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Abstract

We study linear differential-algebraic control systems and investigate decompositions with respect to controllability
properties. We show that the augmented Wong sequences can beexploited for a transformation of the system into a
Kalman controllability decomposition (KCD). The KCD decouples the system into a completely controllable part, an
uncontrollable part given by an ordinary differential equation and an inconsistent part, which is behaviorally control-
lable but contains no completely controllable part. This decomposition improves a known KCD from a behavioral
point of view. We conclude the paper with some features of theKCD in the case of regular systems.

Keywords: differential-algebraic systems; descriptor systems; controllability; Kalman decomposition; Wong
sequences.

1. Introduction

We consider linear constant coefficient descriptor systemsgiven by differential-algebraic equations (DAEs) of the
form

Eẋ(t) = Ax(t)+Bu(t) (1)

whereE,A∈Rl×n, B∈Rl×m. The set of system models given by (1) is denoted byΣl×n
m and we write(E,A,B)∈ Σl×n

m .
DAE systems of the form (1) naturally occur when modeling dynamical systems subject to algebraic constraints; for
a further motivation we refer to [8, 10, 12] and the references therein. The system(E,A,B) is calledregular if l = n
and det(sE−A) ∈ R[s] \ {0}; otherwise it is calledsingular. We stress at this point that our main result concerning
the Kalman controllability decomposition (KCD) holds for the regular as well as for the singular case.

There is a canonical equivalence notion for DAEs inΣl×n
m given by

(E,A,B)∼= (Ẽ, Ã, B̃) :⇐⇒ ∃S∈ GL l ,T ∈ GLn : (SET,SAT,SB) = (Ẽ, Ã, B̃),

whereGLk denotes the space of invertible real-valuedk× k matrices;∼= is also often called system equivalence, first

studied by Rosenbrock [13]. If we want to highlight the involved transformation matricesSandT we also write
S,T
∼=

instead of∼=. The desired KCD, presented later, is a special representative of the corresponding equivalence class
where controllability properties can easily be read off.

The functionu : R → Rm is usually calledinput of the system, although one should keep in mind, that in the
singular caseu might be constrained and some of the state variables can playthe role of an input.

The tuple(x,u) : R→ Rn×Rm is said to be asolutionof (1) if, and only if, it belongs to thebehaviorof (1):

B(E,A,B) :=
{

(x,u) ∈ W
1

loc(R→ R
n)×L

1
loc(R→R

m)
∣

∣ (x,u) satisfies (1) for almost allt ∈ R
}

,

whereL 1
loc andW 1

loc denote the space of locally (Lebesgue) integrable or weaklydifferentiable functions with locally
integrable derivatives (see [1, Chap. 1]), respectively. The equivalence of DAE systems translates to an equivalence
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of solutions as follows:

(E,A,B)
S,T
∼= (Ẽ, Ã, B̃) =⇒

[

(x,u) ∈B(E,A,B) ⇔ (T−1x,u) ∈B(Ẽ,Ã,B̃)

]

,

in particular the input is not altered.
Note that it is possible to consider a slightly larger solution space by only requiring thatx∈ L 1

loc andEx∈ W 1
loc,

see [3]; in particular, it is not necessary to assume thatx is continuous. However, this leads to some technical
difficulties when studying (complete) controllability andtherefore we restrict our attention to the above solution
concept.

In the present paper we are interested in a KCD for general descriptor systems of the form (1). Recall the well-
known result that for linear time-invariant control systems given by ordinary differential equations (ODEs) of the
form

ẋ(t) = Ax(t)+Bu(t)

the KCD is given by

ż(t) =

[

A11 A12

0 A22

]

z(t)+

[

B1

0

]

u(t), (2)

wherex 7→ Tz= T ( z1
z2 ) is a suitable coordinate transformation such that the ODE systemż1(t) = A11z1(t)+B1u(t) is

controllable. In particular, the KCD separates the ODE intoa controllable and an uncontrollable part. At first glance,
a satisfying generalization of (2) is also available for DAEs (even in the singular case), see [5, Thm. 7.1] (which is
based on a result for the discrete time case in [2]): There exist invertible matricesSandT such that

(E,A,B)
S,T
∼=

([

E11 E12

0 E22

]

,

[

A11 A12

0 A22

]

,

[

B1

0

])

,

where the DAE system(E11,A11,B1) is completely controllable (see the forthcoming Definition2.1) and the only
reachable state from the origin for the DAE(E22,A22,0) is the origin itself. Seemingly, we again have a decomposition
into a controllable and an uncontrollable part. However, inthe behavioral approach (see e.g. [11]) the trivial DAE
0= x given by(0, I ,0) is controllable (because any two trajectories can be concatenated within the behavior), but the
above KCD would only consist of the uncontrollable part. This is an unsatisfactory situation and is due to the fact,
that for DAE systems (both regular and singular) certain states can be inconsistent and it doesn’t really make sense to
label those controllable or uncontrollable. We therefore propose the following more detailed KCD (our results were
inspired by the results for the regular case presented in [14]):

(SET,SAT,SB) =









E11 E12 E13

0 E22 E23

0 0 E33



 ,





A11 A12 A13

0 A22 A23

0 0 A33



 ,





B1

0
0







 ,

where, as before,SandT are invertible matrices and the DAE system given by(E11,A11,B1) is completely control-
lable. Furthermore,E22 is invertible and the DAE(E33,A33,0) is such that it only has the trivial solution. Hence, we
now have the decomposition into a (completely) controllable part, a classical uncontrollable part (given by an ODE)
and an inconsistent part (which is behaviorally controllable but contains no completely controllable part). We believe
that this KCD is much more adequate for the analysis of DAE control systems as it takes into account the special DAE
feature of possible inconsistent states which play a special role with respect to controllability. When restricting the
attention to the case of regular DAEs, we obtain a further decomposition of the completely controllable part into a
classical controllable part (given by a controllable ODE) and an instantaneously controllable part (corresponding toa
controllable “pure” DAE).

The paper is organized as follows: In Section 2 we introduce the concepts of complete and behavioral controlla-
bility considered in the present paper. We also recall the augmented Wong sequences as the crucial geometric tool
for our investigations and some connections of these sequences with the controllability concepts, the reachable space
and the space of consistent initial values. The KCD for singular (E,A,B) is proved in Section 3 and uniqueness of
the decomposition with respect to the equivalence∼= is discussed. Finally, Section 4 is devoted to the case of regular
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systems and some features of the KCD are highlighted. In particular, the connection between the augmented Wong
sequences and the original Wong sequences (B= 0) is shown; this is also illustrated in Figure 1.

2. Controllability notions

We recall the concepts of complete and behavioral controllability and their geometric characterizations in terms
of augmented Wong sequences. Our presentation follows mostly the survey [5].

Definition 2.1 (Controllability concepts). A system(E,A,B) ∈ Σl×n
m is called

(i) completely controllableif, and only if,

∀x0,xf ∈ R
n ∃ t f > 0 ∃(x,u) ∈B(E,A,B) : x(0) = x0 ∧ x(t f ) = xf ,

i.e., it is possible to control the statex(·) from any given initial valuex0 to any final valuexf .

(ii) behaviorally controllableif, and only if,

∀(x1,u1),(x2,u2) ∈B(E,A,B) ∃ t f > 0 ∃(x,u) ∈B(E,A,B) : (x(t),u(t)) =

{

(x1(t),u1(t)), if t < 0,

(x2(t),u2(t)), if t > t f ,

i.e., it is possible to connect any two feasible trajectories via a third feasible trajectory.

Both controllability notions are equivalent for ODE systems; however, for DAEs (singular as well as regular)
complete controllability is stronger than behavioral controllability as the latter does not require that the reachable
space (see the forthcoming Definition 2.4) is the whole space; it is defined within the context of the behavioral
approach [11] and hence respects the underlying algebraic constraints. We illustrate the introduced controllability
concepts by the following example.

Example 2.2. Consider the system(E,A,B) ∈ Σ4×3
2 with

E =









1 0 0
0 0 0
0 1 0
0 0 1









, A=









0 0 0
0 1 0
0 0 0
0 0 1









, B=









1 0
0 0
0 1
0 0









,

which consists of the three decoupled systems

ẋ1(t) = u1(t) (3a)

0= x2(t),

ẋ2(t) = u2(t), (3b)

ẋ3(t) = x3(t). (3c)

System (3a) is completely and behaviorally controllable, system (3b) is behaviorally controllable, but not completely
controllable, and system (3c) is neither behaviorally nor completely controllable.

In order to geometrically characterize controllability, the augmented Wong sequences are an important tool (see [5]
and the references therein) and are defined as follows:

V
0
(E,A,B) := R

n
, V

i+1
(E,A,B) := A−1(EV

i
(E,A,B)+ imB)⊆R

n
, V

∗
(E,A,B) :=

⋂

i∈N0

V
i
(E,A,B),

W
0
(E,A,B) := {0}, W

i+1
(E,A,B) := E−1(AW

i
(E,A,B)+ imB)⊆ R

n
, W

∗
(E,A,B) :=

⋃

i∈N0

W
i
(E,A,B).
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Recall that, for some matrixM ∈ Rl×n, MS =
{

x∈ Rl
∣

∣ x∈ S
}

denotes the image ofS ⊆ Rn underM and
M−1S = { x∈Rn | Mx∈ S } denotes the preimage ofS ⊆ Rl underM.

The sequences(V i
(E,A,B))i∈N and(W i

(E,A,B))i∈N are calledaugmented Wong sequencessince they are based on the
Wong sequences (B = 0) used in [4, 6, 7] and which have their origin in WONG [18] who was the first using both
sequences (withB= 0) for the analysis of matrix pencils.

The augmented Wong sequences allow a characterization of the controllability concepts as follows.

Lemma 2.3(Geometric criteria for controllability [5]). Consider(E,A,B) ∈ Σl×n
m and the limitsV ∗

(E,A,B) andW ∗
(E,A,B)

of the augmented Wong sequences. Then(E,A,B) is

(a) completely controllable if, and only if,V ∗
(E,A,B)∩W ∗

(E,A,B) = Rn;

(b) behaviorally controllable if, and only if,V ∗
(E,A,B) ⊆ W ∗

(E,A,B).

Before we can state the Kalman controllability decomposition, we also need the notion of the reachable space
which is crucial for the proof of the decomposition.

Definition 2.4 (Reachable space, for details see [5]). For (E,A,B) ∈ Σl×n
m thereachable spaceis defined as

R(E,A,B) :=
{

xf ∈ R
n
∣

∣ ∃ t f > 0 ∃(x,u) ∈B(E,A,B) : x(0) = 0 ∧ x(t f ) = xf
}

.

Note that any reachable statexf ∈Rn can be reached from the origin in arbitrary timet f > 0 (i.e., in the definition
above “∃ t f > 0” can be replaced by “∀ t f > 0”).

Remark 2.5. In [5] it is shown thatR(E,A,B) = V
∗
(E,A,B)∩W

∗
(E,A,B), hence complete controllability can also be char-

acterized by the intuitive conditionR(E,A,B) = Rn. Furthermore, it is proved in [5] that the space of consistent initial
values is given byV ∗

(E,A,B), i.e.,
{

x0 ∈Rn
∣

∣ ∃(x,u) ∈B(E,A,B) : x(0) = x0
}

= V ∗
(E,A,B).

3. Kalman controllability decomposition

In this section we present our main result about a generalized Kalman controllability decomposition (KCD) which
respects the special features of DAE control systems. The KCD is defined as follows.

Definition 3.1 (Kalman controllability decomposition). A system(E,A,B) ∈ Σl×n
m is said to be inKalman controlla-

bility decomposition (KCD)if, and only if,

(E,A,B) =









E11 E12 E13

0 E22 E23

0 0 E33



 ,





A11 A12 A13

0 A22 A23

0 0 A33



 ,





B1

0
0







 (4)

where

(i) (E11,A11,B1) ∈ Σl1×n1
m with l1 = rk[E11,B1]≤ n1+m is completely controllable,

(ii) (E22,A22,0) ∈ Σl2×n2
m with l2 = n2 andE22 is invertible,

(iii) (E33,A33,0) ∈ Σl3×n3
m with l3 ≥ n3 satisfies rkC(λE33−A33) = n3 for all λ ∈ C.

Some remarks on the above definition are warrant.

Remark 3.2. (i) The full row rank of [E11,B1] in property (i) of the KCD (4) does not already follow from the
complete controllability of(E11,A11,B1). This is due to the fact, that any completely controllable DAE system
can be augmented by zero rows (i.e., adding 0= 0) without altering its solution behavior at all. However, in the
KCD these zero rows will occur as additional 1×0 blocks in(E33,A33,0). In fact, the system

([

1
0

]

,
[

1
0

]

,
[

1
0

])

is in KCD, wherel1×n1 = 1×1, l2×n2 = 0×0, andl3×n3 = 1×0.
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(ii) In contrast to the above, an additional row 0= ũ for some new input ˜u (not increasing the state space) will
occur in the block(E11,A11,B1) in the KCD and lead to the fact that possiblyl1 > n1; for instance the system
([

1
0

]

,
[

0
1

]

,
[

1 0
0 1

])

is in KCD with only a(E11,A11,B1) block. However, it is always true thatl1 ≤ n1+m.

(iii) While l2 = n2 = 0 just means that the corresponding blocks in the KCD (4) are not present, we have seen
above thatn3 = 0 does not imply that the corresponding blocks are not present, they just have zero columns.
Analogously,l1 = 0 does also not imply that the corresponding blocks are not present, because there might still
be 0×1 blocks present in the KCD (corresponding to free and hence completely controllable variables). For
example, the KCD of the DAE([0], [0], [0]) consists of blocks of the sizesl1×n1 = 0×1, l2×n2 = 0×0 and
l3×n3 = 1×0; in particular, rk[E11,B1] = 0= l1.

(iv) Furthermore, as we have seen in item (ii) above, alson1 = 0 does not imply that the corresponding block in
the KCD is not present, since e.g. the DAE system

([

0
0

]

,
[

0
1

]

,
[

1
0

])

is already in KCD with blocks of sizes
l1×n1 = 1×0, l2×n2 = 0×0 andl3×n3 = 1×1; in particular, rk[E11,B1] = rkB1 = 1= l1.

(v) From property (iii) of (4) it follows thatR(E33,A33,0) = {0} and that
([

E11 E13
0 E33

]

,

[

A11 A13
0 A33

]

,
[B1

0

]

)

as well as

(E33,A33,0) are behaviorally controllable. The remaining “uncontrollable” subsystem(E22,A22,0) is described
by an ODE sinceE22 is invertible. This is remarkable, since the pencilsE−A ∈ R[s]l×n is not necessarily
regular.

We show that the KCD (4) can be obtained form the augmented Wong sequences of the original system, which
also yield a simple procedure to obtain the basis transformation. In view of Remark 2.5, this basis transformation
can intuitively be obtained from Lemma 2.3: the subspaceV ∗

(E,A,B)∩W ∗
(E,A,B) yields the completely controllable part,

any complement ofV ∗
(E,A,B)∩W ∗

(E,A,B) in V ∗
(E,A,B) yields an uncontrollable part (sinceV ∗

(E,A,B) ⊆ W ∗
(E,A,B) is equivalent

to V ∗
(E,A,B)∩W ∗

(E,A,B) = V ∗
(E,A,B)), and any complement ofV ∗

(E,A,B) yields a behaviorally controllable part that is not
completely controllable (i.e., a subspace of inconsistentinitial values).

Theorem 3.3(Kalman controllability decomposition). Consider(E,A,B) ∈ Σl×n
m and the limitsV ∗

(E,A,B) andW ∗
(E,A,B)

of the augmented Wong sequences. Choose any full rank matrices R1∈Rn×n1,P1∈Rn×n2,Q1∈Rn×n3,R2 ∈Rl×l1,P2∈
Rl×l2,Q2 ∈ Rl×l3 such that

imR1 = V
∗
(E,A,B)∩W

∗
(E,A,B), imR2 = (EV

∗
(E,A,B)+ imB)∩ (AW

∗
(E,A,B)+ imB),

imR1⊕ imP1 = V
∗
(E,A,B), imR2⊕ imP2 = EV

∗
(E,A,B)+ imB,

im[R1,P1]⊕ imQ1 = R
n
, im[R2,P2]⊕ imQ2 = R

l
.

Then T:= [R1,P1,Q1] ∈ GLn, S:= [R2,P2,Q2]
−1 ∈ GL l and(SET,SAT,SB) is in KCD (4).

Proof. Step 1: First observe that the subspace inclusions

E(V ∗
(E,A,B)∩W

∗
(E,A,B))⊆ (EV

∗
(E,A,B)+ imB)∩ (AW

∗
(E,A,B)+ imB),

A(V ∗
(E,A,B)∩W

∗
(E,A,B))⊆ (EV

∗
(E,A,B)+ imB)∩ (AW

∗
(E,A,B)+ imB),

EV
∗
(E,A,B) ⊆ EV

∗
(E,A,B)+ imB,

AV
∗
(E,A,B) ⊆ EV

∗
(E,A,B)+ imB,

imply existence ofE11, . . . ,E33 andA11, . . . ,A33 such that

ER1 = R2E11, AR1 = R2A11,

EP1 = R2E12+P2E22, AP1 = R2A12+P2A22,

EQ1 = R2E13+P2E23+Q2E33, AQ1 = R2A13+P2A23+Q2A33.

(5)

Since imB⊆ (EV ∗+ imB)∩ (AW ∗+ imB) = imR2, there existsB1 ∈Rl1×m such thatB= R2B1. All these relations
together yield the decomposition (4).
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Step 2: We show (i) by proceeding in several steps.
Step 2a: We show that(E11,A11,B1) is completely controllable.

By Remark 2.5 we have for the reachable space that

R(E,A,B) = V
∗
(E,A,B)∩W

∗
(E,A,B) = imR1 = T(Rn1 ×{0}n2+n3).

Since any(z,u) ∈B(SET,SAT,SB) with z= (z⊤1 ,z
⊤
2 ,z

⊤
3 )

⊤ ∈ W
1

loc(R→ R
n) andz(0) = 0 satisfies

E11ż1(t)+E12ż2(t)+E13ż3(t) = A13z1(t)+A12z2(t)+A13z3(t)+B1u(t),

E22ż2(t)+E23ż3(t) = A22z2(t)+A23z3(t),

E33ż3(t) = A33z3(t),

the assumption that
∀ t ≥ 0 : z(t) ∈ R(SET,SAT,SB) = T−1

R(E,A,B) = R
n1 ×{0}n2+n3

leads toz2 ≡ 0 andz3 ≡ 0. This implies that

R(SET,SAT,SB) = R(E11,A11,B1)×{0}n2+n3

and hence we findR(E11,A11,B1) = Rn1, which according to Remark 2.5 is equivalent to(E11,A11,B1) ∈ Σl1×n1
m being

completely controllable.
Step 2b: We showE(V ∗

(E,A,B)∩W ∗
(E,A,B))+ imB= (EV ∗

(E,A,B)+ imB)∩ (AW ∗
(E,A,B)+ imB).

The inclusion “⊆” was already observed in Step 1. For “⊇” let x ∈ (EV
∗
(E,A,B) + imB)∩ (AW

∗
(E,A,B) + imB), i.e.,

x= Ev+b1 = Aw+b2 for somev∈ V ∗
(E,A,B),w∈ W ∗

(E,A,B),b1,b2 ∈ imB. Then

v∈ E−1{Aw+b2−b1} ⊆ E−1(AW
∗
(E,A,B)+ imB) = W

∗
(E,A,B).

Therefore,v∈ V ∗
(E,A,B)∩W ∗

(E,A,B) and hencex= Ev+b1 ∈ E(V ∗
(E,A,B)∩W ∗

(E,A,B))+ imB.

Step 2c: We show that rk[E11,B1] = l1.
Since imR2E11 = imER1 = E(V ∗

(E,A,B)∩W ∗
(E,A,B)) we find that

imR2[E11,B1] = E(V ∗
(E,A,B)∩W

∗
(E,A,B))+ imB= imR2,

where the latter equality follows from Step 2b. Therefore, full column rank ofR2 implies im[E11,B1] =Rl1 and hence
l1 = rk[E11,B1]≤ rkE11+ rkB1 ≤ n1+m.

Step 3: We show (ii).
Step 3a: We show that

(

E(V ∗
(E,A,B)∩W ∗

(E,A,B))+ imB
)

⊕ imEP1 = EV ∗
(E,A,B)+ imB.

Clearly,

EV
∗
(E,A,B)+ imB= E

(

(V ∗
(E,A,B)∩W

∗
(E,A,B))⊕ imP1

)

+ imB= E(V ∗
(E,A,B)∩W

∗
(E,A,B))+ imEP1+ imB.

It remains to be shown that the intersection is trivial. To this end, letx∈
(

E(V ∗
(E,A,B)∩W ∗

(E,A,B))+ imB
)

∩ imEP1, i.e.,

x= Ey= Ev+b for somey∈ imP1,v∈ V
∗
(E,A,B)∩W

∗
(E,A,B),b∈ imB. ThenE(y− v) = b and hence

y− v∈ E−1{b} ⊆ E−1(imB) = W
1
(E,A,B) ⊆ W

∗
(E,A,B).

This impliesy∈ W ∗∩ imP1 = {0} and thusx= 0.
Step 3b: We show thatl2 = n2.
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We have that

l2 = rkP2 = dim(EV
∗
(E,A,B)+ imB)−dim

(

(EV
∗
(E,A,B)+ imB)∩ (AW

∗
(E,A,B)+ imB)

)

Step 2b
= dim(EV

∗
(E,A,B)+ imB)−dim(E(V ∗

(E,A,B)∩W
∗
(E,A,B))+ imB)

Step 3a
= dim

((

E(V ∗
(E,A,B)∩W

∗
(E,A,B))+ imB

)

⊕ imEP1
)

−dim(E(V ∗
(E,A,B)∩W

∗
(E,A,B))+ imB)

= rkEP1 = rkP1 = n2,

where rkEP1 = rkP1 follows from the facts that kerRE ⊆ W
∗
(E,A,B) andW

∗
(E,A,B)∩ imP1 = {0}.

Step 3c: We show thatE22 is invertible.
Letx∈Rn2 be such thatE22x=0. Then it follows from (5) thatEP1x=R2E12x and henceEP1x∈ imEP1∩ imR2 = {0}
by Step 3a. This impliesx= 0 since rkEP1 = n2 by Step 3b.

Step 4: We show (iii).
Assume that there isλ ∈ C andx∈ C

n3 such that(λE33−A33)x= 0. Then (5) implies that

(λE−A)Q1x= R2(λE13−A13)x+P2(λE23−A23)x.

Considering the real and imaginary part of the above equation and writingλ = µ + iν, x = x1 + ix2 for µ ,ν ∈ R,
x1,x2 ∈R

n we obtain, invoking that im[R2,P2] = EV
∗
(E,A,B)+ imB,

(µE−A)Q1x1−νEQ1x2 ∈ EV
∗
(E,A,B)+ imB ∧ (µE−A)Q1x2+νEQ1x1 ∈ EV

∗
(E,A,B)+ imB.

Hence there existv1,v2 ∈ V ∗
(E,A,B) andb1,b2 ∈ imB such that

(µE−A)Q1x1−νEQ1x2 = Ev1+b1, (µE−A)Q1x2+νEQ1x1 = Ev2+b2. (6)

ThenAQ1x1 = E(µQ1x1−νQ1x2− v1)−b1, AQ1x2 = E(µQ1x2+νQ1x1− v2)−b2 and hence

Q1x1,Q1x2 ∈ A−1(imE+ imB) = V
1
(E,A,B).

Again invoking (6) and noting that bothµQ1x1 − νQ1x2 − v1 andµQ1x2 + νQ1x1− v2 are contained inV 1
(E,A,B)+

V ∗
(E,A,B) = V 1

(E,A,B) we obtain

Q1x1,Q1x2 ∈ A−1(EV
1
(E,A,B)+ imB) = V

2
(E,A,B).

Repeating this procedure yieldsQ1x1,Q1x2 ∈ V ∗
(E,A,B) ∩ imQ1 = {0} and sinceQ1 has full column rank it follows

x1 = x2 = 0 and hencex= 0. Note that the resulting full column rank ofA33 also implies thatl3 ≥ n3. This finishes
the proof of the theorem.

Remark 3.4 (KCD and strong controllability). The KCD (4) and the transformation matrices obtained from the
augmented Wong sequences in Theorem 3.3 leading to the KCD can be further refined to also decouple the strongly
controllable part of(E,A,B) ∈ Σl×n

m . Recall [5] that(E,A,B) is strongly controllableif, and only if,

∀x0,xf ∈ R
n ∃ t f > 0 ∃(x,u) ∈B(E,A,B) : Ex(0) = Ex0 ∧ Ex(t f ) = Exf .

Strong controllability is equally important as complete controllability in applications and concentrates on the control-
lability of the differential variablesEx(t) rather than the controllability of the variablesx(t). For instance, in optimal
control of descriptor systems, strong controllability is important to guarantee solvability of the optimal control prob-
lem.

It is proved in [5] that(E,A,B) is strongly controllable if, and only if,(V ∗
(E,A,B)∩W

∗
(E,A,B))+ kerE = V

∗
(E,A,B)+

kerE = Rn. This leads to an extension of the result of Theorem 3.3 as follows: Using the notation from Theorem 3.3
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we redefineQ1 = [Qs
1,Q

b
1] andQ2 = [Qs

2,Q
b
2] with Qs

1 ∈ R
n×ns

3, Qs
2 ∈ R

l×ls3, Qb
1 ∈ R

n×nb
3, Qb

2 ∈R
l×lb3 as follows

im[R1,P1]⊕ imQs
1 = V

∗
(E,A,B)+ kerE, im[R1,P1,Q

s
1]⊕ imQb

1 = R
n
,

im[R2,P2]⊕ imQs
2 = (EV

∗
(E,A,B)+ imB)+AkerE, im[R2,P2,Q

s
2]⊕ imQb

2 = R
l
.

Taking into account kerE ⊆ W ∗
(E,A,B) andAkerE ⊆ AW ∗

(E,A,B)+ imB we arrive at the following refined KCD:

(E,A,B)
S,T
∼=

















E11 E12 E13 E14

0 E22 0 E23

0 0 0 E34

0 0 0 E44









,









A11 A12 A13 A14

0 A22 0 A23

0 0 A33 A34

0 0 0 A44









,









B1

0
0
0

















(7)

where

(i) (E11,A11,B1) ∈ Σl1×n1
m with l1 = rk[E11,B1]≤ n1+m is completely controllable,

(ii) (E22,A22,0) ∈ Σl2×n2
m with l2 = n2 andE22 is invertible,

(iii) (0,A33,0) ∈ Σls3×ns
3

m with ls3 = ns
3 andA33 is invertible,

(iv) (E44,A44,0) ∈ Σlb3×nb
3

m with lb3 ≥ nb
3 satisfies rkC(λE44−A44) = nb

3 for all λ ∈ C.

In the form (7), the subsystem
(

[E11 E13
0 0

]

,

[

A11 A13
0 A33

]

,
[B1

0

]

)

is strongly controllable, but not completely controllable

(if ns
3 > 0), and satisfies

rk
[

[E11 E13
0 0

]

,

[

A11 A13
0 A33

]

,
[B1

0

]

]

= l1+ ls3,

i.e., any redundant equations (e.g. of the form “0= 0”) are contained in the block(E44,A44,0).
Note that, properties (iii) and (iv) do not uniquely determine the dimensionsls3×ns

3 andlb3 ×nb
3 (in contrast to the

construction via the augmented Wong-sequences); for example
([

0
0 1
0 0

]

,

[

1
1 0
0 1

])

=
([

0 0
0 0 1

0

]

,

[

1 0
0 1

1

])

can either be

decoupled into a 1× 1 and 2× 2 block or into a 2× 2 and a 1× 1 block, in both cases conditions (iii) and (iv) are
satisfied. Nevertheless, the sumsn3 = ns

3+nb
3 andl3 = ls3+ lb3 are uniquely determined.

Theorem 3.5(Uniqueness of KCD). Let (E,A,B) ∈ Σl×n
m and S1,S2 ∈ GL l , T1,T2 ∈ GLn be such that for i= 1,2

(E,A,B)
Si ,Ti∼= (Ei ,Ai ,Bi) =









E11,i E12,i E13,i

0 E22,i E23,i

0 0 E33,i



 ,





A11,i A12,i A13,i

0 A22,i A23,i

0 0 A33,i



 ,





B1,i

0
0









where(Ei ,Ai ,Bi) is in KCD (4) with corresponding block sizes given by l1,i ,n1,i , l2,i ,n2,i , l3,i ,n3,i .
Then l1,1 = l1,2, l2,1 = l2,2, l3,1 = l3,1,n1,1 = n1,2,n2,1 = n2,2,n3,1 = n3,2 and, moreover, for some S11 ∈ GL l1,1,S22 ∈
GL l2,1,S33∈GL l3,1,T11∈GLn1,1,T22∈GLn2,1,T33∈GLn3,1 and S12,S13,S23,T12,T13,T23 of appropriate sizes we have
that

S2S−1
1 =





S11 S12 S13

0 S22 S23

0 0 S33



 , T−1
1 T2 =





T11 T12 T13

0 T22 T23

0 0 T33



 .

In particular,

(E11,1,A11,1,B1,1)∼= (E11,2,A11,2,B1,2), (E22,1,A22,1,0)∼= (E22,2,A22,2,0), (E33,1,A33,1,0)∼= (E33,2,A33,2,0).

Proof. Without loss of generality we assume thatS1 = Il andT1 = In.
Step 1: Invoking Remark 2.5 we have

R
n1,1 ×{0}= R(E1,A1,B1) = T2R(E2,A2,B2) = T2(R

n1,2 ×{0}),
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and this impliesn1,1 = n1,2 as well as

T2 =





T11 T12 T13

0 T22 T23

0 T32 T33



 for T11 ∈ GLn1,1,T22 ∈R
n2,1×n2,2,T33 ∈ R

n3,1×n3,2

andT12,T13,T23,T32 of appropriate size. Furthermore, we have

R
n1,1+n2,1 ×{0}= V

∗
(E1,A1,B1)

= T2V
∗
(E2,A2,B2)

= T2(R
n1,2+n2,2 ×{0}),

which together withn1,1 = n1,2 gives thatn2,1 = n2,2, n3,1 = n3,2 and

T32 = 0, T22 ∈ GLn2,1, T33 ∈ GLn3,1.

Step 2: Partitioning

S2 =





S11 S12 S13

S21 S22 S23

S31 S32 S33



 for S11 ∈R
l1,2×l1,1,S22 ∈R

l2,2×l2,1,S33 ∈R
l3,2×l3,1,

and off-diagonal block matrices of appropriate size, we findthat the equationsS2E1T2 = E2 andS2B1 = B2 yield that
[

S21

S31

]

[E11,1T11,B1] = 0,

and the full row rank of[E11,1,B1] then givesS21 = 0 andS31 = 0. SinceS2 is invertible it follows thatl1,1 ≤ l1,2.
Reversing the roles of(E1,A1,B1) and(E2,A2,B2) givesl1,1 ≥ l1,2, whencel1,1 = l1,2. We further have the equation

S32E22,1T22 = 0

which by invertibility of T22 andE22,1 gives thatS32 = 0. This finally impliesl2,1 = l2,2 = n2,1 = n2,2, l3,1 = l3,2,
S22∈ GL l2,1 andS33 ∈ GL l3,1 and finishes the proof.

4. KCD for the regular case

Regularity of the system(E,A,B) implies that equation (1) has a solution for any (sufficiently smooth) inputu
and each such solution is uniquely determined by the initialvaluex(0). Therefore, regularity is often assumed for
the analysis and numerical simulation. Due to its importance, we like to highlight some features of the KCD for the
regular case. For the solution theory of DAEs, the original Wong sequences (withB= 0) play a fundamental role and
we also present the connection between the original Wong sequences and the KCD.

In the following we denote withV ∗
(E,A) andW ∗

(E,A) the limits of the original Wong sequences given by

V
0
(E,A) := R

n
, V

i+1
(E,A) := A−1(EV

i
(E,A)), i ∈ N,

W
0
(E,A) := {0}, W

i+1
(E,A) := E−1(AW

i
(E,A)), i ∈ N,

i.e.,V ∗
(E,A) = V ∗

(E,A,0) andW ∗
(E,A) =W ∗

(E,A,0). The original Wong sequences can be used to obtain the quasi-Weierstrass
form (QWF) (or quasi-Kronecker form in the singular case [6,7]).

Proposition 4.1(Quasi-Weierstrass form, [17], [4]). The DAE control system(E,A,B) ∈ Σn×n
m is regular if, and only

if,

(E,A,B)
S,T
∼=

([

I 0
0 N

]

,

[

J 0
0 I

]

,

[

B1

B2

])

, (8)
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where N∈ Rn2×n2, 0≤ n2 ≤ n is nilpotent and J∈ Rn1×n1,B1 ∈ Rn1×m,B2 ∈ Rn2×m, n1 := n−n2. Furthermore, the
transformation matrices T= [T1,T2] ∈ GLn and S∈ GLn achieve the QWF(8) if, and only if,

imT1 = V
∗
(E,A), imT2 = W

∗
(E,A), S= [ET1,AT2]

−1
.

By Proposition 4.1, the original Wong sequences yield a decoupling of the DAE into an ODE ˙v(t) = Jv(t)+B1u(t)
and a so called pure DAENẇ(t) = w(t)+B2u(t), where the latter has the unique solutionw = −∑n2−1

i=0 Ni(B2u)(i);
note that by definition ofB(E,A,B) we only haveu∈ L 1

loc, butw∈ W 1
loc and(w,u) being a solution trajectory enforces

higher differentiability of the input componentsB2u, see [3, Sec. 2.4.2].
The Wong sequences are coordinate free in the sense that the specific choice ofT1 andT2 is not relevant. Once the

QWF is obtained for a specific choice of the coordinate transformationT it is not difficult to obtain a KCD for each
block separately (see e.g. [9]):

Proposition 4.2(QWF-KCD). Consider regular(E,A,B) ∈ Σn×n
m . Then

(E,A,B)∼=

















I 0 0 0
0 I 0 0
0 0 N11 N12

0 0 0 N22









,









J11 J12 0 0
0 J22 0 0
0 0 I 0
0 0 0 I









,









B11

0
B21

0

















, (9)

where

([

I 0
0 N11

]

,

[

J11 0
0 I

]

,

[

B11

B21

])

is completely controllable and N11 and N22 are nilpotent.

Proof. Assume the DAE(E,A,B) is transformed in QWF (8) with block sizesn1×n1 andn2×n2 andT = [T1,T2],
S= [ET1,AT2]

−1. Then chooseT11,T12,T21,T22 as follows

imT11= im〈J,B1〉, im〈J,B1〉⊕ imT12 = R
n1,

imT21= im〈N,B2〉, im〈N,B2〉⊕ imT22 = R
n2,

where〈A,B〉= [B,AB,A2B, ... . . .AnB] for A∈Rn×n andB∈ Rn×m. The transformation matrices

T = [T1,T2]

[

T11 T12 0 0
0 0 T21 T22

]

,S=

(

[ET1,AT2]

[

T11 T12 0 0
0 0 T21 T22

])−1

then yield the desired QWF-KCD, for details see [9].

Clearly, the QWF-KCD (9) obtained via the QWF matches the general KCD (4) after a simple rearrangement of
the corresponding blocks, in particular

(E11,A11,B1) =

([

I 0
0 N11

]

,

[

J11 0
0 I

]

,

[

B11

B21

])

, (E22,A22,0) = (I ,J22,0), (E33,A33,0) = (N22, I ,0).

However, the form (9) is not really satisfactory as its derivation needs two separate coordinate transformations: first,
one needs to transform the DAE(E,A,B) into QWF and then the ODE and pure DAE parts have to be transformed
again. In particular, the latter transformation depends onthe chosen coordinate transformation for the QWF (because
J andN depend onT) and is therefore not coordinate free. Furthermore, there is no geometric insight because the
connection to the augmented Wong sequences is not clear.

Now we present a more geometric approach. To this end, we needto introduce certain projectors, defined in terms
of the Wong sequences, cf. [15].

Definition 4.3 (Consistency, differential and impulse projector). With the notation of Proposition 4.1 define the con-
sistency projector

Π(E,A) := T

[

I 0
0 0

]

T−1
,
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the differential projector

Πdiff
(E,A) := T

[

I 0
0 0

]

S,

and the impulse projector

Πimp
(E,A) := T

[

0 0
0 I

]

S,

where the block matrix sizes correspond to the block sizes inthe QWF. Furthermore, let

Adiff := Πdiff A, Bdiff := Πdiff B, Eimp := ΠimpE, Bimp := ΠimpB.

Note that the consistency projector is a projection ontoV ∗
(E,A) alongW ∗

(E,A), but the differential and impulse projec-
tors are not idempotent and hence are not projectors in the usual sense. Furthermore, it is easy to see that all projectors
(and consequentlyAdiff , Bdiff , Eimp, Bimp) do not depend on the specific choice of the transformation matricesT andS
(and only on the spacesV ∗

(E,A), W ∗
(E,A)). Finally, observe that

imAdiff ⊆ V
∗
(E,A), imBdiff ⊆ V

∗
(E,A), imEimp ⊆ W

∗
(E,A), imBimp ⊆ W

∗
(E,A).

With the help of these matrices the connection between the original and augmented Wong sequences can be established
as follows.

Theorem 4.4(Connection between Wong sequences). Let (E,A,B) ∈ Σn×n
m be regular. Denote withV ∗

(E,A), W ∗
(E,A),

V ∗
(E,A,B), W ∗

(E,A,B) the limits of the original and augmented Wong sequences, respectively. Using the notation from
Definition 4.3, we have

V
∗
(E,A,B) = V

∗
(E,A)⊕ im〈Eimp

,Bimp〉 and W
∗
(E,A,B) = W

∗
(E,A)⊕ im〈Adiff

,Bdiff 〉.

Proof. Step 1: We showV ∗
(E,A,B) = V ∗

(E,A)⊕ im〈Eimp,Bimp〉.
From Remark 2.5 we know thatV ∗

(E,A,B) equals the space of consistent initial values. On the other hand, from the
solution formula in [16, Thm. 6.4.4] it follows that all(x,u) ∈B(E,A,B) satisfy

x(0) = Π(E,A)c−
ν−1

∑
i=0

(Eimp)i(Bimpu)(i)(0),

for somec∈Rn andν ∈N such that(Eimp)ν = 0 and(Eimp)ν−1 6= 0, where it follows fromx∈W 1
loc and [3, Sec. 2.4.2]

thatBimpu∈ W
ν−1

loc . Since the derivatives ofBimpu at t = 0 can be chosen independently of each other it follows that

x0 is consistent ⇔ x0 ∈ imΠ(E,A)+ im〈Eimp
,Bimp〉.

By construction imΠ(E,A) = V ∗
(E,A), im〈Eimp,Bimp〉 ⊆ imΠimp

(E,A) ⊆ W ∗
(E,A) andV ∗

(E,A)∩W ∗
(E,A) = {0}, hence the claim

is shown.
Step 2: We showW ∗

(E,A,B) = W ∗
(E,A)⊕ im〈Adiff ,Bdiff 〉.

First observe thatW ∗
(SET,SAT,SB) = T−1W ∗

(E,A,B), W ∗
(SET,SAT) = T−1W ∗

(E,A), (SAT)diff = T−1Adiff T and (SB)diff =

Πdiff
(SET,SAT)SB= T−1Bdiff for any invertibleSandT; in particular, we have the following equivalences:

W
∗
(E,A,B) = W

∗
(E,A)⊕ im〈Adiff

,Bdiff 〉 ⇔ T−1
W

∗
(E,A,B) = T−1

W
∗
(E,A)⊕T−1 im〈Adiff

,Bdiff 〉

⇔ W
∗
(SET,SAT,SB) = W

∗
(SET,SAT)⊕ im〈(SAT)diff

,(SB)diff 〉.

Hence we can assume in the following that(E,A,B) is in QWF (8). It is then easy to see that

W
∗
(E,A) = {0}×R

n2 and im〈Adiff
,Bdiff 〉= im〈J,B1〉×{0}
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and it remains to be shown that
W

∗
(E,A,B) = im〈J,B1〉×R

n2.

With an inductive argument it is easy to see that

W
i
(E,A,B) =

{

(

v
w

)

∣

∣

∣

∣

∣

∃b1,b2, . . . ,bi ∈R
m :

v= Ji−1B1b1+ Ji−2B1b2+ . . .+B1bi ,

Niw= B2b1+NB2b2+ . . .+Ni−1B2bi

}

in particular,

W
∗
(E,A,B) = W

n
(E,A,B) =

{

(

v
w

)

∣

∣

∣

∣

∣

∃b1,b2, . . . ,bn ∈ R
m :

v= Jn−1B1b1+ Jn−2B1b2+ . . .+B1bn

Nnw= B2b1+NB2b2+ . . .+Nn−1B2bn,

}

=











v

∣

∣

∣

∣

∣

∣

∣

v= Jn−1B1b1+ Jn−2B1b2+ . . .+B1bn,







b1
.
.
.

bn






∈ ker[B2,NB2, . . . ,N

nB2]











×R
n2,

becauseNn = 0. In fact, it holds that 0= Nn2 = Nn2+1 = . . . = Nn, which implies thatbn−n1+1,bn−n1+2, . . . ,bn are
free and hence, invoking Cayley-Hamilton, we arrive at

W
∗
(E,A,B) = im〈J,B2〉×R

n2.

Recalling the observations in Remark 2.5 and the findings in Theorem 4.4, we obtain the following.

Corollary 4.5. With the notation of Theorem 4.4 the following holds:

(i) The consistency space of(E,A,B) is given byV ∗
(E,A,B) = V ∗

(E,A)⊕ im〈Eimp,Bimp〉.

(ii) The reachable space of(E,A,B) is given byR(E,A,B) = im〈Adiff ,Bdiff 〉⊕ im〈Eimp,Bimp〉, in particular, (E,A,B)
is completely controllable if, and only if,

im〈Adiff
,Bdiff 〉⊕ im〈Eimp

,Bimp〉= R
n
.

(iii) (E,A,B) is behaviorally controllable if, and only if,

im〈Adiff
,Bdiff 〉= V

∗
(E,A) or, equivalently, im〈Adiff

,Bdiff 〉⊕W
∗
(E,A) = R

n
.

Proof. Property (i) was already established in the proof of Theorem4.4. Properties (ii) and (iii) follow directly from
Lemma 2.3 and Theorem 4.4 taking into account the following subspace relationships (see also Figure 1):

im〈Adiff
,Bdiff 〉 ⊆ V

∗
(E,A) ⊆ V

∗
(E,A,B), im〈Eimp

,Bimp〉 ⊆ W
∗
(E,A) ⊆ W

∗
(E,A,B), V

∗
(E,A)⊕W

∗
(E,A) = R

n
.

Finally, we may obtain the KCD directly in terms of the original system’s matrices (and in the original coordinate
system) as follows.

Corollary 4.6 (Regular KCD). Use the notation from Definition 4.3 and Theorem 4.4. Choose full column rank
matrices P1,P2, R, Q as follows:

imP1 = im〈Adiff
,Bdiff 〉, im〈Adiff

,Bdiff 〉⊕ imR= V
∗
(E,A),

imP2 = im〈Eimp
,Bimp〉, im〈Eimp

,Bimp〉⊕ imQ= W
∗
(E,A).

Then T= [[P1,P2],R,Q] ∈ GLn and S= [[EP1,AP2],ER,AQ]−1 ∈ GLn transform the DAE system(E,A,B) into
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V ∗
(E,A) W ∗

(E,A)

Rn

im〈Adiff ,Bdiff 〉 im〈Eimp,Bimp〉

R(E,A,B) V ∗
(E,A,B)

Figure 1: The relationship between the spacesV ∗
(E,A) , W ∗

(E,A), im〈Adiff ,Bdiff 〉, im〈Eimp,Bimp〉.

KCD (4) with some additional zero blocks:

(E,A,B)
S,T
∼=

















[

I 0
0 N11

] [

0
0

] [

0
N12

]

0 I 0
0 0 N22









,

















[

J11 0
0 I

] [

J12

0

] [

0
0

]

0 J22 0
0 0 I

















,









[

B11

B21

]

0
0

















,

where

([

I 0
0 N11

]

,

[

J11 0
0 I

]

,

[

B11

B21

])

is completely controllable and N11 and N22 are nilpotent.

Proof. Let T̃ = [P1,R,P2,Q] andS̃= [EP1,ER,AP2,Q] be rearranged basis matrices. Then (using the notation from
Proposition 4.2)

T̃−1〈Adiff
,Bdiff 〉= im〈J,B1〉×{0}= im〈J11,B11〉×{0} ⊆ R

n1 ×{0},

T̃−1〈Eimp
,Bimp〉= {0}× im〈N,B2〉= {0}× im〈N11,B21〉 ⊆ {0}×R

n2,

and the claim follows from Proposition 4.2 with transformation matricesT̃ andS̃.

5. Conclusion

We have presented a new Kalman controllability decomposition for linear time-invariant (not necessarily regular)
differential-algebraic systems. This decomposition decouples the original DAE control system into an completely
controllable part, a classical uncontrollable part (givenby an ODE) and an inconsistent part which is behaviorally
controllable but contains no completely controllable part. The corresponding coordinate transformations can easilybe
obtained via the augmented Wong sequences. For the regular case the construction further simplifies and nice subspace
relations become apparent. In particular, a connection between the augmented and the original Wong sequences is
established.
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