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Abstract

In this paper linear time-invariant differential algebraic equations (DAEs)
are studied; the focus is on pure DAEs which are DAEs without an ordi-
nary differential equation (ODE) part. A normal form for pure DAEs is
given which is similar to the Byrnes-Isidori normal form for ODEs. Further-
more, the normal form exhibits a Kalman-like decomposition into impulse-
controllable- and impulse-observable states. This leads to a characterization
of impulse-controllability and -observability.
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1. Introduction

Differential algebraic equations (DAEs) of the form

Eẋ = Ax + bu,

y = cx,
(1)

(c, E, A, b) ∈ R1×n × Rn×n × Rn×n × Rn, n ∈ N, play an important role in
systems theory. Those equations arise when modelling for example electrical
circuits, mechanical systems, or, in general, dynamical systems with addi-
tional algebraic conditions. Interconnected ordinary differential equations
(ODEs) can also be described as a DAE. There is a wide range of literature
for DAEs of the form (1), i.e. linear time-invariant DAEs, e.g. [1, 2, 3, 4, 5].
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Normal or condensed forms for DAEs have always been a research topic and
the most famous normal form is the Kronecker normal form or, if one con-
siders a special class of DAEs, the Weierstraß normal form. The latter is
basically a decoupling into an ODE and a “pure” DAE. Most normal or
condensed forms concentrate on the two matrices E and A and not on the
input and output vectors b and c. But for control problems normal forms
must incorporate the input and output. For ODEs the Byrnes-Isidori normal
form (which focus on the relative degree [6, p. 165], see also [7, Lem. 3.5])
and the Kalman-decomposition (which focus on controllable and observable
sub-states [8]) are examples of such normal forms.
This paper gives a normal form for “pure” DAEs which can be seen as a gen-
eralization of the Byrnes-Isidori normal form combined with a Kalman-like
decomposition. In fact, the state space is separated into impulse-controllable
and -observable sub-states, see Theorem 24. Compared to a similar decom-
position proposed in [3, p. 52] (without proof) the normal form from Theo-
rem 20 is more specific and allows for a better analysis.
There are already results on normal or condensed forms of DAEs available,
e.g. [9], [10], [11], [5]. But none of these result focus on the relative degree or
on impulse-controllable and -observable states. In addition they partly use a
different concept of equivalence which leads to other normal forms. On the
other hand some of these results go much further as the results in this paper
because rectangular (in particular non-regular) DAEs with time-varying co-
efficients are considered.

This paper is structured as follows. First, some preliminaries (Section 2)
are given, in particular the subtle difference between DAEs and differential
algebraic systems (DASs) is explained. Section 3 deals with the transfer func-
tion of DASs and realization theory, in particular some specific minimal real-
izations of pure DASs are given. Before stating the main results in Section 5,
impulse-controllability and -observability are revisited in Section 4, the in-
variants impulse-controllability-index and impulse-observability-index are de-
fined. The main result is the normal form given in Theorem 20. This normal
form can be used to give new characterizations of impulse-controllability and
-observability, see Theorem 24.

The following notation will be used throughout this paper. N and R
are the natural and real numbers, R[s] is the ring of polynomials and R(s)
is the field of rational functions with real coefficients. For a polynomial
p(s) ∈ R[s] the degree of p(s) is denoted by deg p(s). The matrix I ∈ Rn×n
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is the identity matrix of size n ∈ N, the latter is in general clear from the

context. For two square matrizes A,B let diag (A, B) :=

[
A 0
0 B

]
. For the

row vectors c1, c2, . . . , cn ∈ R1×m, n ∈ N, of the same length m ∈ N let

[c1/c2/ . . . /cn] :=





c1

c2
...
cn




∈ Rn×m. The rank, image, and kernel of matrix A is

denoted by rkA, imA, and ker A, resp.

2. Preliminaries: Differential algebraic systems (DASs)

In this work only differential algebraic systems (DASs), i.e. matrix-tuples
(see Definition 1), are considered and not differential algebraic equations
(DAEs) like (1). The reason is that for the latter one has always to define
what the variable x should be. In particular it would be necessary to specify
an appropriate solution space. Since the results of this work are independent
of the chosen solution space, any discussion about solution spaces will be
avoided by considering DASs instead of DAEs.

Definition 1 (DASs, regular and pure DASs, ODSs). A differential al-
gebraic system (DAS) with state space dimension n ∈ N is a tupel (c, E, A, b) ∈
R1×n ×Rn×n ×Rn×n ×Rn. The space of all DASs with state space dimension
n is

Σn := R1×n × Rn×n × Rn×n × Rn.

The space of regular DASs with state space dimension n ∈ N is

Σreg
n := { (c, E, A, b) ∈ Σn | det(Es − A) ∈ R[s]\{0} } .

The space of pure DASs is

Σpure
n :=

{
(c, E, A, b) ∈ Σn

∣∣ det A $= 0 ∧ A−1E is nilpotent
}

.

The space of ordinary differential systems (ODSs) is

ΣODS
n := { (c, E, A, b) ∈ Σn | det E $= 0 } .

Remark 2. (i) Every pure DAS and every ODS is regular, i.e. for all n ∈
N

Σpure
n ⊆ Σreg

n and ΣODS
n ⊆ Σreg

n .
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(ii) No pure DAS is an ODS and vice versa, i.e. for all n ∈ N

Σpure
n ∩ ΣODS

n = ∅.

(iii) For invertible A ∈ Rn×n and some E ∈ Rn×n, n ∈ N, the matrix A−1E
is nilpotent if, and only if, EA−1 is nilpotent, hence

Σpure
n =

{
(c, E, A, b) ∈ Σn

∣∣ det A $= 0 ∧ EA−1 is nilpotent
}

.

Definition 3 (Equivalence). Two DASs (c1, E1, A1, b1) ∈ Σn1 and (c2, E2, A2, b2) ∈
Σn2, n1, n2 ∈ N, are called equivalent, written

(c1, E1, A1, b1) ) (c2, E2, A2, b2),

if, and only if, n1 = n2 =: n and there exist invertible matrices S, T ∈ Rn×n

such that
(c2, E2, A2, b2) = (c1T, SE1T, SA1T, Sb1).

Note that ) is an equivalence relation.

Remark 4. Every regular DAS (c, E, A, b) is equivalent to a DAS in Weier-
strass form (

[ c1 | c2 ],

[
I 0
0 N

]
,

[
J 0
0 I

]
,

[
b1

b2

])

where N is a nilpotent matrix ([12], see also [5, Thm. 2.7]). Clearly, this is
a (unique) decomposition into an ODS (also called slow system) and a pure
DAS (also known as the fast system).

Proposition 5. For all n ∈ N

Σpure
n =

{
(c, E, A, b) ∈ Σn

∣∣∣ ∃(ĉ, N, I, b̂) ∈ Σpure
n : (c, E, A, b) ) (ĉ, N, I, b̂)

}
.

Proof. By definition, every pure DAE (c, E, A, b) ∈ Σn is equivalent to
(c, A−1E, I, A−1b) = (ĉ, N, I, b̂) ∈ Σpure

n . If (c, E, A, b) ∈ Σn is equivalent
to (ĉ, N, I, b̂) ∈ Σpure

n then there exist invertible matrices S, T ∈ Rn×n such
that A = SIT = ST and E = SNT . In particular, A is invertible and
A−1E = T−1NT . By assumption, N is nilpotent and hence A−1E is nilpotent
which implies that (c, E, A, b) is pure.

qed

Proposition 5 (see also the forthcoming Proposition 15) justifies that every
pure DASs can be considered to be in the standard form (c, N, I, b), where
N is a nilpotent matrix.
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3. Transfer function and minimal realization

In this section transfer functions of DASs and minimal realizations are
studied. From the theory of ODEs it is well known, that the transfer function
is a useful tool to study the input-output behaviour of a linear system. Fur-
thermore the definition of the (negative) relative degree is based on transfer
functions and the negative relative degree is important for the normal form
of pure DASs given in this paper (Theorem 20). It will also turn out that
one of the given minimal realization is a “part” of this normal form.

Definition 6 (Transfer function and IO-equivalence). The transfer func-
tion of a regular DAS (c, E, A, b) ∈ Σreg

n , n ∈ N, is the rational function
g(s) ∈ R(s) given by

g(s) = c(Es − A)−1b.

Two regular DASs (c1, E1, A1, b1) ∈ Σreg
n1

, n1 ∈ N, and (c2, E2, A2, b2) ∈ Σreg
n2

,
n2 ∈ N, are called IO-equivalent, written

(c1, E1, A1, b1) ∼ (c2, E2, A2, b2),

if, and only if, their corresponding transfer functions g1(s) and g2(s) are
equal.

Remark 7. For two regular DASs (c1, E1, A1, b1) ∈ Σreg
n1

, n1 ∈ N, and
(c2, E2, A2, b2) ∈ Σreg

n2
, n2 ∈ N it follows from the definition that

(c1, E1, A1, b1) ) (c2, E2, A2, b2) ⇒ (c1, E1, A1, b1) ∼ (c2, E2, A2, b2).

The converse is in general not true, but this question is strongly related
to minimal realizations, impulse-controllability and (impulse-)observability,
which are studied later in this work (see Corollary 26 and Remark 27).

Remark 8. (i) The transfer function of an ODS is strictly proper (i.e. the
degree of the numerator is smaller than the degree of the denominator).

(ii) The transfer function of a pure DAS is a polynomial, in particular if the
pure DAS is in standard form (c, N, I, b) ∈ Σpure

n , n ∈ N, the transfer
function is given by

g(s) = −
n−1∑

i=0

cN ibsi.

For convenience, if n = 0 the transfer function is defined as g(s) ≡ 0.
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Definition 9. A realization of a transfer function g(s) ∈ R(s) is a regular
DAS (c, E, A, b) ∈ Σreg

n , n ∈ N, with g(s) = c(Es − A)−1b. A realization is
called minimal if, and only if, there exists no other realization with smaller
state-space dimension.

For a given transfer function it is an interesting question how a realization
might look, what the minimal dimension is and if there are some standard
realizations. For ODEs these questions are studied in realization theory and
most relevant questions are answered. The next propositions shows that for
the realization theory of DASs one can basically concentrate on pure DASs.

Proposition 10. Let g(s) = p(s)
q(s) ∈ R(s), then there exists unique p1(s), p2(s) ∈

R[s] with deg p2(s) < deg q(s) such that g(s) = p1(s) + p2(s)
q(s) .

If (c1, E1, A1, b1) ∈ Σpure
n1

, n1 ∈ N and (c2, E2, A2, b2) ∈ ΣODS
n2

, n2 ∈ N are

realizations of p1(s) and p2(s)
q(s) , resp., then

(c, E, A, b) :=
(
(c1, c2), diag (E1, E2), diag (A1, A2), (b

#
1 , b#2 )#

)
∈ Σreg

n1+n2

is a realization of g(s).
Conversely, every realization of g(s) is equivalent to

(c, E, A, b) =
(
(c1, c2), diag (E1, E2), diag (A1, A2), (b

#
1 , b#2 )#

)
∈ Σreg

n1+n2
,

where (c1, E1, A1, b1) ∈ Σpure
n1

, n1 ∈ N, is a pure realization of p1(s) and

(c2, E2, A2, b2) ∈ ΣODS
n2

, n2 ∈ N, is an ODS realizations of p2(s)
q(s) (n1 = 0 or

n2 = 0 is possible).
Furthermore, in both cases (ci, Ei, Ai, bi), i = 1, 2, are minimal realizations
if, and only if, (c, E, A, b) is a minimal realization.

Proof. The unique decomposition g(s) = p1(s) + p2(s)
g(s) with deg p2(s) <

deg q(s) is a well known algebraic result (Euclidian algorithm for polyno-
mials). From the definition of the transfer function it easily follows that
(c, E, A, b) is a realization of g(s) if (c1, E1, A1, b1) and (c2, E2, A2, b2) are
realizations of p1(s) and p2(s)

q(s) , resp. Conversely, observe that every regu-

lar DAS is equivalent to a DAS in Weierstraß form (see Remark 4), which
yields the assertion of the proposition. It remains to show the minimality
property. Clearly, if (c, E, A, b) is minimal then (ci, Ei, Ai, bi), i = 1, 2, are
minimal, too. To show that (c, E, A, b) is minimal if (ci, Ei, Ai, bi), i = 1, 2,
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are minimal, consider any realization (ĉ, Ê, Â, ĉ) ∈ Σreg
n̂ with n̂ ∈ N. Then

this realization is equivalent to a DAS in Weierstraß form with dimension n̂,
whose pure DAS and ODS parts have dimensions n̂1 ∈ N and n̂2 ∈ N, resp.
Let the transfer function of the pure DAS part be the polynomial p̂1(s) ∈ R[s]
and let the transfer function of the ODS part be the strictly proper rational
function p̂2(s)

q̂(s) ∈ R(s). Since p̂1(s) + p̂2(s)
q̂(s) = g(s) = p1(s) + p2

q(s) it follows that

p̂1(s) = p1(s) and p̂2(s)
q̂(s) = p2(s)

q(s) . This implies, by the minimality assumption,
that n̂i ≥ ni, i = 1, 2, hence n̂ = n̂1 + n̂2 ≥ n1 + n2, i.e. the given realization
of g(s) with dimension n1 + n2 is minimal.

qed

The foregoing proposition justifies that for a realization theory of general
DASs it is sufficient to consider pure DASs and ODSs separately. Realization
theory of ODSs is well understood, hence it remains to study the realization
theory of pure DASs.

Proposition 11. Consider a polynomial transfer function g(s) =
∑r

i=0 αisi ∈
R[s] for r ∈ N, αr $= 0. Then the following DASs are minimal realizations of
g(s) with state space dimension r + 1:

(i) R-form: (
[0, . . . , 0, 1] ,

[
0
1

1 0

]
, I∗,

[−αr

0

0

])
∈ Σpure

r+1 ,

where

I∗ =





1

−α0
αr

−αr−1

αr
1



 .

(ii) O-form: (
[0, . . . , 0, 1] ,

[
0
1

1 0

]
, I,

[−αr

−α0

])
∈ Σpure

r+1 .

(iii) C-form: (

[−α0, . . . ,−αr] ,

[
0
1

1 0

]

, I,

[
1
0

0

])

∈ Σpure
r+1 .
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Proof. A simple calculation invoking Remark 8 (ii) shows that the tran-
fer function of the O- and C-form coincide with g(s). With S = −αrI and
T = − 1

αr
I∗ the C-form and the R-form are equivalent and hence the transfer

function of the R-form also coincides with g(s).
To show that these realizations are minimal consider any realization (c, E, A, b) ∈
Σreg

n , n ∈ N, of g(s). The ODS part and pure DAS part of the Weierstraß form
(see Remark 4) have state dimensions n1, n2 ∈ N with n1+n2 = n and transfer
functions g1(s) ∈ R(s) and g2(s) ∈ R[s], resp. By Remark 8, g1(s) is strictly
proper and deg g2(s) ≤ n2 − 1. Together with g1(s) + g2(s) = g(s) ∈ R[s]
this yields g1(s) ≡ 0 and r = deg g(s) = deg g2(s) ≤ n2 − 1. This shows
n = n1 + n2 ≥ r + 1, i.e. the minimal state-space dimension for any realiza-
tion of g(s) is r + 1.

qed

First results on realization theory can be found in [3], in particular Propo-
sition 11 is a constructive version of [3, Lemma 2-6.2] and Proposition 10 is
implicitely used in the proof of [3, Thm. 2-6.3].

4. Impulse-controllability and impulse-observability

From the theory of linear ODEs it is well known, that the controllability-
and observability-matrices play an important role for controllability and ob-
servability as well as for the construction of normal forms. It is possible to de-
fine analogous matrices for DASs, which play similar roles. Furthermore one
can define impulse-controllability- and impulse-observability-indices which
are invariants with respect to equivalence transformations. This is impor-
tant for the normal form and can be used for characterizations of impulse-
controllability and -observability.

Definition 12. Consider a pure DAS (c, E, A, b) ∈ Σpure
n , n ∈ N. The

impulse-controllability-matrix of (c, E, A, b) is

Bimp :=
[
b, Nbb, Nb

2b, . . . , Nb
n−1b

]
, where Nb := EA−1.

The impulse-controllability-index of (c, E, A, b) is

db := rkBimp.
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The impulse-observability-matrix of (c, E, A, b) is

Cimp :=
[
c/cNc/cNc

2/ . . . /cNc
n−1

]
, where Nc := A−1E.

The impulse-observability-index of (c, E, A, b) is

dc := rk Cimp.

Definition 13. A pure DAS (c, E, A, b) ∈ Σpure
n , n ∈ N, is called

(i) impulse-controllable (in the sense of [13]) if, and only if,

imNb = im (NbBimp), where Nb = EA−1.

(ii) impulse-observable (in the sense of [13]) if, and only if,

ker Nc = ker(CimpNc), where Nc = A−1E.

Remark 14. It might seem artificial to define impulse-controllability and
-observability in terms of algebraic conditions. A natural definition should
be based on reachability of certain “impulsive” states and deduction of “im-
pulsive” states from the output. The problem is that these definitions would
require a complete distributional solution theory leading to an unnecessary
overhead for the purposes of this paper. For this reason, the definition of
impulse-controllability and -observability is based on characterizations given
in [13, Thm. 4 and Thm. 9].

Proposition 15. Impulse-controllability and -observability as well as the
corresponding indices are invariant under equivalence transformations.

Proof. Let (c1, E1, A1, b1), (c2, E2, A2, b2) ∈ Σpure
n be equivalent via S, T ∈

Rn×n. Let Bimp,1, Cimp,1, Bimp,2, and Cimp,2 be the corresponding impulse-
controllabel- and impulse-observable-matrices. From the definition it follows
that

Bimp,2 = SBimp,1,

hence the corresponding inpulse-controlability-indices are equal. Further-
more,

im E2A2
−1 = imSE1A1

−1S−1 = im SE1A1
−1,
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which yields that (c1, E1, A1, b1) is impulse-controllable if, and only if, (c2, E2, A2, b2)
is impulse-controllable. Analogously,

Cimp,2 = Cimp,1T

and
ker A2

−1E2 = ker T−1A1
−1E1T = ker A1

−1E1T,

which show that the impulse-observability-index and impulse-controllability
are invariant.

qed

Proposition 15 again justifies that one can assume that every pure DAS is in
the standard form (c, N, I, b). In fact, this simplifies the Definitions 12 and
13 because then Nb = Nc = N .
The next proposition highlights an important property of the impulse-controllability-
and impulse-observability-matrices.

Proposition 16. Consider a pure DAS in standard form (c, N, I, b) ∈ Σpure
n ,

n ∈ N, with impulse-controllability- and impulse-observability-indices db, dc ∈
N. Then

Bimp =
[
b, Nb, . . . , Ndb−1b, 0, . . . , 0

]

and
Cimp =

[
c/cN/ . . . /cNdc−1/0/ . . . /0

]
.

Proof. Let d ∈ N be the smallest number such that Ndb = 0 (which exists
since N is nilpotent). In terms of [14, XII.7] the vector b is N -cyclic with
period d. Now [14, Lemma XII.7.1] states that [b, Nb, . . . , Nd−1b] has full
rank which yields

db = rkBimp = rk
[
b, Nb, . . . , Nd−1b, 0, . . . , 0

]
= d,

this is the assertion of the proposition. The same argument applied to N#

and c# shows the analogous property for Cimp.

qed

Remark 17. For (c, E, A, b) ∈ Σpure
n let (b#, E#, A#, c#) ∈ Σpure

n be the dual
system (see e.g. [3, 2.4]). If db and dc are the impulse-controllable- and
impulse-observable-indices of (c, E, A, b), then it is easy to see that dc and
db are the impulse-controllable- and impulse-observable-indices of the dual
system.
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5. A normal form for DASs

In this section a normal form for pure DASs is given. For the derivation
of the normal form the following definition of the negative relative degree is
needed.

Definition 18. Consider a pure DAS (c, E, A, b) ∈ Σpure
n , n ∈ N, with

(polynomial) transfer function g(s) ∈ R[s]. The negative relative degree
of (c, E, A, b) is

r := deg g(s).

By convention, if g(s) ≡ 0 then r := −∞.

Remark 19. (i) For an ODS with transfer function g(s) = p(s)
q(s) the relative

degree ρ is defined as the difference between the degrees of the denom-
inator and numerator, i.e. ρ := deg q(s) − deg p(s). This definition is
consistent with Definition 18 and r = −ρ.

(ii) By Remark 7 the negative relative degree is invariant under equiva-
lence transformations. Furthermore, for a pure DAS in standard form
(c, N, I, b) ∈ Σpure

n the negative relative degree fulfills (see Remark 8 (ii))

r = max
{

i ∈ N
∣∣ cN ib $= 0

}
,

where by convention the maximum of an empty set is −∞.

It is now possible to formulate the main result of this paper. With the
proposed normal form, the influence of the input on the states and the influ-
ence of states on the output can easily be seen.

Theorem 20. Consider a pure DAS (c, E, A, b) ∈ Σpure
n , n ∈ N, with nega-

tive relative degree r ≥ 0, impulse-controllability- and impulse-observability-
indices db, dc ∈ N. Then (c, E, A, b) is equivalent to (ĉ, N̂ , Î, b̂) ∈ Σpure

n ,
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where

ĉ = [0, . . . , 0, 1], N̂ =





0
1

1 0
0 0 0

E1 N1 0 0

E2 E3
0
1

1 0
0∗

0∗ 0 0
0
1

1 0





}
dc − r − 1

} n − dc − db + r + 1

}
db − r − 1

}
r + 1

Î =





I

I

I

I∗





, b̂ =





0

0

0

γ
0

0





,

where γ := cA−1(EA−1)rb = c(A−1E)rA−1b $= 0,

0∗ =

[∗ ∗ 1
0

]
, 0∗ =

[

0
1∗
∗

]

, I∗ =

[1

∗ ∗ 1

]

,

and N1 ∈ R(n−dc−db+r+1)×(n−dc−db+r+1) is a nilpotent matrix (in Jordan nor-
mal form).

Proof. Without loss of generality, assume that the DAS is in standard
form, i.e. (c, E, A, b) = (c, N, I, b) for some nilpotent matrix N . In this case
γ = cN rb $= 0 (see Remark 19 (ii)).

The proof consists of two main steps. The first step is the construction
of the transformation matrices S and T , in particular the construction must
ensure that S and T are invertible. In the second step it is shown that indeed
(c, N, I, b) ) (ĉ, N̂ , Î , b̂) via S and T .

Step 1.
The construction is based on the five matrices L ∈ Rn×(dc−r−1), L ∈ Rn×(n−dc−db+r+1),

12



B ∈ Rn×(db−r−1), B ∈ Rn×(r+1), and Î ∈ Rn×n, which define the transforma-
tion matrix S and T by

S := γ
[
L,L,B,B

]−1
,

T :=
1

γ

[
L,L,B,B

]
Î .

Step 1a: The matrix Î.
Let

Î :=

[
I

I∗

]
∈ Rn×n,

where

I∗ :=





1

cb
−γ

cNb
−γ

cNr−1b
−γ 1




∈ R(r+1)×(r+1). (2)

Obviously, Î is invertible.

Step 1b: The matrices B and B.
Let

B :=
[
b, Nb, . . . , N rb

]
∈ Rn×(r+1)

and
C :=

[
cN r/ . . . /cN/c

]
∈ R(r+1)×n

By Remark 19 (ii)

CB =





cNrb

cNr−1b

...

cb · · · cNr−1b cNrb




∈ R(r+1)×(r+1) (3)

is invertible and hence B and C must have full rank. In particular this implies
db ≥ r + 1 and dc ≥ r + 1. Let

B :=
[
N r+1b, N r+2b, . . . , Ndb−1b

]
∈ Rn×(db−r−1),

then by the definition of db the matrix
[
B,B

]
has full column rank.
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Step 1c: The matrix L.
If dc = r + 1, then L is the empty matrix. Otherwise let

C :=
[
cNdc−1/cNdc−2/ · · · /cN r+1

]
∈ R(dc−r−1)×n.

Then ker
[
C/C

]
is an (n−dc)-dimensional subspace of kerC (where dim ker C =

n − r − 1), i.e. there exists a full rank matrix L ∈ Rn×(dc−r−1) such that
imL⊕ ker

[
C/C

]
= ker C. In particular imL ∩ ker C = {0} and imL ⊆ ker C.

Let
L := γL

(
CL

)−1
.

It remains to show that, firstly, L is well defined, i.e. that CL is an invert-
ible matrix, and, secondly, that [L,B,B] has full rank (otherwise the matrix
S is not well defined). Assume that CLm = 0 for some m ∈ Rn. Then
Lm ∈ im L ∩ ker C = {0}, hence CL has only a trivial kernel which implies
invertibility. To show that [L,B,B] has full rank, observe that imL = imL
and, by the definition of the relative degree, im

[
B,B

]
⊆ ker C. Hence

{0} = im L ∩ ker C ⊇ imL ∩ im
[
B,B

]
, which implies that [L,B,B] has

full rank.

Step 1d: The matrix L.
If db = r + 1, then L is the empty matrix. Otherwise choose, analogously as
in the previous step, a full rank matrix K ∈ R(db−r−1)×n such that imK# ⊕
ker

[
B,B

]#
= kerB#. Again the matrix B#

K# is invertible. Let

K = (KB)−1K,

with an analogous argument as in Step 1c it can be shown that
[
K/C/C

]
has

full rank, hence it is possible to choose a full rank matrixL ∈ Rn×(n−dc−db+r+1)

such that
imL = ker

[
K/C/C

]
.

It remains to show that
[
L,L,B,B

]
has full rank (i.e. is invertible). To show

this, first observe that, by the definition of the relative degree, imB∩ker C =

{0} and recall that imL∩ker C = {0} and analogously imK#∩kerB#
= {0},

the latter is equivalent to imB ∩ kerK = {0}. Altogether this yields

ker
[
K/C/C

]
∩ im

[
L,B,B

]
= {0},
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which implies that the square matrix
[
L,L,B,B

]
has full rank which com-

pletes the first step of the proof.

Step 2.
Step 2a: ST = Î.
By definition ST = Î.
Step 2b: Sb = b̂.
Let er = [0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸

r

]# ∈ Rn then Sb = b̂ = γer if, and only if,

b = γS−1er. The latter is fulfilled since

γS−1 =
[
L,L,B, b, Nb, . . . , N rb︸ ︷︷ ︸

=B

]
.

Step 2c: cT = ĉ.
Choose a full rank matrix K ∈ R(n−dc−db+r+1)×n such that

imK#
= ker

[
L,B,B

]#
.

It can be shown analogously as in Step 1d that the square matrix C :=[
C/K/K/C

]
has full rank (i.e. is invertible). Writing B :=

[
L,L,B,B

]
the

matrix T can be written as

T = C−1γ−1CBÎ .

Since cC−1 = [0, . . . , 0, 1] it remains to show that

[0, . . . , 0, 1]γ−1CBÎ = [0, . . . , 0, 1] = ĉ,

or, equivalently, that the last row of the product CB equals the last row of
γÎ−1. It is easy to see that the last row of γÎ−1 is [0, . . . , 0, cb, cNb, . . . , cN rb].
Observe that

CB =





CL CL CB CB
KL KL KB KB
KL KL KB KB
CL CL CB CB



 . (4)

The matrices L and L are such that imL and imL are both subspaces of
ker C, hence CL = 0 and CL = 0. From the definition of the relative degree
it follows that CB = 0. Together with (3) this shows that the last row of CB
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is [0, . . . , 0, cb, cNb, . . . , cN rb].
Step 2d: SNT .
Invoking the notation of Step 2c write

SNT = (CB)−1CNBÎ .

Note that the product CB in (4) can further be simplified by the following
observations, CL = γI, C[L,B,B] = 0, K[L,B,B] = 0, K[L,B] = 0, and
KB = I:

CB =





γI 0 0 0
0 KL 0 0
KL 0 I 0
0 0 0 CB



 .

Hence

(CB)−1 =





γ−1I 0 0 0
0 (KL)−1 0 0

−γ−1KL 0 I 0
0 0 0 (CB)−1



 .

By Proposition 16

NB = B
[

0
1

1 0

]
and CN =

[
0
1

1 0

]
C,

furthermore CNB = CB
[

0
1

1 0

]
, KNB = 0 and CNL = 0, hence

CNB =





γ
[

0
1

1 0

]
0 0 0

KNL KNL 0 0

KNL KNL
[

0
1

1 0

]
KNB

CNL 0 0 CB
[

0
1

1 0

]




.

Therefore,

SNT = (CB)−1CNBÎ =





[
0
1

1 0

]
0 0 0

Ê1 N̂1 0 0

E2 Ê3

[
0
1

1 0

]
KNBI∗

(CB)−1CNL 0 0
[

0
1

1 0

]
I∗




,

16



where Ê1 = (KL)−1KNL, N̂1 = (KL)−1KNL, E2 = −KL
[

0
1

1 0

]
+ KNL,

Ê3 = KNL, and I∗ is given by (2). Note that

CNL =





cN r+1

cN r

...
cN2

cN




L =





γcN r+1L(CL)−1

0
...
0
0




= γ




0 0 1

0



 ,

hence (CB)−1CNL = 0∗, and

KNB = K[Nb, N2b, . . . , N rb, N r+1b] = [0, 0, . . . , 0, (KB)−1KN r+1b] =



 0

1
0

0



 ,

hence KNBI∗ = 0∗. Clearly,
[

0
1

1 0

]
I∗ =

[
0
1

1 0

]
and it remains to show

that N̂1 is nilpotent. This follows from the fact that SNT Î−1 = SNS−1

is nilpotent and because of the special block structure this implies that N̂1

must also be nilpotent. Without changing the block structure it is possible
to transform N̂1 to Jordan form N1, this changes Ê1 and Ê3 to E1 and E3.

qed

Remark 21. The proof of Theorem 20 is constructive. In fact, for a given
DAS in standard form (c, N, I, b) ∈ Σpure

n with negative relative degree r ≥ 0
and impulse-controllability- and impulse-observability-indices db, dc ∈ N the
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specific matrices in the normal form are given as follows:

E1 = J−1(KL)−1KNL ∈ R(n−dc−db+r+1)×(db−r−1),

E2 = KNL −KL
[

0
1

1 0

]
∈ R(db−r−1)×(dc−r−1),

E3 = KNLJ ∈ R(db−r−1)×(n−dc−db+r+1),

N1 = J−1(KL)−1KNLJ ∈ R(n−dc−db+r+1)×(n−dc−db+r+1),

0∗ =





cb
−γ

cNb
−γ

cNr−1b
−γ 1

0



 ∈ R(db−r−1)×(r+1),

0∗ = (CB)−1γ



 0

1
0

0



 ∈ R(r+1)×(dc−r−1),

I∗ =





1

cb
−γ

cNb
−γ

cNr−1b
−γ 1




∈ R(r+1)×(r+1),

where

B :=
[
b, Nb, . . . , N rb

]
, B :=

[
N r+1b, N r+2b, . . . , Ndb−1b

]

C :=
[
cNdc−1/cNdc−2/ · · · /cN r+1

]
, C :=

[
cN r/ . . . /cN/c

]
,

K := [0, I]
([

B#/B#]
[B,B]

)−1 [
B#/B#

]
∈ R(db−r−1)×n

L := γ
[
C#

, C#]
(
[C/C]

[
C#

, C#]
)−1

[I/0] ∈ Rn×(dc−r−1),

K# ∈ Rn×(n−dc−db+r+1) is a basis of ker
[
L#/B#

/B#],
L ∈ Rn×(n−dc−db+r+1) is a basis of ker

[
K/C/C

]
,

and J ∈ R(n−dc−db+r+1)×(n−dc−db+r+1) is a basis transformation such that N1

is in Jordan normal form.
If the DAS (c, E, A, b) is not in standard form, then either N and b in the
above formulae must be replaced by A−1E and A−1b, resp., or N and c must
be replaced by EA−1 and cA−1, resp.

Remark 22. If the negative relative degree of a pure DAE is maximal, i.e.
r = n−1, then the normal form above coincides with the minimal realization
in R-form as given in Proposition 11.
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Corollary 23. All minimal realizations of a pure DAS are equivalent.

The normal form of Theorem 20 can be viewed as a specialization of (2-
5.4) in [3, p. 52]: it is more explicit and simpler, the size of the different
blocks is explicitly given, and the influence of the input on the states can
be seen more directly as well as the influence of the states on the output.
Furthermore no proof is given in [3].

6. Impulse-controllability and -observability revisited

With the normal form from Theorem 20 it is now possible to give char-
acterization of impulse-controllability and -observability.

Theorem 24. Consider (c, E, A, b) ∈ Σpure
n , n ∈ N, with negative rela-

tive degree r ≥ 0, impulse-controllability- and impulse-observability-indices
db, dc ∈ N and let N1 ∈ R(n−db−dc+r+1)×(n−db−dc+r+1) be given as in Theo-
rem 20. Then the following characterizations of impulse-controllability and
-observability hold:

(i) The DAS is impulse-controllable if, and only if, dc = r + 1 and N1 = 0
(ii) The DAS is impulse-observable if, and only if, db = r + 1 and N1 = 0.

Proof. Let (ĉ, N̂ , Î, b̂) be the normal form of (c, E, A, b) from Theorem 20.

(i) It is easily seen that (ĉ, N̂ , Î, b̂) is equivalent to (c̃, Ñ , I, b̃) with

Ñ =





0
1

1 0
0 0 0

E1 N1 0 0

0∗ 0
0
1

1 0
0

E2 E3 0̃∗
0
1

1 0





where the matrices E1, E2, E3, N1, 0∗ are the same as in Theorem 20
and 0̃∗ has the same structure as 0∗ from Theorem 20, in particular 0∗
and 0̃∗ have a one in the upper right corner. The vector b̃ is given by
b̃ = [0, . . . , 0, γ, 0, . . . , 0]# with γ $= 0 at the (n − db + 1)-th position. It
is easily seen that

im [Ñ b̃, Ñ2b̃, . . . , Ñn−1b̃] = im





0 0
0 0

0
1

1 0
0

0̃∗
0
1

1 0




,
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which implies that impulse-controllability for the given DAS is equivalent
to the condition

im





0
1

1 0
0

E1 N1

0∗ 0
E2 E3



 ⊆ im





0 0
0 0

0
1

1 0
0

0̃∗
0
1

1 0



 .

A necessary and sufficient condition for this is that the matrix 0∗ is not
existent (because it has a one in the upper right corner), i.e. dc = r + 1,
and that N1 is the zero matrix.

(ii) It is easily seen that (ĉ, N̂ , Î, ĉ) is equivalent to (c̃, Ñ , I, b̃) with

Ñ =





0
1

1 0
0 0 0

0̃∗
[̃

0
1

1 0

]
0 0

E1 0 N1 0

E2 0∗ E3
0
1

1 0




,

where E1, E2, E3, N1, O∗ are as in the normal form in Theorem 20, 0̃∗
has the same structure as 0∗ from Theorem 20 and

[̃
0
1

1 0

]
=





0
1 0

. . . . . .
1 0

∗ · · · ∗ 1 0




.

The vector c̃ is given by c̃ = [0, . . . , 0, 1, 0, . . . , 0] where the one is at
position dc. Easy calculations show that (here it is needed that 0̃∗ has a
one in the upper right corner)

ker[c̃Ñdc/c̃Ñdc−1/ . . . /c̃Ñ ] = ker




0
1

1 0
0 0 0

0̃∗
[̃

0
1

1 0

]
0 0



 .

Hence impulse-controllability is equivalent to the condition

ker




0
1

1 0
0 0 0

0̃∗
[̃

0
1

1 0

]
0 0



 ⊆ ker

[
E1 0 N1 0

E2 0∗ E3
0
1

1 0

]
.
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Because 0∗ has a one in the upper right corner the inclusion holds if,
and only if, 0∗ does not exists, i.e. db = r + 1, and N1 = 0.

qed

Corollary 25. A pure DAS with state space dimension n ∈ N is impulse-
controllable and -observable if, and only if, it is equivalent to

(c, N, Î, b) =



[0, . . . , 0, 1],




0 0

0
0
1

1 0



 ,



 I 0

0
1

∗ ∗ 1



 [0, . . . , 0︸ ︷︷ ︸
n−r−1

, γ, 0, . . . , 0︸ ︷︷ ︸
r

]#



 ,

where the diagonal square blocks of N and Î have size (n− r−1) and (r +1)
for some r ∈ {0, . . . , n − 1} and γ $= 0.

Corollary 26. (i) Two pure DASs with the same state space dimension
which are impulse-controllable and -observable are equivalent if, and only
if, they are IO-equivalent.

(ii) If the negative relative degree of a pure DAS (c, E, A, b) ∈ Σpure
n , n ∈ N,

is maximal, i.e. r = n − 1, then (c, E, A, b) is impulse-controllable and
-observable.

(iii) All minimal realization of a pure DAS are impulse-controllable and -observable.

Remark 27. Note that an impulse-controllable and -observable DAS which
is a realization of a polynomial transfer function need not to be minimal,
because one can add arbitrarily many “trivial” state equations z1 = 0, z2 =
0, . . . , zN = 0 without loosing the property of impulse- controllability and
-observability.

7. Conclusion

For pure differential algebraic equation a normal form is derived which
shows very clearly the influence of the input on the states, the influence
of the states on the output and the relative degree. The normal form also
separates the states into impulse-controllable and -observable states and easy
characterizations of impulse-controllability and -observability based on the
normal form are given. Some specific minimal realizations of pure DAEs are
given and connections between the relative degree and the normal form are
highlighted.
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In combination with distributional solution theory the normal form might be
used in future research to study the influence of inconsistent initial values
on the output and the influence of non-smooth inputs on the states and the
output. The normal form might also help for synthesis of controllers for
specific control tasks, e.g. impulse elimination.
Finally the proof of the normal is constructive, i.e. it is possible to calculate
the transformation matrices and the normal form explicitly, nevertheless the
given formulae are not studied with respect to numerical feasibility.
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[10] J. Loiseau, K. Özçaldiran, M. Malabre, N. Karcanias, Feedback canon-
ical forms of singular systems, Kybernetika 27 (4) (1991) 289–305.

[11] W. Rath, Derivative and proportional state feedback for linear descriptor
systems with variable coefficients, Lin. Alg. Appl. 260 (1997) 273–310.

[12] K. Weierstraß, Zur Theorie der bilinearen und quadratischen Formen,
Monatsh. Akad. Wiss. (1867) 310–338.

[13] D. J. Cobb, Controllability, observability and duality in singular sys-
tems, IEEE Trans. Automat. Contr. AC-29 (1984) 1076–1082.

[14] S. Lang, Linear Algebra, 2nd Edition, Addison-Wesley, Reading, Mas-
sachusetts, 1970, fourth printing 1973.

23


