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Abstract— In this paper we study a novel solvability notion
for discrete-time singular linear switched systems with inputs.
We consider the existence and uniqueness of a solution on
arbitrary finite time intervals with arbitrary inputs and
arbitrary switching signals, and furthermore, we pay special
attention to strict causality, i.e. the current state is only
allowed to depend on past values of the state and the input.
A necessary and sufficient condition for this solvability notion
is then established. Furthermore, a surrogate switched system
(an ordinary switched system that has equivalent input-
output behavior) is derived for any solvable system. By
utilizing those surrogate systems, we are able to characterize
the reachability and controllability properties of the original
singular systems using a geometric approach.

I. Introduction
We consider in this study a class of switched systems

where each mode is a discrete-time singular linear system
of the form

Eσ(k)x(k + 1) = Aσ(k)x(k) +Bσ(k)u(k), (1)

where k ∈ N is the time instant/step, x(k) ∈ Rn is the
vector of states, u(k) ∈ Rm,m ∈ N is the vector of inputs,
σ : N → {0, 1, 2, ..., p} is the switching signal ruling which
mode σ(k) is active at time instant k, Ei, Ai ∈ Rn×n,
and Bi ∈ Rn×m. The matrices Ei are in general singular
yet may be nonsingular, and thus system (1) also covers
ordinary systems. The switching signal σ is triggered only
by the time and not by the state vectors or the input
values. Furthermore, the switching signal σ is assumed
to have the following form

σ(k) = σj if k ∈ [ksj , k
s
j+1), j = {0, 1, 2, ...}, (2)

where ksj ∈ N denote the switching times with ks0 = 0
and σj ∈ {0, 1, ..., p}. Assume that the switching times
are strictly increasing i.e. ksj+1 > ksj . This means that
each mode in the switched system is active for at least
one time instant every time it is active. The considered
switching signal form is illustrated in Fig. 1.

The pioneering study for the non-switched case of (1)
was established a few decades ago, which covers the
solution theory as well as the fundamental properties
including controllability, see e.g. [1], [2], [3], [4]. However,
the consistency set (the set containing all consistent
initial values) lacks studies until a geometric approach
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Fig. 1. The mode sequence (2)

and a projector lemma were utilized in [5] in establishing
the consistency set. Furthermore, in the same study, the
one-step map was also introduced, which was then used
to formulate the surrogate system, which is an ordinary
system having the same input-output behavior.

Meanwhile, switched systems deserve deep research
both in theory and practical applications as switch-
ing among diverse system structures is a fundamental
component in many systems such as power systems [6]
and electronics [7]. In particular, switched systems also
arise naturally in sampled-data systems [8], [9], [10]. If
all Ei are nonsingular, systems of the form (1) belong
to (ordinary) linear switched systems, which have been
extensively studied for the solution theory as well as
its fundamental properties including observability, deter-
minability, reachability, controllability, and stability (see
e.g. [11], [12], [13], [14]). In particular, the matrices Ei in
system (1) may be singular in the applications in various
fields such as economic systems [15] and constrained
mechanical systems [16], [17]. The solution theory for
the switched system (1) is still limited in literature
due to the complexity of finding a condition for the
existence and uniqueness of a solution with the presence
of singular Ei. A recent study in [5] provides a solvability
characterization for system (1), and surrogate systems
were also established; however, the corresponding one-
step map formula depends on the mode at k = −1 which
is not clear how it affects the solution, and the solution
at a time instant depends not only on past states and
inputs but also on the current input.

Besides the solution theory, reachability and controlla-
bility properties are essential that need to be studied for
analysis and control design purposes. In the continuous
time domain, controllability of system class (1) has been
extensively studied, see e.g. [18], [19], however, systems
in the discrete-time domain still lack studies.

In this paper, the solution theory is studied for system
(1) in which the solution at any time instant depends
only on past information. The corresponding necessary



and sufficient conditions for this solvability notion are
also established. For solvable systems, surrogate systems
are then introduced which can be used to derive the
systems’ explicit solutions. Moreover, by utilizing those
surrogate systems, necessary and sufficient conditions
for reachability and controllability characterizations are
established.

In the following we let M−1X denote the preimage
of a (possibly) singular matrix M ∈ Rn×n over a set
X , i.e. M−1X = {ξ ∈ Rn : Mξ ∈ X}. A generalized
inverse of M ∈ Rm×n is a matrix M+ ∈ Rn×m that
satisfies MM+M = M [20]; M+ is not unique, but one
possible choice is the well known Moore-Penrose inverse.
Furthermore, we have that

M−1{x} = {M+x}+ kerM ∀x ∈ Rm. (3)

The natural numbers (including zero) are denoted by
N and we also use the interval notation for integers,
i.e. [k1, k2] := {k1, k1 + 1, . . . , k2 − 1, k2}. The symbol
⊕ denotes the direct sum of subspaces, in particular,
when writing V ⊕W we implicitly assume/require that
V ∩W = {0}.

II. Solution Theory
A. Definition and Characterization

Recall the Inhomogeneous Singular Linear Switched
System (InhSLSS) (1). For each mode i, define Ŝi :=
A−1

i (im[Ei, Bi]) = {ξ ∈ Rn : Aiξ ∈ im[Ei, Bi]}. In this
study, we consider the following solvability notion in
which we want to have, for any arbitrary switching signal,
a unique solution on any finite discrete time interval
[k0, k1], k0, k1 ∈ N, k0 < k1 with x(k0) = xk0

∈ Ŝσ(k0),
and the state at any k > k0, x(k), is determined by only
x(k0) and past inputs u(k0), u(k0 +1), . . . , u(k− 1), i.e.,
the solution behavior is strictly causal.

Definition 2.1 (Solvability of InhSLSSs) We call sys-
tem (1) locally strictly causally uniquely solvable (for
short just solvable) if, for all k0, k1 ∈ N, k1 > k0, all xk0

∈
Ŝσ(k0), all input sequences (u(k0), u(k0+1), ..., u(k1−1))
and all switching signals there exists a unique sequence
(x(k0), x(k0 + 1), . . . , x(k1)) with x(k0) = xk0 such that
(1) holds for all k ∈ [k0, k1] and for some u(k1).

Strict causality is required here in which the solution
at k1, x(k1), depends only on the past states and inputs.
Furthermore, a unique solution is required for the system
starting from any initial time.

We present a necessary and sufficient condition for
the InhSLSS (1) to become solvable in the following
theorem. Furthermore, the surrogate switched system is
also introduced in this theorem.

Theorem 2.2: The InhSLSS (1) is solvable in the sense
of Definition 2.1 if and only if

E+
j Aj Ŝj+imE+

j Bj ⊆ kerEj⊕Ŝi ∀i, j ∈ {0, 1, ..., p}. (4)

If solvable, its solution satisfies

x(k + 1) = Φ̂σ(k+1),σ(k)x(k) + Θ̂σ(k+1),σ(k)u(k), (5)

where Φ̂i,j = Π
kerEj

Ŝi
E+

j Aj , Θ̂i,j = Π
kerEj

Ŝi
E+

j Bj , the
matrix E+

j is a generalized inverse of Ej and Π
kerEj

Ŝi
is the

canonical projector from kerEj ⊕Ŝi to Ŝi. In particular,
x(k) ∈ Ŝσ(k) for all k ∈ N.

Proof: Part 1: the solvability condition
Necessity: For any solution x(k) at any time instant k of
any mode j, the solution x(k+1) of any mode i satisfies
Ejx(k + 1) = Ajx(k) + Bju(k) which implies, by the
preimage property (3),

x(k + 1) ∈ E−1
j (Aj Ŝj + imBj)

= E+
j Aj Ŝj + imE+

j Bj + kerEj .

The solution x(k + 1) also satisfies Eiξ1 = Aix(k + 1) +
Biξ2 for some ξ1 ∈ Rn and ξ2 ∈ Rm. Again, by the same
preimage property, we have

x(k + 1) ∈ A−1
i (im[Ei, Bi]) = Ŝi. (6)

By applying U = E+
j Aj Ŝj + imE+

j Bj , V = Ŝi and W =
kerEj to the projector lemma in [21, Lem. 2.3]1, the
uniqueness of x(k + 1) implies E+

j Aj Ŝj + imE+
j Bj ⊆

kerEi ⊕ Ŝi for all i, j ∈ {0, 1, ..., p}.
Sufficiency: The proof is done by induction. First, we will
show that for all x(0) = x0 ∈ Ŝσ(0), all u(0) ∈ Rm, and
all switching signals σ(0) = j and σ(1) = i, there exists
a unique x(1) which satisfies (1) at k = 0 and k = 1 i.e.

Ejx(1) = Ajx(0) +Bju(0)

Eiξ = Aix(1) +Biν

for some ξ ∈ Rn and ν ∈ Rm. Again, by the preimage
property (3), the latter is equivalent to

x(1) ∈ E−1
j (Ajx0 +Bju(0))

= {E+
j Ajx0 + E+

j Bju(0)}+ kerEj

x(1) ∈ A−1
i (im[Ei, Bi) = Ŝi.

The condition E+
j (Ajx(0)+Bju(0)) ⊆ Ŝi⊕kerEj implies

that
{E+

j Ajx0 + E+
j Bju(0)}+ kerEj ∩ Ŝi

is a singleton (be the projector lemma) for all x0 ∈ Ŝj

and all u(0) ∈ Rm. Thus, a vector x(1) ∈ Rn satisfying
(1) exists and is unique. Repeating the same argument,
we can show that for all k0, k1 ∈ N, k1 > k0, all x(k0) ∈
Ŝσ(k0), all (u(0), u(1), ...) and all switching signals, a
unique solution (x(k0), x(k0 + 1), ..., x(k1)) exists and is
determined only by past states and inputs.
Part 2: the surrogate system (5)
For every time instant k, switching signal σ, solution
x(k) ∈ Ŝσ(k), and input u(k) ∈ Rm, the intersection

1For subspaces U ,V,W ⊆ Rn, V ∩ ({u} + W) is a singleton for
all u ∈ U if and only if U ⊆ V ⊕W. In that case

V ∩ ({u}+W) = {ΠW
V u}, (7)

where ΠW
V : V ⊕W → V is the canonical projector from V ⊕W to

V.



E+
σ(k)(Aσ(k)x(k) + Bσ(k)u(k)) + kerEσ(k) ∩ Ŝσ(k+1) pro-

vides x(k+1). Putting U = E+
σ(k)(Aσ(k)x(k)+Bσ(k)u(k)),

V = Ŝσ(k+1) and W = kerEσ(k) into formula (7) in the
projector lemma proves that x(k+1) satisfies (5). Finally,
the inclusion x(k) ∈ Ŝσ(k) is a direct consequence of x(k)
solving (1); this can also be seen from (6).

By utilizing the surrogate ordinary switched system
(5), the explicit solution of (1) can be written as

x(k) =Πk
j=1Φ̂σ(k+1−j),σ(k−j)x(0)

+ Πk−1
j=1 (Φ̂σ(j+1),σ(j))Θ̂σ(1),σ(0)u(0) + · · ·

+ Φ̂σ(k),σ(k−1)Θ̂σ(k−1),σ(k−2)u(k − 2)

+ Θ̂σ(k),σ(k−1)u(k − 1).

(8)

B. Discussion on Unswitched Systems
The results are also valid for unswitched systems of

the form

Ex(k + 1) = Ax(k) +Bu(k), k ∈ N, (9)

with Ŝ := A−1(im[E,B]) = {ξ ∈ Rn : Aξ ∈
im[E,B]}. This is presented in the following corollary.
For unswitched systems, the solvability notion in Defi-
nition 2.1 is considered with a constant switching signal
where its mode corresponds to (9).

Corollary 2.3 (Solvability of unswitched systems) Sys-
tem (9) is solvable (in the sense of Definition 2.1) if, and
only if,

E+AŜ + imE+B ⊆ kerE ⊕ Ŝ. (10)

If solvable, its solution satisfies

x(k+1) = Φ̂x(k)+Θ̂u(k), x(0) ∈ Ŝ, k = 0, 1, . . . , (11)

where Φ̂ = ΠkerE
Ŝ

E+A, Θ̂ = ΠkerE
Ŝ

E+B, E+ is a
generalized inverse of E and ΠkerE

Ŝ
is the canonical

projector from kerE ⊕ Ŝ to Ŝ. In particular, x(k) ∈ Ŝ
for all k ≥ 0.

One crucial observation for the solvability of switched
systems related to unswitched systems is that solvability
for individual modes (as unswitched systems) is in
general not sufficient for switched systems composed of
those modes to become also solvable. This is already
confirmed by the system in Example 4.1 where a switched
system composed of solvable individual modes may be
not solvable, we thus have that the condition (10)
satisfied by each mode is not sufficient for switched
systems to become solvable.

III. Reachability and Controllability: Single Switch
Case

The basic intuition for reachability is to find the set of
all final states reachable within finite time steps starting
from a given initial state. Meanwhile, controllability (to
zero) deals with finding initial values that can be brought
to zero within some finite time steps. Those two notions
are in fact equivalent when considering continuous-time
non-switched systems, see e.g. [22, Lem. 2.3]. However,

they are not equivalent in discrete time; this is already
well-known in ordinary systems, see e.g. [23]. In singular
systems, this is also true, see the forthcoming Remark
3.8.

We restrict our attention in this section to only single
switch switching signals considered on the finite time
domain [0,K], K ∈ N of the form (see also Fig. 2 for
illustration)

σ(k) =

{
0, 0 ≤ k < ks,

1, ks ≤ k ≤ K.
(12)

Thus, in this section, we consider switched systems
composed of two modes; it starts from mode (E0, A0, B0)
with the corresponding consistency space Ŝ0 and switches
at the switching time ks to mode (E1, A1, B1) with the
corresponding consistency space Ŝ1.

k

σ(k)
(E0, A0, B0) (E1, A1, B1)

ks−1 ks K0

Fig. 2. Single switch switching signal for (1)

A. Definitions

The reachability and controllability notions considered
in this study are mathematically defined for the switched
system (1) as follows:

Definition 3.1 (Reachability from zero) A state xf ∈
Ŝ1 of the InhSLSS (1) is called reachable from zero on
[0,K],K > ks w.r.t. the single switch switching signal
given by (12) if with x(0) = 0, there exists an input
sequence (u(0), u(1), .., u(K − 1)) such that x(K) = xf .

Definition 3.2 (Reachable set and reachability) The
reachable set from zero of system (1) on [0,K],K > ks

w.r.t. σ of the form (12) is the set of all final states
xf ∈ Ŝ1 which are reachable from zero on [0,K] and
denoted by Rσ

[0,K]. In particular, the InhSLSS (1) is
called reachable from zero on [0,K] if Rσ

[0,K] = Ŝ1.

Definition 3.3 (Controllability to zero) A consistent
initial state x0 ∈ Ŝ0 of (1) is called controllable to zero
on [0,K],K > ks w.r.t. the single switch switching signal
of the form (12) if with x(0) = x0, there exists an input
sequence (u(0), u(1), .., u(K − 1)) such that x(K) = 0.

Definition 3.4 (Controllable set and controllability)
The controllable set to zero of system (1) on [0,K],K >
ks is the set of all consistent initial states x0 ∈ Ŝ0 which
are controllable to zero on [0,K] and denoted by Cσ

[0,K].
In particular, the InhSLSS (1) is called controllable to
zero on [0,K] if Cσ

[0,K] = Ŝ0.



B. Characterizations
Let Ri(k) = imRi(k) = im

[
Θ̂i, Φ̂iΘ̂i, · · · , Φ̂k−1

i Θ̂i

]
for mode i = 0, 1, and define the following subspaces

P0 =Ŝ0 ∩R0(k
s − 1),

P1 =Ŝ1 ∩
(
Φ̂K−ks

1 Φ̂1,0P0 + im Φ̂K−ks

1,0 Θ̂1,0

+R1(K − ks)
)
.

(13)

We present the main result for the reachability char-
acterization in the following theorem.

Theorem 3.5 (Reachability) Consider the solvable
InhSLSS (1). Let Rσ

[0,K] be its reachable set on [0,K]
w.r.t. the single switch switching signal (12). Then

P1 = Rσ
[0,K], (14)

where P1 is given by (13). In particular, the InhSLSS
(1) is reachable if, and only if, P1 = Ŝ1.

Proof: From the explicit solution formula (8), the
solution of (1) with x(0) = 0 at k = K > ks can be
written as

x(K) = R1(K − ks)

 u(K−1)
u(K−2)

...
u(ks)

+ Φ̂K−ks

1 Θ̂1,0u(k
s − 1)

+Φ̂K−ks

1 Φ̂1,0R0(k
s − 1)

 u(ks−2)
u(ks−3)

...
u(0)

 . (15)

Step 1: Reachable space
Step 1.a: Proof of P1 ⊇ Rσ

[0,K]. Pick any reachable state
x(K) ∈ Rσ

[0,K]. Then, there exists an input sequence
(u(0), u(1), ..., u(K − 1)) such that (15) is satisfied i.e.
x(K) ∈ Φ̂K−ks

1 Φ̂1,0P0+im Φ̂K−ks

1,0 Θ̂1,0+R1(K−ks). On
the other hand, from the proof of Theorem 2.2, note
that x(k) ∈ Ŝ0 for all k ∈ [0, ks) and x(k) ∈ Ŝ1 for
all k ∈ [ks,K]. Thus, x(K) ∈ Ŝ1 ∩

(
Φ̂K−ks

1 Φ̂1,0P0 +

im Φ̂K−ks

1,0 Θ̂1,0 +R1(K − ks)
)
= P1, and hence Rσ

[0,K] ⊆
P1.
Step 1.b: Proof of P1 ⊆ Rσ

[0,K]. Pick any xf ∈ P1. Then,
there exists a vector ū ∈ R(K×m)×1 with the structure
ū =

[
ū1
ū2
ū3

]
with ū1 ∈ R(ks−1×m)×1, ū2 ∈ Rm×1, and

ū3 ∈ R(K−ks×m)×1 such that
R1(K − ks)ū1 + Φ̂K−ks

1 Θ̂1,0ū2+

Φ̂K−ks

1 Φ̂1,0R0(k
s − 1)ū3 = xf ,

i.e. xf is reachable (from zero) by considering ū as
the input. Thus, xf ∈ Rσ

[0,K], and hence P1 ⊆ Rσ
[0,K].

Altogether, we get P1 = Rσ
[0,K].

Step 2: reachability
This is the direct consequence of its definition and the
first part of this theorem.

Remark 3.6: Note that reachable from zero on [0,K]
is equivalent to reachable on [0,K] i.e. every xf ∈ Rσ

[0,K]

is reachable from any consistent initial value x0 ∈ Ŝ0.

This can be seen from the fact that putting the term
of the solution that contains the nonzero initial value,
Φ̂K−ks

1 Φ̂1,0Φ̂
ks−1
0 x0, into (15) yields the same reachable

set.
We now present the main result for the controllability

characterization. First, define the subspaces

Q1 = Ŝ1 ∩
[
Φ̂K−ks

1

]−1

R1(K − ks),

Q0 = Ŝ0 ∩
[
Φ̂1,0Φ̂

ks−1
0

]−1 [
Q1 + Φ̂1,0R0(k

s − 1)

+ im Θ̂1,0

]
.

(16)

Theorem 3.7: Consider the solvable InhSLSS (1). Let
Cσ
[0,K] be its controllable set to zero on [0,K] w.r.t. the

single switch switching signal given by (12). Then

Cσ
[0,K] = Q0, (17)

where Q0 is defined in (16). In particular, the InhSLSS
(1) is controllable if, and only if, Q0 = Ŝ0.

Proof: Setting the solution at k = K > ks of (1)
under the single switch switching signal (12) with x(0) =
x0 ∈ Ŝ0 as zero gives us

0 = x(K) = Φ̂K−ks

1 x(ks)

[Θ̂1, Φ̂1Θ̂1, · · · , Φ̂K−ks−1
1 Θ̂1]

 u(K−1)
u(K−2)

...
u(ks)

 ,
(18)

i.e. x(ks) ∈
[
Φ̂K−ks

1

]−1

R1(K−ks). The solution at k =

ks can be written as

x(ks) = Φ̂1,0Φ̂
ks−1
0 x0 + Φ̂1,0R0(k

s − 1)

 u(ks−2)
u(ks−3)

...
u(0)


+Θ̂1,0u(k

s − 1),

(19)

i.e. x0 ∈
[
Φ̂1,0Φ̂

ks−1
0

]−1 [
{x(ks)}+ Φ̂1,0R0(k

s − 1)

+ im Θ̂1,0

]
. Pick any controllable to zero state

x0 ∈ Cσ
[0,K]. Then, there exists an input sequence

(u(0), u(1), ..., u(K − 1)) such that (18) holds. Together
with the knowledge of x(ks) ∈ Ŝ1, it implies that

x0 ∈
[
Φ̂1,0Φ̂

ks−1
0

]−1 [
Q1 + Φ̂1,0R0(k

s − 1) + im Θ̂1,0

]
.

Now, since x0 ∈ Ŝ0 we have x0 ∈ Ŝ1 ∩[
Φ̂1,0Φ̂

ks−1
0

]−1 [
Q1 + Φ̂1,0R0(k

s − 1) + im Θ̂1,0

]
. Hence

Cσ
[0,K] ⊆ Q0.

Now, pick any ξ ∈ Q0. Then, Φ̂1,0Φ̂
ks−1
0 ξ =[

ς + Φ̂1,0R0(k
s − 1)ū1 + Θ̂1,0ū2

]
, for some ς ∈ Q1, ū1 ∈

R(ks×m)×1 and ū2 ∈ Rm×1. Vector ς ∈ Q1 implies
that there exists a vector ū3 ∈ R(K−ks)×m×1 such that
Φ̂K−ks

1 ς = R1(K − ks)ū3. Now, take ū ∈ R(K×m)×n of
the form ū =

[
ū1
ū2
ū3

]
. Then with this input, x(0) = ξ is

brought to zero on [0,K] i.e. x(0) = ξ is controllable to



zero. Thus, ξ ∈ Cσ
[0,K], and hence Q0 ⊆ C[0,K].

Finally, the controllability part is the direct consequence
of its definition and the result from the first part of this
proof.

Remark 3.8 (Reachability vs Controllability) In ordi-
nary systems, there are three important observations
regarding the relationship between reachability and con-
trollability i.e. (1) reachability implies controllability
to zero, (2) controllability to zero does not always
imply reachability, and (3) they are equivalent when
the state’s coefficient matrix is nonsingular [24]. For
solvable singular systems, with singular matrix E, the
first two statements are still true, however, in contrast,
the equivalency between reachability and controllability
to zero never happens as the matrix Φ̂ in (11) is
always singular. The proof for the first statement is
obvious since, in reachability, the zero (final) state is
also reachable from any consistent initial value i.e. it is
controllable to zero. The second statement is illustrated
by the forthcoming Example 4.3 as a counter-example.

C. Discussion on Unswitched Systems
As the solvability results, the reachability and con-

trollability characterizations derived above are also valid
for the unswitched system (9). This is stated in the
following corollary where the reachability and control-
lability notions for unswitched systems are the same as
in Definitions 3.1-3.4.

Corollary 3.9: Consider the solvable InhSLS (9), and
let R[0,K] be its reachable set from zero on [0,K] and
C[0,K] be its controllable set to zero on [0,K]. Then.

R[0,K] = Ŝ ∩ imR(K) (20)

and
C[0,K] = Ŝ ∩

[
Φ̂K

]−1

(imR(K)) , (21)

where R(k) = [Θ̂, Φ̂Θ̂, · · · , Φ̂k−1Θ̂], and the matrices
Φ̂ and Θ̂ are as in (11). In particular, the system is
reachable from zero if, and only if, Ŝ ∩ imR(K) =
Ŝ, or equivalently, Ŝ ⊆ imR(K), and the system is
controllable to zero if, and only if, C[0,K] = Ŝ, or
equivalently, Ŝ ⊆

[
Φ̂K

]−1

(imR(K)).

IV. Illustrative Examples
The following examples illustrate nonsolvable and

solvable InhSLSSs.
Example 4.1: Consider system (1) composed of two

modes represented by the matrix triplets

(E0, A0, B0) = ([ 1 0
0 0 ] , [

1 0
0 1 ] , [

1
0 ]) ,

(E1, A1, B1) = ([ 0 0
0 1 ] , [

1 0
0 1 ] , [

0
1 ]) .

Geometric computations provide that
kerE0 = span ( 01 ) , kerE1 =span ( 10 ) ,

Ŝ0 = span ( 10 ) , Ŝ1 =span ( 01 ) .

The condition E+
i AiŜi + im[E+

i Bi] ⊆ kerEi ⊕ Ŝi, ∀i =
0, 1 is satisfied, however, Ŝ1 ∩ kerE0 ̸= {0} and also
Ŝ0 ∩ kerE1 ̸= {0}, thus, switched systems composed of
those two modes are not solvable.

Example 4.2: Consider system (1) composed of

(E0, A0, B0) =
([−1 1 0

1 −1 −1
0 0 0

]
,
[
1 −1 1
0 1 1
0 −1 0

]
,
[−1

0
0

])
,

(E1, A1, B1) =
([−1 0 1

1 −1 0
0 0 0

]
,
[
0 0 −1
0 −1 0
1 1 −1

]
,
[

1
−1
0

])
.

with

kerE0 = span{(1, 1, 0)⊤},
kerE1 = span{(1, 1, 1)⊤},

Ŝ0 = span{(1, 0, 0)⊤, (0, 0, 1)⊤},
Ŝ1 = span{(1, 0, 1)⊤, (0, 1, 1)⊤}.

The solvability condition (4) is satisfied, and thus
switched systems composed of those modes are solvable.
With

E+
0 =

[
−1/2 0 0
1/2 0 0
−1 −1 0

]
, E+

1 =

[
−1/3 1/3 0
−1/3 −2/3 0
2/3 1/3 0

]
,

ΠkerE0

Ŝ0
=

[
1 −1 0
0 0 0
0 0 1

]
, ΠkerE1

Ŝ1
=

[
0 −1 1
−1 0 1
−1 −1 2

]
,

ΠkerE0

Ŝ1
=

[
1/2 −1/2 1/2
−1/2 1/2 1/2
0 0 1

]
, ΠkerE1

Ŝ0
=

[
1 −1 0
0 0 0
0 −1 1

]
,

we have the surrogate system (5) with

Φ̂0,0 =
[−1 1 −1

0 0 0
−1 0 −2

]
, Φ̂1,0 =

[
−1 1/2 −3/2
0 −1/2 −1/2
−1 0 −2

]
,

Φ̂0,1 =
[
0 −1 0
0 0 0
0 −1 −1

]
, Φ̂1,1 =

[
0 −1 −1
0 0 −1
0 −1 −2

]
,

Θ̂0,0 =
[
1
0
1

]
, Θ̂1,0 =

[
1
0
1

]
,

Θ̂0,1 =
[−1

0
0

]
, Θ̂1,1 =

[
0
1
1

]
.

With the switching signal σ(k) = 0 for k < 5 and σ(k) =
1 for k ≥ 5, the solution of the switched system is given
in Fig. 3

0 2 4 6 8
-1

0

1

0 1 2 3 4 5 6 7 8 9

-400
-200

0
200

x_1 x_2 x_3

Fig. 3. Solution of the switched system in Example 4.2

The following example illustrates a controllable
(unswitched) system that is not reachable. The system
in this example is also a counter-example for the obser-
vation in Remark 3.8.



Example 4.3: Consider system (9) with

(E,A,B) =
([

1 0 0
0 0 0
0 0 0

]
,
[
1 1 1
1 1 0
0 0 1

]
,
[
0
0
0

])
.

Its consistency space is Ŝ = span
(

1
−1
0

)
. It is solvable

as (10) is satisfied, e.g. with E+ = E =
[
1 0 0
0 0 0
0 0 0

]
,

im[E+A,E+B] = im
[
1 1 1 0
0 0 0 0
0 0 0 0

]
= span

(
1
0
0

)
⊂ kerE⊕Ŝ =

R3. With ΠkerE
Ŝ

=
[

1 0 0
−1 0 0
0 0 0

]
, we have its surrogate system

(11) with (Φ̂, Θ̂) =
([

1 1 1
−1 −1 −1
0 0 0

]
,
[
0
0
0

])
. Since for all K >

0, imR(K) = span
(

0
0
0

)
, R[0,K] = Ŝ ∩ imR(K) = {0} i.e.

it is unreachable on [0,K] for any K ≥ 0. However, it is
controllable to zero on [0,K] for any K > 0; this can be
seen from the fact that C[0,K] = Ŝ∩

[
Φ̂K

]−1

(imR(K)) =

span
(

1
−1
0

)
= Ŝ. //

This part is closed by the reachability and controlla-
bility analysis of the system in Example 4.2.

Example 4.4: Recall the system in Example 4.2. Each
mode as an individual system is not reachable on [0,K]
for all K > 0 since

∀K, R0
[0,K] = {0} ̸= S0 = span

{(
1
0
0

)
,
(

0
0
1

)}
,

R1
[0,1] = {0} ̸= S1 = span

{(
1
0
1

)
,
(

0
1
1

)}
, and

for K > 1, R1
[0,K] = span

(
1
−1
0

)
̸= S1,

where Ri
[0,K] and Ci

[0,K] for i = 0, 1 are reachable set and
controllable set on [0,K] for mode 0 and 1 respectively.

On the time domain [0,K] with K = 1, mode 0 is
controllable (C0

[0,1] = S0), however, mode 1 is uncontrol-

lable since C1
[0,1] = span

(
1

−1/2
1/2

)
̸= S1. For longer time

observations, both modes are always controllable since
for all K > 1,

C0
[0,K] = span

{(
1
0
0

)
,
(

0
0
1

)}
= S0 and

C0
[0,K] = span

{(
1
0
1

)
,
(

0
1
1

)}
= S1.

Consider now switched systems with the mode se-
quence (0, 1) on the time domain [0,K] with K = 10 and
with the switching time ks = 1, 2, . . . , 9. The switched
system is unreachable but controllable for all ks since
for all ks = 1, 2, . . . , 9,

Rσ
[0,10] = {0} ̸= S1 and Cσ

[0,10] = span
{(

1
0
0

)
,
(

0
0
1

)}
= S0.

With the mode sequence (1, 0), the characterization
results are the same, i.e., the switched system is unreach-
able but controllable on [0, 10] for all switching times
ks = 1, 2, . . . , 9.

V. Summary
Solution theory for discrete-time singular linear

switched systems has been investigated for which strict
causality is required for the solutions. Moreover, surro-
gate ordinary systems have been introduced for solvable

systems, and are then utilized for reachability and
controllability characterizations for the original singular
systems. Geometric criteria have been derived with single
switch switching signals.

Future work will focus on the case of multiple switches
and also on studying how reachability and controllability
depend on the switching times. Furthermore, an exten-
sion of the solution theory to the nonlinear case will be
investigated.
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