Anticipating less travel restrictions this year I have planned my upcoming travel (see “Upcoming Travel” widget) and hope to see many of you in person again. If you are planning to attend some of the listed meetings and want to meet with me, just send me a quick email a few days before the event and I am happy to schedule lunch/dinner/coffee with you.
Funnel synchronisation paper accepted
Finally our paper
Lee, Jin Gyu; Trenn, Stephan; Shim, Hyungbo Synchronization with prescribed transient behavior: Heterogeneous multi-agent systems under funnel coupling Journal Article In: Automatica, vol. 141, no. 110276, pp. 13, 2022, (open access). @article{LeeTren22, In this paper, we introduce a nonlinear time-varying coupling law, which can be designed in a fully decentralized manner and achieves approximate synchronization with arbitrary precision, under only mild assumptions on the individual vector fields and the underlying (undirected) graph structure. The proposed coupling law is motivated by the so-called funnel control method studied in adaptive control under the observation that arbitrary precision synchronization can be achieved for heterogeneous multi-agent systems by a high-gain coupling; consequently we call our novel synchronization method ‘(node-wise) funnel coupling.’ By adjusting the conventional proof technique in the funnel control study, we are even able to obtain asymptotic synchronization with the same funnel coupling law. Moreover, the emergent collective behavior that arises for a heterogeneous multi-agent system when enforcing arbitrary precision synchronization by the proposed funnel coupling law, is analyzed in this paper. In particular, we introduce a single scalar dynamics called ‘emergent dynamics’ which describes the emergent synchronized behavior of the multi-agent system under funnel coupling. Characterization of the emergent dynamics is important because, for instance, one can design the emergent dynamics first such that the solution trajectory behaves as desired, and then, provide a design guideline to each agent so that the constructed vector fields yield the desired emergent dynamics. We illustrate this idea via the example of a distributed median solver based on funnel coupling. |
Smooth approximation of switched DAEs paper accepted
Our paper
Mostacciuolo, Elisa; Trenn, Stephan; Vasca, Francesco A smooth model for periodically switched descriptor systems Journal Article In: Automatica, vol. 136, no. 110082, pp. 1-8, 2022, (open access). @article{MostTren22a, Switched descriptor systems characterized by a repetitive finite sequence of modes can exhibit state discontinuities at the switching time instants. The amplitudes of these discontinuities depend on the consistency projectors of the modes. A switched ordinary differential equations model whose continuous state evolution approximates the state of the original system is proposed. Sufficient conditions based on linear matrix inequalities on the modes projectors ensure that the approximation error is of linear order of the switching period. The theoretical findings are applied to a switched capacitor circuit and numerical results illustrate the practical usefulness of the proposed model. |
Counterexample accepted for publication
The details of the counterexample I used in my PhD-thesis to proof that a distributional restriction is not possible in general is now accepted for publication as a paper in the journal Examples and Counterexamples. The reviewing process took quite some time, but in the end it was accepted without any changes.
Trenn, Stephan Distributional restriction impossible to define Journal Article In: Examples and Counterexamples, vol. 1, no. 100023, pp. 1-4, 2021, (open access). @article{Tren21, A counterexample is presented showing that it is not possible to define a restriction for distributions. |
Two papers accepted for CDC 2021
The following two papers have been accepted for (online) presentation at the 60th IEEE CDC:
Wijnbergen, Paul; Trenn, Stephan Optimal control of DAEs with unconstrained terminal costs Proceedings Article In: Proc. 60th IEEE Conf. Decision and Control (CDC 2021), pp. 5275-5280, 2021. @inproceedings{WijnTren21b, This paper is concerned with the linear quadratic optimal control problem for impulse controllable differential algebraic equations on a bounded half open interval. Regarding the cost functional, a general positive semi-definite weight matrix is considered in the terminal cost. It is shown that for this problem, there generally does not exist an input that minimizes the cost functional. First it is shown that the problem can be reduced to finding an input to an index-1 DAE that minimizes a different quadratic cost functional. Second, necessary and sufficient conditions in terms of matrix equations are given for the existence of an optimal control. |
Sutrisno,; Trenn, Stephan Observability and Determinability Characterizations for Linear Switched Systems in Discrete Time Proceedings Article In: Proc. 60th IEEE Conf. Decision and Control (CDC 2021), pp. 2474-2479, 2021. @inproceedings{SutrTren21b, In this article, we study the observability and determinability for discrete-time linear switched systems. Studies for the observability for this system class are already available in literature, however, we use assume here that the switching signal is known. This leads to less conservative observability conditions (e.g. observability of each individual mode is not necessary for the overall switched system to be observable); in particular, the dependencies of observability on the switching times and the mode sequences are derived; these results are currently not available in the literature on discrete-time switched systems. In addition to observability (which is concerned with recovering the state from the initial time onwards), we also investigate the determinability which is concerned with the ability to reconstruct the state value at the end of the observation interval. We provide several simple examples to illustrate novel features not seen in the continuous time case or for unswitched systems. |
Quasi-feedback forms paper accepted
Our manuscript
Berger, Thomas; Ilchmann, Achim; Trenn, Stephan Quasi feedback forms for differential-algebraic systems Journal Article In: IMA Journal of Mathematical Control and Information, vol. 39, iss. 2, pp. 533-563, 2022, (open access, published online October 2021). @article{BergIlch22, We investigate feedback forms for linear time-invariant systems described by differential-algebraic equations. Feedback forms are representatives of certain equivalence classes. For example state space transformations, invertible transformations from the left, and proportional state feedback constitute an equivalence relation. The representative of such an equivalence class, which we call proportional feedback form for the above example, allows to read off relevant system theoretic properties. Our main contribution is to derive a quasi proportional feedback form. This form is advantageous since it provides some geometric insight and is simple to compute, but still allows to read off the relevant structural properties of the control system. We also derive a quasi proportional and derivative feedback form. Similar advantages hold. |
Nonlinear DAE paper accepted
Our paper
Chen, Yahao; Trenn, Stephan; Respondek, Witold Normal forms and internal regularization of nonlinear differential-algebraic control systems Journal Article In: International Journal of Robust and Nonlinear Control, vol. 2021, no. 31, pp. 6562-6584, 2021, (open access). @article{ChenTren21d, In this paper, we propose two normal forms for nonlinear differential-algebraic control systems (DACSs) under external feedback equivalence, using a notion called maximal controlled invariant submanifold. The two normal forms simplify the system structures and facilitate understanding the various roles of variables for nonlinear DACSs. Moreover, we study when a given nonlinear DACS is internally regularizable, i.e., when there exists a state feedback transforming the DACS into a differential-algebraic equation (DAE) with internal regularity, the latter notion is closely related to the existence and uniqueness of solutions of DAEs. We also revise a commonly used method in DAE solution theory, called the geometric reduction method. We apply this method to DACSs and formulate it as an algorithm, which is used to construct maximal controlled invariant submanifolds and to find internal regularization feedbacks. Two examples of mechanical systems are used to illustrate the proposed normal forms and to show how to internally regularize DACSs. |
Furthermore, Yahao and I have finished a follow-up paper discussing the generalization of the consistency-projector to the nonlinear case:
Chen, Yahao; Trenn, Stephan Impulse-free jump solutions of nonlinear differential-algebraic equations Journal Article In: Nonlinear Analysis: Hybrid Systems, vol. 46, no. 101238, pp. 1-17, 2022, (open access). @article{ChenTren22a, In this paper, we propose a novel notion called impulse-free jump solution for nonlinear differential-algebraic equations (DAEs) of the form E(x)x' = F(x) with inconsistent initial values. The term “impulse-free” means that there are no Dirac impulses caused by jumps from inconsistent initial values, i.e., the directions of jumps stay in ker E(x). We find that the existence and uniqueness of impulse-free jumps are closely related to the notion of geometric index-1 and the involutivity of the distribution defined by ker E(x). Moreover, a singular perturbed system approximation is proposed for nonlinear DAEs; we show that solutions of the perturbed system approximate both impulse-free jump solutions and C1-solutions of nonlinear DAEs. Finally, we show by some examples that our results of impulse-free jumps are useful for the problems like consistent initializations of nonlinear DAEs and transient behavior simulations of electric circuits. |
Final version of conference papers submitted
In the last few days we have prepared the final version of some accepted conference papers, I have therefore updated the preprints of the following papers:
Sutrisno,; Trenn, Stephan Observability of Singular Linear Switched Systems in Discrete Time: Single Switch Case Proceedings Article In: Proc. European Control Conference (ECC21), pp. 267-292, Rotterdam, Netherlands, 2021. @inproceedings{SutrTren21a, In this paper, we investigate the observability of singular linear switched systems in discrete time. As a preliminary study, we restrict ourselves to systems with a single switch switching signal, i.e. the system switches from one mode to another mode at a certain switching time. We provide two necessary and sufficient conditions for the observability characterization. The first condition is applied for arbitrary switching time and the second one is for switching times that are far enough from the initial time and the final time of observation. These two conditions explicitly contain the switching time variable that indicates that in general, the observability is dependent on the switching time. However, under some sufficient conditions we provide, the observability will not depend on the switching time anymore. Furthermore, the observability of systems with two-dimensional states is inde- pendent of the switching time. In addition, from the example we discussed, an observable switched system can be built from two unobservable modes and different mode sequences may produce different observability property; in particular, swapping the mode sequence may destroy observability. |
Hossain, Sumon; Trenn, Stephan Minimal realization for linear switched systems with a single switch Proceedings Article In: Proc. European Control Conference (ECC21), pp. 1168-1173, Rotterdam, Netherlands, 2021. @inproceedings{HossTren21b, We discuss the problem of minimal realization for linear switched systems with a given switching signal and present some preliminary results for the single switch case. The key idea is to extend the reachable subspace of the second mode to include nonzero initial values (resulting from the first mode) and also extend the observable subspace of the first mode by taking information from the second mode into account. We provide some simple examples to illustrate the approach. |
Chen, Yahao; Trenn, Stephan On geometric and differentiation index of nonlinear differential-algebraic equations Proceedings Article In: IFAC-PapersOnLine (Proceedings of the MTNS 2020/21), pp. 186-191, IFAC Elsevier, 2021, (open access). @inproceedings{ChenTren21b, We discuss two notions of index, i.e., the geometric index and the differentiation index for nonlinear differential-algebraic equations (DAEs). First, we analyze solutions of nonlinear DAEs by revising a geometric reduction method (see e.g. Rabier and Rheinboldt (2002),Riaza (2008)). Then we show that although both of the geometric index and the differentiation index serve as a measure of difficulties for solving DAEs, they are actually related to the existence and uniqueness of solutions in a different manner. It is claimed in (Campbell and Gear, 1995) that the two indices coincide when sufficient smoothness and assumptions are satisfied, we elaborate this claim and show that the two indices indeed coincide if and only if a condition of uniqueness of solutions is satisfied (under certain constant rank assumptions). Finally, an example of a pendulum system is used to illustrate our results on the two indices. |
Chen, Yahao; Trenn, Stephan An approximation for nonlinear differential-algebraic equations via singular perturbation theory Proceedings Article In: Proceedings of 7th IFAC Conference on Analysis and Design of Hybrid Systems (ADHS21), IFAC-PapersOnLine, pp. 187-192, Brussels, Belgium, 2021, (open access). @inproceedings{ChenTren21c, In this paper, we study the jumps of nonlinear DAEs caused by inconsistent initial values. First, we propose a simple normal form called the index-1 nonlinear Weierstrass form (INWF) for nonlinear DAEs. Then we generalize the notion of consistency projector introduced in Liberzon and Trenn (2009) for linear DAEs to the nonlinear case. By an example, we compare our proposed nonlinear consistency projectors with two existing consistent initialization methods (one is from the paper Liberzon and Trenn (2012) and the other is given by a MATLAB function) to show that the two existing methods are not coordinate-free, i.e., the consistent points calculated by the two methods are not invariant under nonlinear coordinates transformations. Next we propose a singular perturbed system approximation for nonlinear DAEs, which is an ordinary differential equation (ODE) with a small perturbation parameter and we show that the solutions of the proposed perturbation system approximate both the jumps resulting from the nonlinear consistency projectors and the C1-solutions of the DAE. At last, we use a numerical simulation of a nonlinear DAE model arising from an electric circuit to illustrate the effectiveness of the proposed singular perturbed system approximation of DAEs. |
SCL article and PAMM papers available as open access
Our accepted journal paper
Wijnbergen, Paul; Trenn, Stephan Impulse-free interval-stabilization of switched differential algebraic equations Journal Article In: Systems & Control Letters, vol. 149, pp. 104870.1-10, 2021, (Open Access.). @article{WijnTren21a, In this paper stabilization of switched differential algebraic equations is considered, where Dirac impulses in both the input and the state trajectory are to be avoided during the stabilization process. First it is shown that stabilizability of a switched DAE and the existence of impulse-free solutions are merely necessary conditions for impulse-free stabilizability. Then necessary and sufficient conditions for the existence of impulse-free solutions are given, which motivate the definition of (impulse-free) interval-stabilization on a finite interval. Under a uniformity assumption, which can be verified for a broad class of switched systems, stabilizability on an infinite interval can be concluded based on interval-stabilizability. As a result a characterization of impulse-free interval stabilizability is given and as a corollary we provide a novel impulse-free null-controllability characterization. Finally, the results are compared to results on interval-stabilizability where Dirac impulses are allowed in the input and state trajectory. |
Trenn, Stephan; Unger, Benjamin Unimodular transformations for DAE initial trajectory problems Proceedings Article In: PAMM · Proc. Appl. Math. Mech., pp. e202000322, Wiley-VCH GmbH, 2021, (Open Access.). @inproceedings{TrenUnge20, We consider linear time-invariant differential-algebraic equations (DAEs). For high-index DAEs, it is often the first step to perform an index reduction, which can be realized with a unimodular matrix. In this contribution, we illustrate the effect of unimodular transformations on initial trajectory problems associated with DAEs. |
Chen, Yahao; Trenn, Stephan The differentiation index of nonlinear differential-algebraic equations versus the relative degree of nonlinear control systems Proceedings Article In: PAMM · Proc. Appl. Math. Mech. 2020, pp. e202000162, Wiley-VCH GmbH, 2021, (Open Access.). @inproceedings{ChenTren21a, It is claimed in [1] that the notion of the relative degree in nonlinear control theory is closely related to that of the differen- tiation index for nonlinear differential-algebraic equations (DAEs). In this paper, we give more insights on this claim via a recent proposed concept (see [2]) called the explicitation of DAEs. The explicitation attaches a class of control systems to a given DAE, we show that the relative degree of the systems in the explicitation class is invariant in some sense and that the differentiation index of the original DAE coincides with the maximum of the relative degree of the explicitation systems. |
MCSS paper available as open access
Our paper
Borsche, Raul; Kocoglu, Damla; Trenn, Stephan A distributional solution framework for linear hyperbolic PDEs coupled to switched DAEs Journal Article In: Mathematics of Control, Signals, and Systems (MCSS), vol. 32, pp. 455-487, 2020, (Open Access). @article{BorsKoco20, A distributional solution framework is developed for systems consisting of linear hyperbolic partial differential equations (PDEs) and switched differential-algebraic equations (DAEs) which are coupled via boundary conditions. The unique solvability is then characterize in terms of a switched delay DAE. The theory is illustrated with an example of electric power lines modeled by the telegraph equations which are coupled via a switching transformer where simulations confirm the predicted impulsive solutions. |