The one-step function for discrete-time nonlinear switched singular systems

Sutrisno Bernoulli Institute for Mathematics, CS and AI University of Groningen Nijenborgh 9, 9747 AG Groningen The Netherlands Email: s.sutrisno@rug.nl

1 Introduction

Consider the class of switched systems where each mode is a discrete-time nonlinear singular system without input of the form

$$E_{\sigma(k)}x(k+1) = F_{\sigma(k)}(x(k)), \tag{1}$$

where $k \in \mathbb{N}$ is the time instant, $x(k) \in \mathbb{R}^n$ is the state, $\sigma : \mathbb{N} \to \{0, 1, 2, ..., p\}$ is the switching signal determining which mode $\sigma(k)$ is active at time instant $k, E_i \in \mathbb{R}^{n \times n}$ are singular with a constant rank i.e. rank $E_i = r < n$, and $F_i(x) = (f_{1,i}(x), f_{2,i}(x), ..., f_{n,i}(x))^\top$ are vector valued functions of nonlinear functions with $f_{j,i} : \mathbb{R}^n \to \mathbb{R}$. Define $\mathscr{S}_i := \{x \in \mathbb{R}^n : F_i(x) \in imE\}$. From basic algebra, there exist invertible matrices $S_i, T_i \in \mathbb{R}^{n \times n}$ such that $S_i E_i T_i = \begin{bmatrix} I_n & 0 \\ 0 & 0 \end{bmatrix}$. By using the state transformation $T_{\sigma(k)}^{-1}x(k) = \begin{pmatrix} v(k) \\ w(k) \end{pmatrix}, v \in$

 \mathbb{R}^r , $w \in \mathbb{R}^{n-r}$, system (1) can be rewritten as

$$\begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} \begin{pmatrix} v(k+1) \\ w(k+1) \end{pmatrix} = S_{\sigma(k)} F_{\sigma(k)} \begin{pmatrix} T_{\sigma(k)} \begin{pmatrix} v(k) \\ w(k) \end{pmatrix} \end{pmatrix}$$
$$=: \begin{pmatrix} G_{\sigma(k)}(v(k), w(k)) \\ H_{\sigma(k)}(v(k), w(k)) \end{pmatrix}$$
(2)

Inspired by the one-step map for linear switched singular systems in [1], in this study, we formulate the one-step function for nonlinear switched singular systems under the following assumptions:

Assumption 1.1. For each $i \in \{0, 1, ..., p\}$, \mathcal{S}_i is a subspace.

Assumption 1.2.
$$\mathscr{S}_i \cap \ker E_j = \{0\} \ \forall i, j \in \{0, 1, ..., p\}.$$

Remark 1.3. Since \mathcal{S}_i is a subspace, the nonlinear algebraic constraint $H_i(v,w) = 0$ is equivalent to a linear algebraic constraint. Hence, the nonlinearity appears now only on $G_i(v,w)$. However, we believe that the one-step function proposed in this study could be generalized for cases with \mathcal{S}_i is not necessarily a subspace; this is our ongoing work.

2 Nonswitched Systems

We discuss in this section the solution for nonswitched cases of (1) of the form

$$Ex(k+1) = F(x(k)), \ k = 0, 1, \dots$$
(3)

where $E \in \mathbb{R}^{n \times n}$ is singular. Recall $\mathscr{S} = \{x \in \mathbb{R}^n : F(x) \in imE\}$, and suppose that Assumptions (1.1)-(1.2) hold.

Lemma 2.1. *System* (3) *has a solution with initial condition* $x(0) = x_0 \in \mathbb{R}^n$ *if, and only if,* $x_0 \in \mathcal{S}$ *. Its solution is unique*

Stephan Trenn Bernoulli Institute for Mathematics, CS and AI University of Groningen Nijenborgh 9, 9747 AG Groningen The Netherlands Email: s.trenn@rug.nl

and satisfies

$$x(k+1) = \Phi_{\mathcal{X}}(k) = \Pi_{\mathscr{S}}^{\ker E} E^+ F(x(k)) \ \forall k \in \mathbb{N}.$$
 (4)

where E^+ is a generalized inverse of E and $\Pi_{\mathscr{S}}^{\ker E}$ is the (unique) projector onto \mathscr{S} along ker E.

Proof sketch: By a state transformation as in (2), system (3) can be rewritten as

$$\begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} v(k+1) \\ w(k+1) \end{pmatrix} (k+1) = \begin{pmatrix} G(v(k), w(k)) \\ H(v(k), w(k)) \end{pmatrix}$$

and by Assumption 1.2, 0 = H(v(k), w(k)) has a solution, and thus (3) has a solution. From (3),

 $x(k+1) \in E^{-1}(F(x(k))) = \{E^+F(x(k))\} + \ker E$ (5) and x(k+1) must also satisfy

 $x(k+1) \in \{x \in \mathbb{R}^n : F(x) \in \operatorname{im} E\} = \mathscr{S}.$ (6)

By Assumption 1.2 and the projector lemma in [1], x(k+1) satisfies (4) uniquely.

3 Switched Systems

Based on the one-step function for nonswitched systems, we have the following theorem about the the one-step function for switched systems of the form (1).

Theorem 3.1. System (1) under Assumptions 1.1-1.2 has a solution with initial condition $x(0) = x_0 \in \mathbb{R}^n$ if, and only if, $x_0 \in \mathscr{S}_{\sigma(0)}$. Its solution is unique and satisfies

$$x(k+1) = \Phi_{\sigma(k+1),\sigma(k)}(x(k)), \ \forall k \in \mathbb{N}$$
(7)

where $\Phi_{i,j}$ is the one-step function from mode-j to mode-i given by

$$\Phi_{i,j}(x(k)) := \Pi_{\mathscr{S}_i}^{\ker E_j} E_j^+ F_j(x(k))$$
(8)

where E_j^+ is a generalized inverse of E_j and $\Pi_{\mathscr{S}_i}^{\ker E_j}$ is the (unique) projector onto \mathscr{S}_i along ker E_j .

Proof sketch: The proof is a straightforward generalization from the proof for nonswitched systems by replacing (5)-(6) with

$$\begin{aligned} x(k+1) &\in E_j^{-1}(F_j(x(k))) = \{E_j^+ F_j(x(k))\} + \ker E_j, \\ x(k+1) &\in \{x \in \mathbb{R}^n : F_i(x) \in \operatorname{im} E_i\} = \mathscr{S}_i \end{aligned}$$
spectively. \Box

References

[1] Pham Ky Anh, et al. "The one-step-map for switched singular systems in discrete-time." *Proc. 58th IEEE Conf. Decision Control (CDC) 2019.*

res