Gp + Pp −Qp)− ηpQp

≤ A⊤
p Qp +QpAp + ϵ−1

p Γp + ϵpmpQp+

1

τdp
(Gp + Pp −Qp)− ηpQp,

(44)

Similarly we have

Σ1 +Σ2 = F⊤
p (Gp + Pp) + (Gp + Pp)Fp+

1

τdp
(Pp −Qp −Gp)− ηp(Gp + Pp)

≤ A⊤
p (Gp + Pp) + (Gp + Pp)Ap + ϵ−1

p Γp+

ϵpmp(Gp + Pp) +
1

τdp
(Pp −Qp −Gp)−

ηp(Gp + Pp),

(45)

and

Σ1 +Σ2 +Σ3 = F⊤
p Pp + PpFp +

1

τdp
(Pp −Qp −Gp)− ηpPp

≤ A⊤
p Pp + PpAp + ϵ−1

p Γp + ϵpmpPp+

1

τdp
(Pp −Qp −Gp)− ηpPp,

(46)
Using the hypotheses (35), (36), and (37) of the theorem, it follows
that Σ1 < 0, Σ1+Σ2 < 0, Σ1+Σ2+Σ3 < 0. Since ϕp(t) ∈ [0, 1],
it follows from Lemma 4.9 that (42) is negative definite. Similarly,
for t ∈ [ti + τdp, ti+1), (42) is negative definite according to (38).
Consequently, in combination with (34), (39), and (20), all hypotheses
in Lemma 4.7 are satisfied and the claim of the theorem follows
immediately. 2

We remark that there are a number of families of systems that
can be written in the form of (33). This includes Lipschitz systems
[27], Lorentz systems, Lur’e systems, and Persidskii systems.Note
that, the assumption of gp after (33) is uniformly in x. This is
because for a time-varying system, contracting property does not
guarantee the boundedness of x (we refer to Example 5.1 later
where one of the states can diverge to infinity). However, this
condition is less conservative then the global Lipschitz condition
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presented in [27], and the references therein. For the global Lipschitz
condition, one has ▽xgp(x, t)

⊤▽xgp(x, t) ≤ γ2I , where γ is the
Lipschitz constant, while in our condition, Γp can be much smaller
than γ2I . To illustrate this, let us consider gp(x, t) =

[
sin(x1)

0

]
,

where the Lipschitz constant is given by γ = 1. For this example,
we have ▽xgp(x, t)

⊤▽xgp(x, t) =
[
cos2(x1) 0

0 0

]
≤

[
1 0
0 0

]
. Hence

Γp =
[
1 0
0 0

]
, which is less than γ2I . In addition, if ▽xgp(x, t)

is a symmetric matrix, such inequality reduces to the incremental
monotonic condition present in [20], or the uniformly Lipschitz
smooth condition introduced in [21].

Remark 4.11: Suppose that the hypotheses in Theorem 4.10 hold
with M = U , i.e. all modes are non-contracting. Then the switched
nonlinear system (1) is contracting for any MDALT switching signals
satisfying (27).

As an interesting particular case of our main results above, let us
consider the stabilization of linear switched systems where all modes
are unstable. Using results in Theorem 4.10, we can stabilize such
switched unstable systems. Consider a linear switched system given
by

ẋ(t) = Aσ(t)x(t), (47)

where x(t) and σ(t) are as in (1), and Ap, p ∈ M, are unstable
matrices for each mode p.

Corollary 4.12: Consider a linear switched system (47) with a
given switching sequence S :=

{
t0, t1, · · · , ti, · · · tn

}
generated

by σ(t). Assume that there exists τap > 0 such that (17) holds.
Suppose that for each mode p ∈ M there exist a minimum mode
dependent dwell time τdp > 0, symmetric constant matrices Pp, Qp,
Gp, and scalars mp > 0 and 0 < µp < 1, such that (34), (39), and
the following inequalities

A⊤
p Qp +QpAp +

1

τdp
(Gp + Pp −Qp) ≤ ηpQp, ∀p ∈ M, (48)

A⊤
p (Pp +Gp) + (Pp +Gp)Ap +

1

τdp
(Pp −Qp −Gp)

≤ ηp(Pp +Gp), ∀p ∈ M, (49)

A⊤
p Pp + PpAp +

1

τdp
(Pp −Qp −Gp) ≤ ηpPp, ∀p ∈ M, (50)

A⊤
p Pp + PpAp ≤ ηpPp, ∀p ∈ M, (51)

hold. Then the switched system (47) is exponentially stable for any
MDALT switching signals satisfying (27) and with mode-dependent
dwell times τdp > 0.

PROOF. The proof follows vis-á-vis with the proof of Theorem 4.10
adapted to the switched linear system (47). In this case, we have

A⊤
p Mp(t) + Ṁp(t) +Mp(t)Ap − ηpMp(t) =

Σ1 + ϕp(t)Σ2 + ϕ2
p(t)Σ3,

(52)

where

Σ1 = A⊤
p Qp +QpAp +

1

τdp
(Gp + Pp −Qp)− ηpQp,

Σ2 = A⊤
p (Gp + Pp −Qp) + (Gp + Pp −Qp)Ap

− 2

τdp
Gp − ηp(Gp + Pp −Qp),

Σ3 = −A⊤
p Gp −GpAp + ηpGp.

(53)

It follows from (48), (49), (50), (53) and Lemma 4.9 that (52) is
negative definite. Then, following Theorem 4.10, the linear switched
systems (47) is contracting. Since x(t) = 0 is one of admissible
trajectories of (47) and it is contracting, it follows that all the
trajectories will converge to x(t) = 0 exponentially. 2

Discretized Lyapunov function technique for stabilizing switched
systems with all unstable subsystems can be found in [8, Theorem
2]. The main differences with the results in Corollary 4.12 are
as follows. Firstly, the construction of our Lyapunov functions is
based on nonlinear interpolation that connects Qp and Pp via Gp,
as opposed to a linear interpolation used in [8]. Consequently, the
derivative of Mp(t) in (41) may be negative so that the corresponding
Lyapunov function may decrease in [ti, ti + τdp), in contrast to the
non-decreasing Lyapunov function in [8]. We note that the discretized
Lyapunov function technique in [8, Theorem 2] can be obtained by
taking Gp = 0. Secondly, our approach consider MDALT condition
which generalizes the DT condition assumed in [8]. For the previous
linear case after Lemma 4.7, by using Corollary 4.12 we can fix
η1 = η2 = 1.7, µ1 = µ2 = 0.7, then the switching law is given by
τd1 = τd2 = 0.2.

V. SIMULATION SETUP AND RESULTS

In this section, two numerical examples will be presented. In the
first case, we analyze the contraction of a switched system with
mixed contracting-noncontracting modes by using Theorem 4.4. In
the second case, we apply Theorem 4.10 to design the switching law
for the system whose subsystems are all noncontracting.

Example 5.1: Consider a switched system (1) consisting of two
time-varying subsystems, whose dynamics take the form

p = 1 :

{
ẋ1 = −x1 − x31 + 3x2 sin t,

ẋ2 = −2x1 sin t− x2 + 2 cos t,

p = 2 :

{
ẋ1 = x1 + x2 + t,

ẋ2 = −x1 − 2x2 + cosx2.

(54)

where x(t) ∈ Rn is the state vector. Subsystem p = 2 is non-
contracting. The Lyapunov function can be selected as V1(ξ) = 2ξ21+
3ξ22 , V2(ξ) = ξ21 + ξ22 . According to Theorem 4.4, we can fix η1 =
−2, η2 = 2, µ1 = 3, µ2 = 0.5, the switched law (20) is given by
τa1 ≥ 0.55, τa2 ≤ 0.35. For the simulation shown Figure 1 we use
a periodic switching signal with τ1 = 0.65 and τ2 = 0.35.
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Fig. 1: The plot of trajectories of switched system in Example 5.1
initialized at

[
2
−2

]
and

[−2
2

]
for mode 1 and 2, respectively, and

using a periodic switching signal with τ1 = 0.65 and τ2 = 0.35.

Example 5.2: Consider a switched system (1) consisting of two
noncontracting subsystems, whose dynamics take the form

p = 1 :

{
ẋ1 = 0.1x1 − 0.9x2 − 0.2 cos(0.1x1),
ẋ2 = 0.1x1 − 1.4x2 − 0.7 cos(0.1x2),

p = 2 :

{
ẋ1 = −1.9x1 + 0.6x2 + 0.7 cos(0.1x2),
ẋ2 = 0.6x1 − 0.1x2 + 0.2 cos(0.1x2).

(55)

where x(t) ∈ Rn is the state vector. It can be checked that for each
mode, there exist a positive eigenvalue of ▽xfi(x, t) which satisfies
λ1 ≥ 0.0130 (for the first mode) or λ2 ≥ 0.0948 (for the second
mode). In other words, each individual system is non-contracting. As
a result, the methods used in [23], [24] are no longer applicable in
this particular case.
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Using Theorem 4.10, where we fix m1 = m2 = 0.1, η1 = η2 =
0.3, µ1 = 0.65, µ2 = 0.6, ϵ1 = ϵ2 = 1, Γ1 = [ 0.0004 0

0 0.005 ], Γ2 =
[ 0.005 0

0 0.0004 ], it can be checked that using the following symmetric
constant matrices

Pi :

[
0.0398 −0.0071
−0.0071 0.0933

]
,

[
0.0881 −0.0208
−0.0208 0.0547

]
,

Qi :

[
0.0493 −0.0129
−0.0129 0.0326

]
,

[
0.0235 −0.0013
−0.0013 0.0554

]
,

Gi :

[
−0.0038 0.0013
0.0013 −0.0272

]
,

[
−0.0340 0.0107
0.0107 −0.0064

]
,

(56)

the LMI problem given by (34)-(39) is feasible. Correspondingly, we
have MDALTs as τa1 = 1.435, τa2 = 1.702, and the minimum
dwell time for each mode as τd1 = τd2 = 0.5. To illustrate the
contraction property, we consider switching signals with periodic
switching time (each p mode has the same dwell time). Trajectories
of the switching law: τa1 = 0.5, τa2 = 1.7 with two different
initial conditions

[
1
−1

]
,
[−1

1

]
are shown in Figure 2. The switching

signal satisfies hypotheses of Theorem 4.10, we can conclude that
the switched system is contracting. Figure 2 shows that despite each
mode is noncontracting and the distance between the trajectories may
increase in each mode (before the first switching, the distance are
increasing), the increments are compensated by the switching behav-
iors, so that the trajectories converge to each other asymptotically.
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-0.5

0

0.5

1

Fig. 2: The plot of trajectories of switched system in Example 5.2
initialized at

[
1
−1

]
and

[−1
1

]
for mode 1 and 2, respectively, and

using a periodic switching signal with τa1 = 0.5 and τa2 = 1.7.

VI. CONCLUSION
In this paper, the contraction property of switched systems with

mixed contracting-noncontracting modes have been studied. It is
established based on a necessary and sufficient condition that con-
nects the contraction property of the original switched systems and
the UGES of its variational systems. A time-dependent Lyapunov
function and a mixed MDADT/MDALT method are introduced to
study the UGES of the switched variational systems. Furthermore
LMI conditions are presented that allow for numerical validation on
the contraction property of switched systems with computable mode-
dependent average dwell-time. Our results can be applied to stabilize
linear switched systems with all unstable modes.
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