The one-step function for discrete-time nonlinear switched singular systems

Sutrisno
Bernoulli Institute for Mathematics, CS and AI
University of Groningen
Nijenborgh 9, 9747 AG Groningen
The Netherlands
Email: s.sutrisno@rug.nl

Stephan Trenn
Bernoulli Institute for Mathematics, CS and AI
University of Groningen
Nijenborgh 9, 9747 AG Groningen
The Netherlands
Email: s.trenn@rug.nl

1 Introduction

Consider the class of switched systems where each mode is a discrete-time nonlinear singular system without input of the form

$$
\begin{equation*}
E_{\sigma(k)} x(k+1)=F_{\sigma(k)}(x(k)), \tag{1}
\end{equation*}
$$

where $k \in \mathbb{N}$ is the time instant, $x(k) \in \mathbb{R}^{n}$ is the state, $\sigma: \mathbb{N} \rightarrow\{0,1,2, \ldots, \mathrm{p}\}$ is the switching signal determining which mode $\sigma(k)$ is active at time instant $k, E_{i} \in \mathbb{R}^{n \times n}$ are singular with a constant rank i.e. $\operatorname{rank} E_{i}=r<n$, and $F_{i}(x)=\left(f_{1, i}(x), f_{2, i}(x), \ldots, f_{n, i}(x)\right)^{\top}$ are vector valued functions of nonlinear functions with $f_{j, i}: \mathbb{R}^{n} \longrightarrow \mathbb{R}$. Define $\mathscr{S}_{i}:=\left\{x \in \mathbb{R}^{n}: F_{i}(x) \in \operatorname{im} E\right\}$. From basic algebra, there exist invertible matrices $S_{i}, T_{i} \in \mathbb{R}^{n \times n}$ such that $S_{i} E_{i} T_{i}=\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]$. By using the state transformation $T_{\sigma(k)}^{-1} x(k)=\binom{v(k)}{w(k)}, v \in$ $\mathbb{R}^{r}, w \in \mathbb{R}^{n-r}$, system (1) can be rewritten as

$$
\begin{align*}
{\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right]\binom{v(k+1)}{w(k+1)} } & =S_{\sigma(k)} F_{\sigma(k)}\left(T_{\sigma(k)}\binom{v(k)}{w(k)}\right) \\
& =:\binom{G_{\sigma(k)}(v(k), w(k))}{H_{\sigma(k)}(v(k), w(k))} \tag{2}
\end{align*}
$$

Inspired by the one-step map for linear switched singular systems in [1], in this study, we formulate the one-step function for nonlinear switched singular systems under the following assumptions:
Assumption 1.1. For each $i \in\{0,1, \ldots, \mathrm{p}\}, \mathscr{S}_{i}$ is a subspace.
Assumption 1.2. $\mathscr{S}_{i} \cap \operatorname{ker} E_{j}=\{0\} \forall i, j \in\{0,1, \ldots, \mathrm{p}\}$.
Remark 1.3. Since \mathscr{S}_{i} is a subspace, the nonlinear algebraic constraint $H_{i}(v, w)=0$ is equivalent to a linear algebraic constraint. Hence, the nonlinearity appears now only on $G_{i}(v, w)$. However, we believe that the one-step function proposed in this study could be generalized for cases with \mathscr{S}_{i} is not necessarily a subspace; this is our ongoing work.

2 Nonswitched Systems

We discuss in this section the solution for nonswitched cases of (1) of the form

$$
\begin{equation*}
E x(k+1)=F(x(k)), k=0,1, \ldots \tag{3}
\end{equation*}
$$

where $E \in \mathbb{R}^{n \times n}$ is singular. Recall $\mathscr{S}=\left\{x \in \mathbb{R}^{n}: F(x) \in\right.$ $\operatorname{im} E\}$, and suppose that Assumptions (1.1)-(1.2) hold.
Lemma 2.1. System (3) has a solution with initial condition $x(0)=x_{0} \in \mathbb{R}^{n}$ if, and only if, $x_{0} \in \mathscr{S}$. Its solution is unique
and satisfies

$$
\begin{equation*}
x(k+1)=\Phi(x(k))=\Pi_{\mathscr{S}}^{\mathrm{ker} E} E^{+} F(x(k)) \forall k \in \mathbb{N} . \tag{4}
\end{equation*}
$$

where E^{+}is a generalized inverse of E and $\Pi_{\mathscr{S}}^{\mathrm{ker} E}$ is the (unique) projector onto \mathscr{S} along $\operatorname{ker} E$.
Proof sketch: By a state transformation as in (2), system (3) can be rewritten as

$$
\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right)\binom{v(k+1)}{w(k+1)}(k+1)=\binom{G(v(k), w(k))}{H(v(k), w(k))}
$$

and by Assumption 1.2, $0=H(v(k), w(k))$ has a solution, and thus (3) has a solution. From (3),

$$
\begin{equation*}
x(k+1) \in E^{-1}(F(x(k)))=\left\{E^{+} F(x(k))\right\}+\operatorname{ker} E \tag{5}
\end{equation*}
$$

and $x(k+1)$ must also satisfy

$$
\begin{equation*}
x(k+1) \in\left\{x \in \mathbb{R}^{n}: F(x) \in \operatorname{im} E\right\}=\mathscr{S} . \tag{6}
\end{equation*}
$$

By Assumption 1.2 and the projector lemma in [1], $x(k+1)$ satisfies (4) uniquely.

3 Switched Systems

Based on the one-step function for nonswitched systems, we have the following theorem about the the one-step function for switched systems of the form (1).
Theorem 3.1. System (1) under Assumptions 1.1-1.2 has a solution with initial condition $x(0)=x_{0} \in \mathbb{R}^{n}$ if, and only if, $x_{0} \in \mathscr{S}_{\sigma(0)}$. Its solution is unique and satisfies

$$
\begin{equation*}
x(k+1)=\Phi_{\sigma(k+1), \sigma(k)}(x(k)), \forall k \in \mathbb{N} \tag{7}
\end{equation*}
$$

where $\Phi_{i, j}$ is the one-step function from mode- j to mode- i given by

$$
\begin{equation*}
\Phi_{i, j}(x(k)):=\Pi_{\mathscr{S}_{i}}^{\mathrm{ker} E_{j}} E_{j}^{+} F_{j}(x(k)) \tag{8}
\end{equation*}
$$

where E_{j}^{+}is a generalized inverse of E_{j} and $\Pi_{\mathscr{S}_{i}}^{\mathrm{ker} E_{j}}$ is the (unique) projector onto \mathscr{S}_{i} along $\operatorname{ker} E_{j}$.
Proof sketch: The proof is a straightforward generalization from the proof for nonswitched systems by replacing (5)-(6) with

$$
\begin{aligned}
& x(k+1) \in E_{j}^{-1}\left(F_{j}(x(k))\right)=\left\{E_{j}^{+} F_{j}(x(k))\right\}+\operatorname{ker} E_{j}, \\
& x(k+1) \in\left\{x \in \mathbb{R}^{n}: F_{i}(x) \in \operatorname{im} E_{i}\right\}=\mathscr{S}_{i}
\end{aligned}
$$

respectively.

References

[1] Pham Ky Anh, et al. "The one-step-map for switched singular systems in discrete-time." Proc. 58th IEEE Conf. Decision Control (CDC) 2019.

