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Abstract

A counterexample is presented showing that it is not possible to define a restriction for distributions.

1. Introduction

For a scalar function f : R → R it is straightforward
to define a restriction (or truncation) to an interval I ⊆ R
as follows

fI(t) :=
{
f(t), t ∈ I,
0, t /∈ I.

In fact, this restriction can be defined for any subset I ⊆ R
and not just for intervals. In contrast to the domain-
changing restriction (usually denoted by f

∣∣I : I → R)
the above defined restriction is still defined on the whole
domain. This has the major advantage that the vector
space properties of the corresponding function space re-
mains intact, in particular, functions restricted to different
intervals can be added in the usual way. For example, with
this definition it is very easy to define the set of piecewise-
smooth functions simply as the set of all functions which
are the (locally finite) sum of smooth functions each of
which is restricted to an interval.

An important property of this function restriction is
that for an interval I which is the disjoint union of two
smaller intervals, i.e. I = I1∪̇I2, it holds

fI = fI1 + fI2 ;

or more general, if I is the countable union of pairwise
disjoint intervals, i.e., I =

⋃
i∈N Ii, then

fI =
∑
i∈N

fIi .

In the context of inconsistent initial values for differen-
tial-algebraic equations (DAEs) it was observed that it
is necessary to consider solutions in a more general solu-
tion space including Dirac impulses (and their derivatives
thereof) together with a well defined restriction operator
to intervals, for details see e.g. the survey [10].

Since Dirac impulses are elements of Schwartz’ distri-
bution space [6], this motivates the general question: Is it
possible to define a restriction of distributions to intervals?
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To be more precise: Let D denote the space of distribu-
tion (see Section 2 for the formal definition and recollection
of important properties) and I ⊆ R be some interval, is
there a restriction map

RI : D→ D, D 7→ DI

which satisfies some natural properties?
The somewhat surprising answer to the above question

is: NO. This can be seen by considering the following coun-
terexample, which is a “bad” distribution which cannot be
restricted to the interval (0,∞).

Counterexample. For n ∈ N>0 let dn := (−1)n/n and

Dn :=
n∑

i=1
diδdi ,

where δdi
is the Dirac impulse with support at di, see also

Figure 1. Then
D := lim

n→∞
Dn (1)

is a distribution for which the restriction D(0,∞) cannot be
well defined.
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Figure 1: Illustration of ‘bad’ distribution D =
∑∞

i=1 diδdi
, where

a Dirac impulse is pictured as a red line whose (directed) length is
the corresponding magnitude.

The problem of a distributional restriction was inves-
tigated in the authors PhD-thesis [7] in the context of in-
consistent initial values for differential-algebraic equations
and some of the conclusions without complete proofs have
appeared in [8] and in the survey [10].

However, the answer to the question whether there ex-
ists a well-defined distributional restriction in the form of a
nice counter example (including the full technical details)
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has not appeared elsewhere, but may be of interest to the
general mathematical audience.

The remainder of this note will provide the correspond-
ing details to back up this claim; in particular, 1) thatD as
defined above is indeed a distribution, 2) formulating the
“natural” properties of a restriction and, finally, 3) show-
ing that the restriction of D to the interval (0,∞) cannot
satisfy these natural properties of a restriction and at the
same time is a well defined distribution. Afterwards some
possibilities to avoid this dilemma are presented.

2. Preliminaries: Distribution theory

Following Schwartz [6] the space of of distribution D
is defined as the dual space of the space of test functions
C∞0 , i.e.

D := {D : C∞0 → R |D is linear and continuous}

where C∞0 is the space of all functions ϕ : R→ R which are
smooth (arbitrarily often differentiable) and have compact
support, i.e. suppϕ := {t ∈ R |ϕ(t) 6= 0} is bounded. For
a proper definition of continuity it is necessary to specify
a topology on C∞0 , however, in the following this topology
will not be used, instead the following well known charac-
terization of continuity of a linear map D : C∞0 → R will
be used:

Lemma 1 (see e.g. [4, Sätze 12.7 and 14.5]). A linear map
D : C∞0 → R is continuous if, and only if, limn→∞D(ϕn) =
0 for all sequences (ϕn)n∈N in C∞0 which converge to zero
in the following sense:

(C1) ∃ compact K ⊆ R ∀n ∈ N : suppϕn ⊆ K and

(C2) ∀i ∈ N : limn→N

∥∥∥ϕ(i)
n

∥∥∥
∞

= 0 where ‖ · ‖∞ denotes
the supremum norm.

All locally integrable functions f : R → R induce a
distribution given by

fD : C∞0 → R, ϕ 7→
∫
R
ϕf ;

the space of all such induced distributions is called regular
distributions. This embedding in the form of an injective
homomorphism f 7→ fD of a fairly large function space
into the space of distribution is also the reason why distri-
butions are also called generalized functions.

The most famous non-regular distribution is the Dirac
impulse given by

δ : C∞0 → R, ϕ 7→ ϕ(0),

or, more general, the Dirac impulse at some t ∈ R:

δt : C∞0 → R, ϕ 7→ ϕ(t).

Note that supp δt = {t} where the support of a general
distribution D ∈ D is defined to be the complement of the
union of all open sets on which D vanishes, i.e.

suppD := R
∖⋃{

O ⊆ R
∣∣∣∣ O open and D(ϕ) = 0
∀ϕ ∈ C∞0 with suppϕ ⊂ O

}
.

By definition, the support of a distribution is always a
closed set.

The main advantage of distribution (and the reason
they play such an important role in differential equations)
is the fact, that they are arbitrarily often differentiable,
where the derivative D′ of a distribution D ∈ D is given
by

D′(ϕ) := −D(ϕ′).
This differentiation rule is motivated by the partial inte-
gration rule for functions, in fact, for any differentiable
function f : R→ R it holds that

(fD)′ = (f ′)D.

It is easily seen that the Dirac impulse is the derivative of
the Heaviside step function 1[0,∞).

Another important property of distribution is the fact
that for a sequence of distributions (i.e. a sequence of lin-
ear and continuous operators) pointwise converges already
implies that the limit operator is again linear and contin-
uous, i.e. a distribution.

Lemma 2 (see e.g. [4, Sätze 28.1, 28.2 and 28.3]). Con-
sider a sequence (Dn)n∈N of distributions for which the
limit D(ϕ) := limn→∞Dn(ϕ) exists for all ϕ ∈ C∞0 . Then
D ∈ D.

The section concludes with proving that the Coun-
terexample is indeed a distribution.

Lemma 3. The limit D given by (1) is a distribution.

Proof. Due to Lemma 2 it suffices to show that for every
ϕ ∈ C∞0 the sequence Dn(ϕ) =

∑n
i=1 diϕ(di) converges to

a finite value in R as n → ∞. Invoking the Mean-Value
Theorem, there exists for any ϕ ∈ C∞0 a sequence (ξi)i∈N
in R such that

ϕ(di) = ϕ(0) + diϕ
′(ξi).

Consequently,

Dn(ϕ) = ϕ(0)
n∑

i=1
di +

n∑
i=1

ϕ′(ξi)d2
i .

Due to the Leibniz’ alternating series test,
∑n

i=1 di =∑n
i=1(−1)i/i converges to a finite value in R as n → ∞.

Furthermore, it is well known that
∑n

i=1 d
2
i =

∑n
i=1 1/i2

converges absolutely to π2/6, which implies that the sum∑n
i=1 ϕ

′(ξi)d2
i converges absolutely, because ψ′ is bounded

and
n∑

i=1

∣∣ϕ′(ξi)d2
i

∣∣ ≤ ‖ϕ′‖∞π2/6.
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3. Desired properties of distributional restriction

In this section some desired properties of a distribu-
tional restriction RI : D → D, D 7→ DI for any interval
I ⊆ R are formulated:

R1 The following implications hold for all D ∈ D and all
ϕ ∈ C∞0 :

(i) suppD ∩ I = ∅ =⇒ DI = 0,
(ii) suppϕ ⊆ I =⇒ DI(ϕ) = D(ϕ),
(iii) suppϕ ∩ I = ∅ =⇒ DI(ϕ) = 0,
(iv) suppϕ ∩ suppD = ∅ =⇒ DI(ϕ) = 0.

R2 Let I =
⋃

i∈N Ii the pairwise disjoint union of a
countable family of intervals, then, for any D ∈ D,

DI =
∞∑

i=1
DIi ;

in particular,

DI1∪̇I2 = DI1 +DI2 .

If such a distributional restriction exists, it is possible
to conclude the following important property concerning
the restriction of Dirac impulses to an interval.

Lemma 4. For any interval I ⊆ R and any t ∈ R it
follows that

(δt)I =
{
δt, t ∈ I
0, t /∈ I

Proof. Consider first the case that t /∈ I. Then supp δt ∩
I = {t}∩I = ∅ and from R1(i) it follows that (δt)I = 0. If
t ∈ I choose two (unbounded or empty) intervals Il, Ir ⊆
R such that R = Il∪̇I∪̇Ir, then by R1(ii) δt = (δt)R =
(δt)Il∪̇I∪̇Ir

, which implies by R2 that

(δt)I = δt − (δt)Il
− (δt)Ir .

Since by construction t /∈ Il and t /∈ I2 it follows as above
that (δt)Il

= 0 = (δt)Ir and the proof is complete.

Remark 1. In [7] some more desired properties for a
distributional restriction are formulated, for example the
property that RI : D → D is a projector (i.e. linear and
idempotent) and that for regular distributions fD the dis-
tributional restriction generalizes the function restriction,
i.e.

(fI)D = (fD)I .

However, a careful analysis of the upcoming proof of nonex-
istence reveals that it is indeed enough to require the prop-
erties R1 and R2 to arrive at a contradiction. On the
other hand, conditions R1(i) and R1(iv) are not men-
tioned in [7], but they seem to be needed to arrive at the
non-existence result.

Remark 2. Property R2 involves a limiting process, how-
ever, it is important to note that this limit is with respect
to the domain and does not correspond to a sequence of
distributions. In fact, one may be inclined to require the
following property for a converging sequence of distribu-
tions (Dn)n∈N with a limit D as in Lemma 2:

DI = lim
n→∞

(Dn)I .

But this requirement immediately runs into a contradic-
tion, because it is easy to see that both of the two sequences(
(fr

n)D
)

n∈N and
(
(f l

n)D
)

n∈N given by

fr
n(t) :=

{
n, t ∈ (0, 1/n)
0, otherwise,

and

f l
n(t) :=

{
n, t ∈ (−1/n, 0)
0, otherwise,

converge to the Dirac impulse δ. However, (fr
n)(0,∞) = fr

n

and (f l
n)(0,∞) = 0, so the limit of the restriction would in

one case be δ and in the other case zero.

4. Restriction for counterexample not possible

Finally, it will now be shown, that a restriction satis-
fying the properties given in Section 3 does not exist.

Theorem 1. A distributional restriction to any interval
I ⊆ R of the form RI : D → D, D 7→ DI satisfying R1
and R2 does not exist.

Proof. Consider the ‘bad’ distributionD given by the Coun-
terexample and the interval I = (0,∞).
Step 1 : It is shown, that if DI is well defined, than DI =∑∞

k=1 d2kδ2k.
Step 1a: In order to utilize R2 a suitable family (Ik)k∈N
is defined.

For k ∈ N>0 let

Ik :=
[ 1

2 (d2(k+1) + d2k), 1
2 (d2k + d2(k−1))

)
,

with the convention that d0 := +∞. Then I =
⋃

k∈N Ik

and di ∈ Ik if, and only if, i = 2k. In particular, by
Lemma 4, (δ2k)Ik

= δ2k and (δi)Ik
= 0 for all i 6= 2k and

all k ∈ N.
Step 1b: It is shown that DIk

= d2kδ2k.
Consider an arbitrary ϕ ∈ C∞0 ; it must be shown that

DIk
(ϕ) = d2kϕ(2k). Decompose ϕ as ϕ = ϕin+ϕout+ϕrest

where
ϕ(d2k) = ϕ∈(d2k),

suppϕin ⊆ Ik,

suppϕout ∩ Ik = ∅,
suppϕrest ∩ suppD = ∅.

These requirements can easily be achieved by choosing
ϕin = 1inϕ, ϕout = 1outϕ, ϕrest = 1restϕ, where the
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d2(k−1)d2kd2(k+1)
[

Ik

)

1out1in 1rest

Figure 2: Illustration of 1in (green), 1out (blue) and 1rest (red).

smooth functions 1in, 1out, 1rest add up to identical one
and are chosen as illustrated in Figure 2.

It then follows that

DIk
(ϕin) R1(ii)= D(ϕin) = d2kϕin(d2k) = d2kϕ(d2k),

DIk
(ϕout)

R1(iii)= 0,

DIk
(ϕrest)

R1(iv)= 0.

Hence, due to linearity, DIk
(ϕ) = d2kϕ(d2k) which is the

claim of Step 1b.
Step 1c: The claim of Step 1 is shown.

Invoking R2 for the disjoint countable family of inter-
vals (Ik)k∈N it now follows that DI =

∑∞
k=1 d2kδ2k.

Step 2 : It is shown that
∑∞

k=1 d2kδ2k is not a distribution.
Consider a test function ϕ ∈ C∞0 such that ϕ(t) = 1 for

all t ∈ [0, 1/2]. Then

DI(ϕ) =
∞∑

k=1
d2k ϕ(d2k)︸ ︷︷ ︸

=1

= 1
2

∞∑
k=1

1
k

=∞.

This shows that DI cannot be a distribution.

5. Resolving the dilemma

As mentioned above one motivation for studying a dis-
tributional restriction is the problem of inconsistent initial
values for differential-algebraic equations (DAEs) of the
form

Eẋ = Ax+ f (2)
where E,A ∈ Rm×n and f : R→ Rn is some inhomogene-
ity. By definition, an inconsistent initial value x(0−) for
(2) can only occur when the past is not governed by the
DAE (2), this intuition can be formalized by the following
initial trajectory problem (ITP):

x(−∞,0) = x0
(−∞,0)

(Eẋ)[0,∞) = (Ax+ f)[0,∞),
(3)

where x0 : R → Rn is a given past trajectory. It was
observed in the context of electric circuits [11] that an in-
consistent initial value should result in a Dirac impulse in
the solution; the presence of a Dirac impulse in a solu-
tion in response to an inconsistent initial value can also be
motivated by considering a limiting process [1]. Hence a
rigorous solution framework for (2) needs to consider dis-
tributional solutions x and a well-defined restriction oper-
ator.

The dilemma that it is not possible to define a distribu-
tional restriction operator (which is necessary so that the
expression used in (3) are actually well defined objects),
can be resolved in the context of DAEs in two ways.

5.1. Comparing distributions on intervals
As mentioned in the introduction, instead of consid-

ering a restriction operator which results in a distribution
again defined on the whole space, one could also consider a
restriction which restricts the domain of the operator, i.e.
for some interval I and some D ∈ D consider the domain-
changing restriction D

∣∣
I as follows

D
∣∣
I : {ϕ ∈ C∞0 | suppϕ ⊆ I} → R, ϕ 7→ D(ϕ).

Now the ITP could be reformulated as

x
∣∣
(−∞,0) = x0∣∣

(−∞,0)

(Eẋ)
∣∣
[0,∞) = (Ax+ f)

∣∣
[0,∞).

(4)

The problem with this approach is that there is no differ-
ence between a restriction to an open or closed interval,
in particular, δ

∣∣
[0,∞) = 0 which is in many situations an

undesired result and also prevents a suitable distributional
solution theory for DAEs. This problem was resolved in [5]
by redefining the inhomogeneity to

fITP := (Eẋ0 −Ax0)(−∞,0) + f[0,∞)

and considering the reformulated ITP

x
∣∣
(−∞,0) = x0∣∣

(−∞,0)

Eẋ = Ax+ fITP.
(5)

Under the assumption that x0 and f are such that fITP is
well defined (as a function), all expressions in the ITP (5)
are now well defined. However, in the context of switched
DAEs (see e.g. [9]), which can be interpreted as a family of
repeated inconsistent initial value problems, the assump-
tion that x0 is not a distribution (so that the restriction
to the interval (−∞, 0) is well defined) is too restrictive in
general.

5.2. Considering a subspace of distributions
The underlying problem for the non-existence of a dis-

tributional restriction is the fact, that the space of dis-
tribution is just too big and contains very ‘nasty’ objects
(including the Counterexample). To resolve this issue, it
was suggested in [2] to introduce the space of piecewise-
continuous distributions which can be understand as the
subspace of distributions which are composes of a piecewise-
continuous function and Dirac-impulse (and their deriva-
tives) at isolated time points. In particular, an accumu-
lation of Dirac impulse as in the Counterexample is ex-
cluded. A similar idea was proposed in [5] where the space
of impulsive-smooth distributions is proposed for studying
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DAEs2; however, Dirac impulses (and their derivates) are
only allowed at t = 0, and although the generalization to
more location is mentioned, the details are not worked out
(in particular, the Counterexample is not formally ruled
out). The PhD-thesis [7] combines all the different ap-
proaches and proposes the space of piecewise-smooth dis-
tributions

DpwC∞ :=

D = fD +
∑
t∈T

Dt

∣∣∣∣∣∣
f is piecewise-smooth,
T ⊆ R is discrete
∀t ∈ T : suppDt ⊆ {t}


for which a distributional restriction can be defined in a
straightforward way for D = fD +

∑
t∈T Dt ∈ DpwC∞ as

DI := (fI)D +
∑

t∈T∩I
Dt.

In addition to the desired properties of a distributional
restriction discussed in Section 3, it also satisfies the fol-
lowing nice property for all open intervals and all F,G ∈
DpwC∞ :

FI = GI ⇐⇒ F
∣∣
I = G

∣∣
I .

Furthermore, the space DpwC∞ is closed under differenti-
ation (similar to the space of impulsive-smooth distribu-
tions as in [5], but in contrast to the space of piecewise-
continuous distributions as introduced in [2]), hence it
inherits a crucial property of the space of distributions,
which made them so attractive as a solution space for dif-
ferential equations in the first place.

6. Conclusion

After formulating some desired properties of a distribu-
tional restriction it was shown via a counterexample that it
is impossible to define a distributional restriction satisfy-
ing these properties. It was also briefly discussed how this
dilemma could be resolved in the context of differential-
algebraic equations and inconsistent initial values.
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