2024
|
Wijnbergen, Paul; Trenn, Stephan Impulse-controllability of system classes of switched differential algebraic equations Journal Article In: Mathematics of Control, Signals, and Systems, vol. 36, iss. 2, pp. 351–380, 2024, (open access). @article{WijnTren24a,
title = {Impulse-controllability of system classes of switched differential algebraic equations},
author = {Paul Wijnbergen and Stephan Trenn},
url = {https://stephantrenn.net/wp-content/uploads/2022/08/Preprint-WT220806.pdf, Preprint},
doi = {10.1007/s00498-023-00367-0},
year = {2024},
date = {2024-06-01},
urldate = {2024-06-01},
journal = {Mathematics of Control, Signals, and Systems},
volume = {36},
issue = {2},
pages = {351–380},
abstract = {In this paper impulse controllability of system classes containing switched DAEs is studied. We introduce several notions of impulse-controllability of system classes and provide a characterization of strong impulse-controllability of system classes generated by arbitrary switching signals. In the case of a system class generated by switching signals with a fixed mode sequence it is shown that either all or almost all systems are impulse-controllable, or that all or almost all systems are impulse-uncontrollable. Sufficient conditions for all systems to be impulse-controllable or impulse-uncontrollable are presented. Furthermore, it is observed that although all systems are impulse-controllable, the input achieving impulse-free solutions might still depend on the switching times in the future, which causes some causality issues. Therefore, the concept of (quasi-) causal impulse-controllability is introduced and system classes which are (quasi-) causal are characterized. Finally necessary and sufficient conditions for a system class to be causal given some dwell-time are stated.},
note = {open access},
keywords = {controllability, DAEs, piecewise-smooth-distributions, switched-DAEs, switched-systems},
pubstate = {published},
tppubtype = {article}
}
In this paper impulse controllability of system classes containing switched DAEs is studied. We introduce several notions of impulse-controllability of system classes and provide a characterization of strong impulse-controllability of system classes generated by arbitrary switching signals. In the case of a system class generated by switching signals with a fixed mode sequence it is shown that either all or almost all systems are impulse-controllable, or that all or almost all systems are impulse-uncontrollable. Sufficient conditions for all systems to be impulse-controllable or impulse-uncontrollable are presented. Furthermore, it is observed that although all systems are impulse-controllable, the input achieving impulse-free solutions might still depend on the switching times in the future, which causes some causality issues. Therefore, the concept of (quasi-) causal impulse-controllability is introduced and system classes which are (quasi-) causal are characterized. Finally necessary and sufficient conditions for a system class to be causal given some dwell-time are stated. |
Hossain, Sumon; Trenn, Stephan Midpoint based balanced truncation for switched linear systems with known switching signal Journal Article In: IEEE Transactions on Automatic Control, vol. 69, no. 1, pp. 535-542, 2024. @article{HossTren24,
title = {Midpoint based balanced truncation for switched linear systems with known switching signal},
author = {Sumon Hossain and Stephan Trenn},
url = {https://stephantrenn.net/wp-content/uploads/2023/05/Preprint-HT230508.pdf, Preprint},
doi = {10.1109/TAC.2023.3269721},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
journal = {IEEE Transactions on Automatic Control},
volume = {69},
number = {1},
pages = {535-542},
abstract = {We propose a novel model reduction approach for switched linear systems with known switching signal. The class of considered systems encompasses switched systems with mode-dependent state-dimension as well as impulsive systems. Our method is based on a suitable definition of (time-varying) reachability and observability Gramians and we show that these Gramians satisfy precise interpretations in terms of input and output energy. Based on balancing the midpoint Gramians, we propose a piecewise-constant projection based model reduction resulting in a switched linear system of smaller size.},
keywords = {controllability, model-reduction, observability, switched-systems},
pubstate = {published},
tppubtype = {article}
}
We propose a novel model reduction approach for switched linear systems with known switching signal. The class of considered systems encompasses switched systems with mode-dependent state-dimension as well as impulsive systems. Our method is based on a suitable definition of (time-varying) reachability and observability Gramians and we show that these Gramians satisfy precise interpretations in terms of input and output energy. Based on balancing the midpoint Gramians, we propose a piecewise-constant projection based model reduction resulting in a switched linear system of smaller size. |
2023
|
Sutrisno,; Trenn, Stephan Inhomogeneous singular linear switched systems in discrete time: Solvability, reachability, and controllability Characterizations Proceedings Article In: Proc. 62nd IEEE Conf. Decision Control, pp. 5869-5874, IEEE, Singapore, 2023. @inproceedings{SutrTren23c,
title = {Inhomogeneous singular linear switched systems in discrete time: Solvability, reachability, and controllability Characterizations},
author = {Sutrisno and Stephan Trenn},
url = {https://stephantrenn.net/wp-content/uploads/2023/11/Preprint-ST230915.pdf, Preprint},
doi = {10.1109/CDC49753.2023.10384306},
year = {2023},
date = {2023-12-14},
urldate = {2023-12-14},
booktitle = {Proc. 62nd IEEE Conf. Decision Control},
pages = {5869-5874},
publisher = {IEEE},
address = {Singapore},
abstract = {In this paper we study a novel solvability notion for discrete-time singular linear switched systems with inputs. We consider the existence and uniqueness of a solution on arbitrary finite time intervals with arbitrary inputs and arbitrary switching signals, and furthermore, we pay special attention to strict causality, i.e. the current state is only allowed to depend on past values of the state and the input. A necessary and sufficient condition for this solvability notion is then established. Furthermore, a surrogate switched system (an ordinary switched system that has equivalent input-output behavior) is derived for any solvable system. By utilizing those surrogate systems, we are able to characterize the reachability and controllability properties of the original singular systems using a geometric approach.},
keywords = {controllability, DAEs, discrete-time, solution-theory, switched-DAEs, switched-systems},
pubstate = {published},
tppubtype = {inproceedings}
}
In this paper we study a novel solvability notion for discrete-time singular linear switched systems with inputs. We consider the existence and uniqueness of a solution on arbitrary finite time intervals with arbitrary inputs and arbitrary switching signals, and furthermore, we pay special attention to strict causality, i.e. the current state is only allowed to depend on past values of the state and the input. A necessary and sufficient condition for this solvability notion is then established. Furthermore, a surrogate switched system (an ordinary switched system that has equivalent input-output behavior) is derived for any solvable system. By utilizing those surrogate systems, we are able to characterize the reachability and controllability properties of the original singular systems using a geometric approach. |
Hossain, Sumon; Trenn, Stephan Reduced realization for switched linear systems with known mode sequence Journal Article In: Automatica, vol. 154, no. 111065, pp. 1-9, 2023, (open access). @article{HossTren23a,
title = {Reduced realization for switched linear systems with known mode sequence},
author = {Sumon Hossain and Stephan Trenn},
url = {https://stephantrenn.net/wp-content/uploads/2024/02/HossTren23a.pdf, Paper
https://doi.org/10.5281/zenodo.6410136, Matlab sources},
doi = {10.1016/j.automatica.2023.111065},
year = {2023},
date = {2023-08-01},
urldate = {2023-08-01},
journal = {Automatica},
volume = {154},
number = {111065},
pages = {1-9},
abstract = {We consider switched linear systems with mode-dependent state-dimensions and/or state jumps and propose a method to obtain a switched system of reduced size with identical input-output behavior. Our approach is based in considering time-dependent reachability and unobservability spaces as well as suitable extended reachability and restricted unobservability spaces together with the notion of a weak Kalman decomposition. A key feature of our approach is that only the mode sequence of the switching signal needs to be known and not the exact switching times. However, the size of a minimal realization will in general depend on the mode durations, hence it cannot be expected that our method always leads to minimal realization. Nevertheless, we show that our method is optimal in the sense that a repeated application doesn’t lead to a further reduction and we also highlight a practically relevant special case, where minimality is achieved.},
note = {open access},
keywords = {controllability, model-reduction, observability, switched-systems},
pubstate = {published},
tppubtype = {article}
}
We consider switched linear systems with mode-dependent state-dimensions and/or state jumps and propose a method to obtain a switched system of reduced size with identical input-output behavior. Our approach is based in considering time-dependent reachability and unobservability spaces as well as suitable extended reachability and restricted unobservability spaces together with the notion of a weak Kalman decomposition. A key feature of our approach is that only the mode sequence of the switching signal needs to be known and not the exact switching times. However, the size of a minimal realization will in general depend on the mode durations, hence it cannot be expected that our method always leads to minimal realization. Nevertheless, we show that our method is optimal in the sense that a repeated application doesn’t lead to a further reduction and we also highlight a practically relevant special case, where minimality is achieved. |
Sutrisno,; Trenn, Stephan Reachability and Controllability Characterizations for Linear Switched Systems in Discrete Time: A Geometric Approach Proceedings Article In: Proc. 2023 European Control Conference (ECC), pp. 2227-2232, Bucharest, Rumania , 2023. @inproceedings{SutrTren23b,
title = {Reachability and Controllability Characterizations for Linear Switched Systems in Discrete Time: A Geometric Approach},
author = {Sutrisno and Stephan Trenn},
url = {https://stephantrenn.net/wp-content/uploads/2022/11/Preprint-ST221125a.pdf, Preprint},
doi = {10.23919/ECC57647.2023.10178124},
year = {2023},
date = {2023-06-13},
urldate = {2023-06-13},
booktitle = {Proc. 2023 European Control Conference (ECC)},
pages = {2227-2232},
address = {Bucharest, Rumania },
abstract = {This article presents the reachability and controllability characterizations for discrete-time linear switched systems under a fixed and known switching signal. A geometric approach is used, and we are able to provide alternative conditions which are more computationally friendly compared to existing results by utilizing the solution formula at switching times. Furthermore, the proposed conditions make it easier to study the dependency of the reachability and controllability on the switching times and the mode sequences; this is a new result currently not investigated in the literature. Some academic examples are provided to illustrate the novel features found in this study.},
keywords = {controllability, discrete-time, switched-systems},
pubstate = {published},
tppubtype = {inproceedings}
}
This article presents the reachability and controllability characterizations for discrete-time linear switched systems under a fixed and known switching signal. A geometric approach is used, and we are able to provide alternative conditions which are more computationally friendly compared to existing results by utilizing the solution formula at switching times. Furthermore, the proposed conditions make it easier to study the dependency of the reachability and controllability on the switching times and the mode sequences; this is a new result currently not investigated in the literature. Some academic examples are provided to illustrate the novel features found in this study. |
2022
|
Hossain, Sumon; Sutrisno,; Trenn, Stephan A time-varying approach for model reduction of singular linear switched systems in discrete time Miscellaneous Extended Abstracts of the 25th International Symposium on Mathematical Theory of Networks and Systems, 2022. @misc{HossSutr22m,
title = {A time-varying approach for model reduction of singular linear switched systems in discrete time},
author = {Sumon Hossain and Sutrisno and Stephan Trenn},
url = {https://epub.uni-bayreuth.de/id/eprint/6809/, Book of Extended Abstracts
https://stephantrenn.net/wp-content/uploads/2023/01/HossSutr22m.pdf, Extended Abtract},
year = {2022},
date = {2022-09-12},
urldate = {2023-01-23},
abstract = {We propose a model reduction approach for singular linear switched systems in discrete time with a fixed mode sequence based on a balanced truncation reduction method for linear time-varying discrete-time systems. The key idea is to use the one-step map to find an equivalent time-varying system with an identical input-output behavior, and then adapt available balance truncation methods for (discrete) time-varying systems. The proposed method is illustrated with a low-dimensional academic example.},
howpublished = {Extended Abstracts of the 25th International Symposium on Mathematical Theory of Networks and Systems},
keywords = {controllability, DAEs, discrete-time, model-reduction, observability, switched-DAEs, switched-systems},
pubstate = {published},
tppubtype = {misc}
}
We propose a model reduction approach for singular linear switched systems in discrete time with a fixed mode sequence based on a balanced truncation reduction method for linear time-varying discrete-time systems. The key idea is to use the one-step map to find an equivalent time-varying system with an identical input-output behavior, and then adapt available balance truncation methods for (discrete) time-varying systems. The proposed method is illustrated with a low-dimensional academic example. |
Hossain, Sumon; Trenn, Stephan A weak Kalman decomposition approach for reduced realizations of switched linear systems Proceedings Article In: IFAC-PapersOnLine, pp. 157-162, 2022, (Part of special issue: 10th Vienna International Conference on Mathematical Modelling MATHMOD 2022: Vienna Austria, 27–29 July 2022). @inproceedings{HossTren22,
title = {A weak Kalman decomposition approach for reduced realizations of switched linear systems},
author = {Sumon Hossain and Stephan Trenn},
url = {https://stephantrenn.net/wp-content/uploads/2022/06/Preprint-HT220613.pdf, Preprint},
doi = {10.1016/j.ifacol.2022.09.088},
year = {2022},
date = {2022-07-27},
urldate = {2022-07-27},
booktitle = {IFAC-PapersOnLine},
volume = {55},
number = {20},
pages = {157-162},
abstract = {We propose a novel reduction approach for switched linear systems with a fixed mode sequence based on subspaces related to the (time-varying) reachable and unobservable spaces. These subspaces are defined in such a way that they can be used to construct a weak Kalman decomposition, which is then in turn used to define a reduced switched linear system with an identical input-output behavior. The proposed method is illustrated with a low dimensional academic example.},
note = {Part of special issue: 10th Vienna International Conference on Mathematical Modelling MATHMOD 2022: Vienna Austria, 27–29 July 2022},
keywords = {controllability, model-reduction, observability, switched-systems},
pubstate = {published},
tppubtype = {inproceedings}
}
We propose a novel reduction approach for switched linear systems with a fixed mode sequence based on subspaces related to the (time-varying) reachable and unobservable spaces. These subspaces are defined in such a way that they can be used to construct a weak Kalman decomposition, which is then in turn used to define a reduced switched linear system with an identical input-output behavior. The proposed method is illustrated with a low dimensional academic example. |
Wijnbergen, Paul; Trenn, Stephan Impulse-controllability of system classes of switched DAEs Miscellaneous Book of Abstracts - 41th Benelux Meeting on Systems and Control, 2022. @misc{WijnTren22ma,
title = {Impulse-controllability of system classes of switched DAEs},
author = {Paul Wijnbergen and Stephan Trenn},
editor = {Alain Vande Wouwer and Michel Kinnaert and Emanuele Garone and Laurent Dewasme and Guilherme A. Pimentel},
url = {https://stephantrenn.net/wp-content/uploads/2022/08/WijnTren22ma.pdf, Abstract
https://www.beneluxmeeting.nl/2022/uploads/images/2022/boa_BeneluxMeeting2022_Web_betaV12_withChairs.pdf, Book of Abstracts},
year = {2022},
date = {2022-07-05},
urldate = {2022-07-05},
howpublished = {Book of Abstracts - 41th Benelux Meeting on Systems and Control},
keywords = {controllability, DAEs, piecewise-smooth-distributions, switched-DAEs, switched-systems},
pubstate = {published},
tppubtype = {misc}
}
|
Berger, Thomas; Ilchmann, Achim; Trenn, Stephan Quasi feedback forms for differential-algebraic systems Journal Article In: IMA Journal of Mathematical Control and Information, vol. 39, iss. 2, pp. 533-563, 2022, (open access, published online October 2021). @article{BergIlch22,
title = {Quasi feedback forms for differential-algebraic systems},
author = {Thomas Berger and Achim Ilchmann and Stephan Trenn},
url = {https://stephantrenn.net/wp-content/uploads/2023/01/BergIlch22.pdf, Paper
https://arxiv.org/abs/2102.12713, arXiv:2102.12713},
doi = {10.1093/imamci/dnab030},
year = {2022},
date = {2022-06-01},
urldate = {2022-06-01},
journal = {IMA Journal of Mathematical Control and Information},
volume = {39},
issue = {2},
pages = {533-563},
abstract = {We investigate feedback forms for linear time-invariant systems described by differential-algebraic equations. Feedback forms are representatives of certain equivalence classes. For example state space transformations, invertible transformations from the left, and proportional state feedback constitute an equivalence relation. The representative of such an equivalence class, which we call proportional feedback form for the above example, allows to read off relevant system theoretic properties. Our main contribution is to derive a quasi proportional feedback form. This form is advantageous since it provides some geometric insight and is simple to compute, but still allows to read off the relevant structural properties of the control system. We also derive a quasi proportional and derivative feedback form. Similar advantages hold.},
note = {open access, published online October 2021},
keywords = {controllability, DAEs, normal-forms},
pubstate = {published},
tppubtype = {article}
}
We investigate feedback forms for linear time-invariant systems described by differential-algebraic equations. Feedback forms are representatives of certain equivalence classes. For example state space transformations, invertible transformations from the left, and proportional state feedback constitute an equivalence relation. The representative of such an equivalence class, which we call proportional feedback form for the above example, allows to read off relevant system theoretic properties. Our main contribution is to derive a quasi proportional feedback form. This form is advantageous since it provides some geometric insight and is simple to compute, but still allows to read off the relevant structural properties of the control system. We also derive a quasi proportional and derivative feedback form. Similar advantages hold. |
2021
|
Hossain, Sumon; Trenn, Stephan Minimality of Linear Switched Systems with known switching signal Proceedings Article In: Proceedings in Applied Mathematics and Mechanics, pp. 1-3, 2021, (open access). @inproceedings{HossTren21a,
title = {Minimality of Linear Switched Systems with known switching signal},
author = {Sumon Hossain and Stephan Trenn},
url = {https://stephantrenn.net/wp-content/uploads/2022/08/HossTren21a.pdf, Paper},
doi = {10.1002/pamm.202100067},
year = {2021},
date = {2021-12-14},
urldate = {2021-12-14},
booktitle = {Proceedings in Applied Mathematics and Mechanics},
volume = {21},
number = {e202100067},
pages = {1-3},
abstract = {Minimal realization is discussed for linear switched systems with a given switching signal. We propose a consecutive forward and backward approach for the time-interval of interest. The forward approach refers to extending the reachable subspace at each switching time by taking into account the nonzero reachable space from the previous mode. Afterwards, the backward approach extends the observable subspace of the current mode by taking observability information from the next mode into account. This results in an overall reduced switched system which is minimal and has the same input-output behavior as original system. Some examples are provided to illustrate the approach.},
note = {open access},
keywords = {controllability, model-reduction, observability, switched-systems},
pubstate = {published},
tppubtype = {inproceedings}
}
Minimal realization is discussed for linear switched systems with a given switching signal. We propose a consecutive forward and backward approach for the time-interval of interest. The forward approach refers to extending the reachable subspace at each switching time by taking into account the nonzero reachable space from the previous mode. Afterwards, the backward approach extends the observable subspace of the current mode by taking observability information from the next mode into account. This results in an overall reduced switched system which is minimal and has the same input-output behavior as original system. Some examples are provided to illustrate the approach. |
Hossain, Sumon; Trenn, Stephan Minimal realization for linear switched systems with a single switch Proceedings Article In: Proc. European Control Conference (ECC21), pp. 1168-1173, Rotterdam, Netherlands, 2021. @inproceedings{HossTren21b,
title = {Minimal realization for linear switched systems with a single switch},
author = {Sumon Hossain and Stephan Trenn},
url = {https://stephantrenn.net/wp-content/uploads/2021/04/Preprint-HT210406.pdf, Preprint},
doi = {10.23919/ECC54610.2021.9654948},
year = {2021},
date = {2021-06-29},
urldate = {2021-06-29},
booktitle = {Proc. European Control Conference (ECC21)},
pages = {1168-1173},
address = {Rotterdam, Netherlands},
abstract = {We discuss the problem of minimal realization for linear switched systems with a given switching signal and present some preliminary results for the single switch case. The key idea is to extend the reachable subspace of the second mode to include nonzero initial values (resulting from the first mode) and also extend the observable subspace of the first mode by taking information from the second mode into account. We provide some simple examples to illustrate the approach.},
keywords = {controllability, normal-forms, observability, solution-theory, switched-systems},
pubstate = {published},
tppubtype = {inproceedings}
}
We discuss the problem of minimal realization for linear switched systems with a given switching signal and present some preliminary results for the single switch case. The key idea is to extend the reachable subspace of the second mode to include nonzero initial values (resulting from the first mode) and also extend the observable subspace of the first mode by taking information from the second mode into account. We provide some simple examples to illustrate the approach. |
Wijnbergen, Paul; Trenn, Stephan Impulse-free interval-stabilization of switched differential algebraic equations Journal Article In: Systems & Control Letters, vol. 149, pp. 104870.1-10, 2021, (Open Access.). @article{WijnTren21a,
title = {Impulse-free interval-stabilization of switched differential algebraic equations},
author = {Paul Wijnbergen and Stephan Trenn},
url = {https://stephantrenn.net/wp-content/uploads/2021/01/24-SCL149-104870.pdf, Paper},
doi = {10.1016/j.sysconle.2020.104870},
year = {2021},
date = {2021-01-23},
urldate = {2021-01-23},
journal = {Systems & Control Letters},
volume = {149},
pages = {104870.1-10},
abstract = {In this paper stabilization of switched differential algebraic equations is considered, where Dirac impulses in both the input and the state trajectory are to be avoided during the stabilization process. First it is shown that stabilizability of a switched DAE and the existence of impulse-free solutions are merely necessary conditions for impulse-free stabilizability. Then necessary and sufficient conditions for the existence of impulse-free solutions are given, which motivate the definition of (impulse-free) interval-stabilization on a finite interval. Under a uniformity assumption, which can be verified for a broad class of switched systems, stabilizability on an infinite interval can be concluded based on interval-stabilizability. As a result a characterization of impulse-free interval stabilizability is given and as a corollary we provide a novel impulse-free null-controllability characterization. Finally, the results are compared to results on interval-stabilizability where Dirac impulses are allowed in the input and state trajectory.
},
note = {Open Access.},
keywords = {controllability, piecewise-smooth-distributions, stability, switched-DAEs, switched-systems},
pubstate = {published},
tppubtype = {article}
}
In this paper stabilization of switched differential algebraic equations is considered, where Dirac impulses in both the input and the state trajectory are to be avoided during the stabilization process. First it is shown that stabilizability of a switched DAE and the existence of impulse-free solutions are merely necessary conditions for impulse-free stabilizability. Then necessary and sufficient conditions for the existence of impulse-free solutions are given, which motivate the definition of (impulse-free) interval-stabilization on a finite interval. Under a uniformity assumption, which can be verified for a broad class of switched systems, stabilizability on an infinite interval can be concluded based on interval-stabilizability. As a result a characterization of impulse-free interval stabilizability is given and as a corollary we provide a novel impulse-free null-controllability characterization. Finally, the results are compared to results on interval-stabilizability where Dirac impulses are allowed in the input and state trajectory.
|
2020
|
Wijnbergen, Paul; Trenn, Stephan Impulse controllability of switched differential-algebraic equations Proceedings Article In: Proc. European Control Conference (ECC 2020), pp. 1561-1566, Saint Petersburg, Russia, 2020. @inproceedings{WijnTren20,
title = {Impulse controllability of switched differential-algebraic equations},
author = {Paul Wijnbergen and Stephan Trenn},
url = {https://stephantrenn.net/wp-content/uploads/2020/02/Preprint-WT200204.pdf, Preprint},
doi = {10.23919/ECC51009.2020.9143713},
year = {2020},
date = {2020-05-15},
booktitle = {Proc. European Control Conference (ECC 2020)},
pages = {1561-1566},
address = {Saint Petersburg, Russia},
abstract = {This paper addresses impulse controllability of switched DAEs on a finite interval. First we present a forward approach where we define certain subspaces forward in time. These subpsaces are then used to provide a sufficient condition for impulse controllability. In order to obtain a full characterization we present afterwards a backward approach, where a sequence of subspaces is defined backwards in time. With the help of the last element of this backward sequence, we are able to fully characterize impulse controllability. All results are geometric results and thus independent of a coordinate system.},
keywords = {controllability, DAEs, piecewise-smooth-distributions, switched-DAEs, switched-systems},
pubstate = {published},
tppubtype = {inproceedings}
}
This paper addresses impulse controllability of switched DAEs on a finite interval. First we present a forward approach where we define certain subspaces forward in time. These subpsaces are then used to provide a sufficient condition for impulse controllability. In order to obtain a full characterization we present afterwards a backward approach, where a sequence of subspaces is defined backwards in time. With the help of the last element of this backward sequence, we are able to fully characterize impulse controllability. All results are geometric results and thus independent of a coordinate system. |
Wijnbergen, Paul; Trenn, Stephan A forward approach to controllability of switched DAEs Miscellaneous Book of Abstracts - 39th Benelux Meeting on Systems and Control, 2020. @misc{WijnTren20m,
title = {A forward approach to controllability of switched DAEs},
author = {Paul Wijnbergen and Stephan Trenn},
editor = {Raffaella Carloni and Bayu Jayawardhana and Erjen Lefeber},
url = {https://www.beneluxmeeting.nl/2020/uploads/papers/boa.pdf, Book of Abstracts
https://stephantrenn.net/wp-content/uploads/2021/03/WijnTren20.pdf, Extended Abstract},
year = {2020},
date = {2020-03-12},
howpublished = {Book of Abstracts - 39th Benelux Meeting on Systems and Control},
keywords = {controllability, switched-DAEs, switched-systems},
pubstate = {published},
tppubtype = {misc}
}
|
2016
|
Küsters, Ferdinand; Trenn, Stephan Duality of switched DAEs Journal Article In: Math. Control Signals Syst., vol. 28, no. 3, pp. 25, 2016. @article{KustTren16a,
title = {Duality of switched DAEs},
author = {Ferdinand Küsters and Stephan Trenn},
url = {http://stephantrenn.net/wp-content/uploads/2017/09/Preprint-KT160627.pdf, Preprint},
doi = {10.1007/s00498-016-0177-2},
year = {2016},
date = {2016-07-01},
journal = {Math. Control Signals Syst.},
volume = {28},
number = {3},
pages = {25},
abstract = {We present and discuss the definition of the adjoint and dual of a switched differential-algebraic equation (DAE). For a proper duality definition, it is necessary to extend the class of switched DAEs to allow for additional impact terms. For this switched DAE with impacts, we derive controllability/reachability/determinability/observability characterizations for a given switching signal. Based on this characterizations, we prove duality between controllability/reachability and determinability/observability for switched DAEs.},
keywords = {controllability, DAEs, observability, piecewise-smooth-distributions, switched-DAEs, switched-systems},
pubstate = {published},
tppubtype = {article}
}
We present and discuss the definition of the adjoint and dual of a switched differential-algebraic equation (DAE). For a proper duality definition, it is necessary to extend the class of switched DAEs to allow for additional impact terms. For this switched DAE with impacts, we derive controllability/reachability/determinability/observability characterizations for a given switching signal. Based on this characterizations, we prove duality between controllability/reachability and determinability/observability for switched DAEs. |
2015
|
Küsters, Ferdinand; Trenn, Stephan Duality of switched ODEs with jumps Proceedings Article In: Proc. 54th IEEE Conf. Decis. Control, Osaka, Japan, pp. 4879–4884, 2015. @inproceedings{KustTren15b,
title = {Duality of switched ODEs with jumps},
author = {Ferdinand Küsters and Stephan Trenn},
url = {http://stephantrenn.net/wp-content/uploads/2017/09/Preprint-KT150814.pdf, Preprint},
doi = {10.1109/CDC.2015.7402981},
year = {2015},
date = {2015-12-05},
booktitle = {Proc. 54th IEEE Conf. Decis. Control, Osaka, Japan},
pages = {4879--4884},
abstract = {Duality between controllability/reachability and determinability/observability of switched systems with jumps is proven. The duality result is based on the recent characterization of controllability for switched differential-algebraic equations (DAEs) which share many properties with switched ordinary differential equations (ODEs) with jumps. Here we view the switching signal as given and fixed, which makes the overall switched system time-varying, in particular controllability and reachability do not coincide anymore.},
keywords = {controllability, observability, switched-systems},
pubstate = {published},
tppubtype = {inproceedings}
}
Duality between controllability/reachability and determinability/observability of switched systems with jumps is proven. The duality result is based on the recent characterization of controllability for switched differential-algebraic equations (DAEs) which share many properties with switched ordinary differential equations (ODEs) with jumps. Here we view the switching signal as given and fixed, which makes the overall switched system time-varying, in particular controllability and reachability do not coincide anymore. |
Küsters, Ferdinand; Trenn, Stephan Controllability characterization of switched DAEs Proceedings Article In: PAMM - Proc. Appl. Math. Mech., pp. 643–644, WILEY-VCH Verlag, 2015, ISSN: 1617-7061. @inproceedings{KustTren15a,
title = {Controllability characterization of switched DAEs},
author = {Ferdinand Küsters and Stephan Trenn},
url = {http://stephantrenn.net/wp-content/uploads/2017/09/Preprint-KT150527.pdf, Preprint},
doi = {10.1002/pamm.201510311},
issn = {1617-7061},
year = {2015},
date = {2015-06-01},
booktitle = {PAMM - Proc. Appl. Math. Mech.},
volume = {15},
number = {1},
pages = {643--644},
publisher = {WILEY-VCH Verlag},
abstract = {We study controllability of switched differential algebraic equations (switched DAEs) with fixed switching signal. Based on a behavioral definition of controllability we are able to establish a controllability characterization that takes into account possible jumps and impulses induced by the switches.},
keywords = {controllability, DAEs, switched-DAEs, switched-systems},
pubstate = {published},
tppubtype = {inproceedings}
}
We study controllability of switched differential algebraic equations (switched DAEs) with fixed switching signal. Based on a behavioral definition of controllability we are able to establish a controllability characterization that takes into account possible jumps and impulses induced by the switches. |
Küsters, Ferdinand; Ruppert, Markus G. -M.; Trenn, Stephan Controllability of switched differential-algebraic equations Journal Article In: Syst. Control Lett., vol. 78, no. 0, pp. 32 - 39, 2015, ISSN: 0167-6911. @article{KustRupp15,
title = {Controllability of switched differential-algebraic equations},
author = {Ferdinand Küsters and Markus G.-M. Ruppert and Stephan Trenn},
url = {http://stephantrenn.net/wp-content/uploads/2017/09/Preprint-KRT150122.pdf, Preprint},
doi = {10.1016/j.sysconle.2015.01.011},
issn = {0167-6911},
year = {2015},
date = {2015-01-01},
journal = {Syst. Control Lett.},
volume = {78},
number = {0},
pages = {32 - 39},
abstract = {We study controllability of switched differential–algebraic equations. We are able to establish a controllability characterization where we assume that the switching signal is known. The characterization takes into account possible jumps induced by the switches. It turns out that controllability not only depends on the actual switching sequence but also on the duration between the switching times.},
keywords = {controllability, DAEs, switched-DAEs, switched-systems},
pubstate = {published},
tppubtype = {article}
}
We study controllability of switched differential–algebraic equations. We are able to establish a controllability characterization where we assume that the switching signal is known. The characterization takes into account possible jumps induced by the switches. It turns out that controllability not only depends on the actual switching sequence but also on the duration between the switching times. |
2014
|
Ruppert, Markus G. -M.; Trenn, Stephan Controllability of switched DAEs: the single switch case Proceedings Article In: PAMM - Proc. Appl. Math. Mech., pp. 15–18, Wiley-VCH Verlag GmbH, 2014. @inproceedings{RuppTren14,
title = {Controllability of switched DAEs: the single switch case},
author = {Markus G.-M. Ruppert and Stephan Trenn},
url = {http://stephantrenn.net/wp-content/uploads/2017/09/Preprint-RT140729.pdf, Preprint (contains some corrections w.r.t. the published version)},
doi = {10.1002/pamm.201410005},
year = {2014},
date = {2014-03-01},
booktitle = {PAMM - Proc. Appl. Math. Mech.},
volume = {14},
number = {1},
pages = {15--18},
publisher = {Wiley-VCH Verlag GmbH},
abstract = {We study controllability of switched DAEs and formulate a definition of controllability in the behavioral sense. In order to characterize controllability for switched DAEs we first present new characterizations of controllability of non-switched DAEs based on the Wong-sequences. Afterwards a first result concerning the single-switch case is presented.},
keywords = {controllability, switched-DAEs, switched-systems},
pubstate = {published},
tppubtype = {inproceedings}
}
We study controllability of switched DAEs and formulate a definition of controllability in the behavioral sense. In order to characterize controllability for switched DAEs we first present new characterizations of controllability of non-switched DAEs based on the Wong-sequences. Afterwards a first result concerning the single-switch case is presented. |
Berger, Thomas; Trenn, Stephan Kalman controllability decompositions for differential-algebraic systems Journal Article In: Syst. Control Lett., vol. 71, pp. 54–61, 2014, ISSN: 0167-6911. @article{BergTren14,
title = {Kalman controllability decompositions for differential-algebraic systems},
author = {Thomas Berger and Stephan Trenn},
url = {http://stephantrenn.net/wp-content/uploads/2017/09/Preprint-BT140603.pdf, Preprint},
doi = {10.1016/j.sysconle.2014.06.004},
issn = {0167-6911},
year = {2014},
date = {2014-01-01},
journal = {Syst. Control Lett.},
volume = {71},
pages = {54--61},
abstract = {We study linear differential-algebraic control systems and investigate decompositions with respect to controllability properties. We show that the augmented Wong sequences can be exploited for a transformation of the system into a Kalman controllability decomposition (KCD). The KCD decouples the system into a completely controllable part, an uncontrollable part given by an ordinary differential equation and an inconsistent part, which is behaviorally controllable but contains no completely controllable part. This decomposition improves a known KCD from a behavioral point of view. We conclude the paper with some features of the KCD in the case of regular systems.},
keywords = {controllability, DAEs, normal-forms},
pubstate = {published},
tppubtype = {article}
}
We study linear differential-algebraic control systems and investigate decompositions with respect to controllability properties. We show that the augmented Wong sequences can be exploited for a transformation of the system into a Kalman controllability decomposition (KCD). The KCD decouples the system into a completely controllable part, an uncontrollable part given by an ordinary differential equation and an inconsistent part, which is behaviorally controllable but contains no completely controllable part. This decomposition improves a known KCD from a behavioral point of view. We conclude the paper with some features of the KCD in the case of regular systems. |
2009
|
Trenn, Stephan A normal form for pure differential algebraic systems Journal Article In: Linear Algebra Appl., vol. 430, no. 4, pp. 1070 – 1084, 2009. @article{Tren09a,
title = {A normal form for pure differential algebraic systems},
author = {Stephan Trenn},
url = {http://stephantrenn.net/wp-content/uploads/2017/09/Preprint-Tre081215.pdf, Preprint},
doi = {10.1016/j.laa.2008.10.004},
year = {2009},
date = {2009-01-01},
journal = {Linear Algebra Appl.},
volume = {430},
number = {4},
pages = {1070 -- 1084},
abstract = {In this paper linear time-invariant differential algebraic equations (DAEs) are studied; the focus is on pure DAEs which are DAEs without an ordinary differential equation (ODE) part. A normal form for pure DAEs is given which is similar to the Byrnes–Isidori normal form for ODEs. Furthermore, the normal form exhibits a Kalman-like decomposition into impulse-controllable- and impulse-observable states. This leads to a characterization of impulse-controllability and observability.},
keywords = {controllability, DAEs, normal-forms, observability, relative-degree},
pubstate = {published},
tppubtype = {article}
}
In this paper linear time-invariant differential algebraic equations (DAEs) are studied; the focus is on pure DAEs which are DAEs without an ordinary differential equation (ODE) part. A normal form for pure DAEs is given which is similar to the Byrnes–Isidori normal form for ODEs. Furthermore, the normal form exhibits a Kalman-like decomposition into impulse-controllable- and impulse-observable states. This leads to a characterization of impulse-controllability and observability. |