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Abstract— In this paper, we investigate the observability
of singular linear switched systems in discrete time. As a
preliminary study, we restrict ourselves to systems with a
single switch switching signal, i.e. the system switches from one
mode to another mode at a certain switching time. We provide
two necessary and sufficient conditions for the observability
characterization. The first condition is applied for arbitrary
switching time and the second one is for switching times
that are far enough from the initial time and the final time
of observation. These two conditions explicitly contain the
switching time variable that indicates that in general, the
observability is dependent on the switching time. However,
under some sufficient conditions we provide, the observability
will not depend on the switching time anymore. Furthermore,
the observability of systems with two-dimensional states is inde-
pendent of the switching time. In addition, from the example we
discussed, an observable switched system can be built from two
unobservable modes and different mode sequences may produce
different observability property; in particular, swapping the
mode sequence may destroy observability.

I. INTRODUCTION

We consider in this paper a discrete-time Singular Linear
Switched System (SLSS) of the form

Eσ(k)x(k + 1) = Aσ(k)x(k) (1a)
y(k) = Cσ(k)x(k) (1b)

where k ∈ N is the time instant; x(k) ∈ Rn, n ∈ N,
is the state at time k; y(k) ∈ Rp, p ∈ N is the output;
σ : N → {1, 2, ..., p} is the switching signal determining
which mode σ(k) is active at time instant k; Ei, Ai ∈ Rn×n,
Ci ∈ Rp×n, i ∈ {1, 2, . . . , p}; Ei may be singular. The
presence of singular matrices Ei occurs in some dynamical
processes which are subject to algebraic constraints, see
e.g. [1]. If all Ei are nonsingular then (1) is called non-
singular and studies about their solvability, controllability,
and observability are well established [2], [3], [4]. Note
that some authors denote the state of a singular system
as internal variable [5], [6] or semi-state [7]. In many
references, singular systems are also known as differential al-
gebraic equations, strong coupling systems, incomplete state
systems, generalized systems, algebro-differential systems,
descriptor systems, and implicit differential equations [8],
[9].

The first author was supported by Universitas Diponegoro
1Bernoulli Institute, University of Groningen, Nijenborgh 9, 9747 AG

Groningen, The Netherlands and Dept. of Mathematics, Universitas Dipone-
goro, Jalan Prof. Soedarto, SH. Tembalang 50275, Semarang, Indonesia
s.sutrisno[@rug.nl, @live.undip.ac.id]

2Bernoulli Institute, University of Groningen, Nijenborgh 9, 9747 AG
Groningen, The Netherlands s.trenn@rug.nl

In the continuous time domain, SLSSs have been studied
extensively. The solvability issue is well established in [10],
[11] while the stability issue is comprehensively studied in
[10], [12], [13], [14]. Furthermore, the controllability and
observability characterizations are satisfactorily formulated
in [15], [16], [17], and some strategies are already devel-
oped to control such systems (see e.g. [18], [19], [20]). In
particular, some studies involving physical systems, such as
power system [21], have been presented in the literature.

In the discrete time domain, some studies about SLSSs
are already available in the literature. Most of them study the
stability property as can be seen in [22], [9], [23], [24], [25],
[26], [27], [28]. Some other studies have proposed control
methods, such as iterative learning approach for trajectory
tracking purposes [29] and state feedback approach [30]. The
existence and uniqueness of solutions of SLSS has recently
been revisited in [31] where a one-step map was introduced
and which can be utilized in analysing stability [23].

In studying observability, we expect significant differences
for the results in discrete time compared to the results in
continuous time. In the latter, the observability property
under a single switch switching signal is independent of the
switching time [16], while this cannot be expected in discrete
time. In fact, for non-singular systems, the observability
property is dependent on the switching time as illustrated
in the following example.

Example 1: Consider a (non-singular) linear switched sys-
tem with two modes

x(k + 1) = Aσ(k)x(k), (2a)
y(k) = Cσ(k)x(k) (2b)

with σ : N → {1, 2}, A1 = [ 1 1
0 1 ] , A2 = [ 1 1

1 1 ], C1 = [1 1],
C2 = [1 0], x(k) ∈ R2 is the state, and y(k) ∈ R is the
output at time k ∈ N. Both individual modes are observable
because their observability matrices[

C1

C1A1

]
=

[
1 1
1 2

]
and

[
C2

C2A2

]
=

[
1 0
1 1

]
have full rank. In particular, if the systems remains in one
mode, then for both modes the state can be recovered by
observing the output for two time steps, i.e. on the interval
[0,K] with K = 1. However, when considering now the
switched system on the same time interval [0,K] with K =
1, where mode 1 is active at time k = 0 and mode 2 is active
at time k = 1, observability is lost. This follows from[

y(0)
y(1)

]
=

[
C1x(0)
C2A1x(0)

]
=

[
C1

C2A1

]
x(0),



where clearly
[

C1

C2A1

]
= [ 1 1

1 1 ] has a non-trivial kernel, i.e. we
cannot uniquely determine the initial state from the output
on the time interval [0,K].

Furthermore, if we reverse the switching signal, i.e. at
k = 0 mode 2 is active and at k = 1 mode 1 is active,
we see that the initial-state-output matrix

[
C2

C1A2

]
= [ 1 0

0 1 ]
allows recovering x(0) uniquely from y(0) and y(1). Hence
observability of a switched system also depends on the mode-
seqeunce of the switching signal. �

In this paper, we study the observability characterization
for the single switch cases of singular linear switched sys-
tems in the discrete time domain. It is assumed that the mode
switching is triggered only by the time. Other discussions
in the literature may include the mode switching that is
triggered by the state and/or the output. The discussion is
structured as follows. We recall the existence and the unique-
ness of the solution as well as the observability definition
in the Preliminaries section. We present the main results in
Section III containing the observability theorem. Last, we
present an illustrative example in Section IV.

II. PRELIMINARIES

We are revisiting the solution and the observability charac-
terization of singular linear (non-switched) systems and the
solution of singular linear switched systems in this section
as the foundations to characterize the observability notion
discussed in this paper.

A. Singular Linear Systems

Consider a discrete-time homogeneous Singular Linear
System (SLS) in the form of

Ex(k + 1) = Ax(k), (3a)
y(k) = Cx(k) (3b)

for k ∈ N and where E,A ∈ Rn×n, C ∈ Rp×n are known,
E is singular with rankE = r < n, x : N → Rn is the
state, and y : N→ Rp is the output. We omit the input term
because the observability of linear systems does not depend
on the input.

If (3a) is regular, i.e. det(sE −A) is not identically zero,
then there exist invertible matrices S, T ∈ Rn×n such that

(SET, SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
(4)

where N ∈ RnN×nN is a nilpotent, for some J ∈ Rr×r.
Following [32], we call (4) a quasi Weirstrass form (QWF)
of the matrix pair (E,A). If the nilpotency index of N is 1
(i.e. N = 0), then the system (3a) is called an index-1 SLS.

Lemma 2.1 ([31]): Consider the matrix pair (E,A)
with E,A ∈ Rn×n and let S := A−1(imE) =
{ ξ ∈ Rn | Aξ ∈ imE }. Then (E,A) is regular and
index-1 if, and only if,

S ∩ kerE = {0}.

Furthermore, choose full rank matrices V and W such that
imV = S and imW = kerE, then if (E,A) is regular and

index-1, then T = [V,W ] and S = [EV,AW ]−1 transform
(E,A) into QWF (4).

Corollary 2.2 ([31]): Consider (3a), let S := A−1(imE)
and assume (E,A) is regular and index-1 with QWF (4).
Then x is a solution of (3a) if, and only if, x(0) ∈ S and

x(k + 1) = Φ(E,A)x(k),

where

Φ(E,A) := T

[
J 0
0 0

]
T−1. (5)

Note that Φ(E,A) is independent from the specific choice
of T and is called one-step-map for system (3a). Further-
more, if (3a) is actually non-singular (i.e. E = I), then
Φ(E,A) = A.

In view of the forthcoming extension to switched system,
we want to highlight that the interpretation of Φ(E,A) as a
one-step-map for the SLS (3a) is only valid if (3a) holds for
at least two time steps, see [31, Rem. 2.6].

Definition 2.3: SLS (3) is observable on the interval
[0,K], K ∈ N, if its state x is uniquely determined on [0,K]
by its output y on [0,K].

By using linearity, the observability definition of SLS (3)
is equivalent to zero distinguishability; i.e. it is observable
if, and only if, the following implication holds on [0,K]:

y ≡ 0 =⇒ x ≡ 0.

Furthermore, in view of Corollary 2.2, if (3) is index-1,
then x ≡ 0 on [0,K] if, and only if, x(0) = 0, in particular,
the observability condition can be reduced to

y(k) = 0 ∀k ∈ [0,K] =⇒ x(0) = 0. (6)

From Corollary 2.2 we can also derive that

y(k) = CΦk(E,A)x(0) k ∈ [0,K]

as well as x(0) ∈ S. Hence for index-1 SLS we immediately
have the following observability characterization:

Lemma 2.4: Index-1 SLS (3) is observable on [0,K] if,
and only if,

S ∩ OK = {0}, (7)

where OK := ker[C>, (CΦ(E,A))
>, . . . , (CΦK(E,A))

>]>.
Note that due to Cayley-Hamilton, OK = On−1 if K ≥

n − 1, but OK ) On−1 is possible; in particular, the
unobservable space (i.e. the subspace of all initial values
x(0) which produce a zero output) depends on the length
K of the considered interval when K is small compared to
the system dimension n. This is a major difference to the
continuous time case, where the unobservable space (given
by On−1) is independent from the length of the observation
interval. This makes the observability analysis for switched
systems more challenging in the discrete time case compared
to the continuous time case.



B. Singular Linear Switched Systems

To ensure existence and uniqueness of solutions of (1)
for general switching signals it is in general not enough to
assume that each matrix pair (Ep, Ap) is regular (in contrast
to the continuous time case), even assuming that each matrix
pair is index-1 is not sufficient, see the example in the
introduction of [31]. In order to have a well-posed SLSS
it is actually necessary to assume that the family of matrix
pairs (Ep, Ap) is jointly index-1 in the following sense:

Definition 2.5 ([31]): A family of matrix pairs{
(E1, A1), . . . , (Ep, Ap)

}
or the corresponding system

(1) is called (jointly) index-1 if, and only if,

Si ∩ kerEj = {0}, ∀i, j ∈ {1, 2, . . . , p},

where Si := A−1i (imEi) := {ξ ∈ Rn : Aiξ ∈ imEi}.
As shown in [31], a consequence of the (jointly) index-1

assumption for (1) is that rankEi = constant =: r and
that Si ⊕ kerEj = Rn for all i, j ∈ {1, 2, . . . , p} where
the notation ⊕ represents the direct sum of two subspaces.
Furthermore, for every index-1 SLSS, the individual modes
are also index-1 (just choose i = j in the definition and apply
Lemma 2.1) hence we find nonsingular matrices Si and Ti
that satisfy

(SiEiTi, SiAiTi) =

([
I 0
0 0

]
,

[
Ji 0
0 I

])
, (8)

for some Ji ∈ Rr×r.
Moreover, it was shown in [31] that x is a solution of the

index-1 system (1) if, and only if, x(0) ∈ Sσ(0) and

x (k + 1) = Φσ(k+1),σ(k)x (k) ,∀k ∈ N

where Φi,j is the one-step map from mode j to mode i given
by

Φi,j := Π
kerEj

Si Φj (9)

where Π
kerEj

Si is a unique projector onto Si along kerEj and

Φj := Φ(Ej ,Aj) = Tj

[
Jj 0
0 0

]
T−1j . (10)

Remark 2.6: Under the assumption that the switching
signal is fixed and known (as is the case in our observability
study), it may not be necessary to assume that (1) is
jointly index-1 to have existence and uniqueness of solutions,
because not all mode combination (i, j) will occur. This
extension is a topic of future research. �

III. SINGLE SWITCH RESULTS

In the following we will restrict our attention to the single
switch case, i.e. we consider (1) with

σ(k) =

{
1, 0 ≤ k < ks,

2, ks ≤ k ≤ K,
(11)

see also Figure 1.
The observability definition from the nonswitched case

carries over without change. Furthermore, under the index-
1 assumption for (1) existence and uniqueness of solutions

(E1, A1, C1)

(E2, A2, C2)

ks−1 ks K0

Fig. 1. Single switch linear singular system (1)

for all initial values x(0) ∈ S1 is guaranteed, hence the
observability characterization via implication (6) remains
valid.

We can now formulate our main result about characterizing
observability of an SLSS with a single switch.

A. Arbitrary Switching Time and Observation Time

Theorem 3.1: Consider the SLSS (1) with the single
switch switching signal (11) and assume it is index-1 with
corresponding one-step maps Φ1,Φ2 given by (5) and Φ2,1

as in (9). Then (1) is observable on [0,K] if, and only if,

S1 ∩ Oks−11 ∩
[
Φ2,1Φks−11

]−1 (
OK−ks2

)
= {0}, (12)

where, for i = 1, 2 and k ∈ N,

Oki := ker[C>i , (CiΦi)
>, . . . , (CiΦ

k
i )>]>.

Proof: The output of the switched system can be
expressed in terms of the initial value x(0) = x0 as follows:

y(0)
y(1)

...
y(ks − 1)
y(ks)

y(ks + 1)
...

y(K)


=



C1

C1Φ1

...
C1Φks−11

C2Φ2,1Φks−11

C2Φ2Φ2,1Φks−11
...

C2ΦK−ks2 Φ2,1Φks−11


︸ ︷︷ ︸

Oks,K

x0 = Oks,Kx0.

Then we have

kerOks,K = Oks,K = Oks−11 ∩
[
Φ2,1Φks−11

]−1 (
OK−ks2

)
,

where we use the fact, that ker(OΦ) = Φ−1(kerO) for any
matrices O and Φ of appropriate size. Note that here Φ−1

denotes the preimage and not the inverse matrix (see the
Definition 2.5).
Sufficiency: Assume 0 6= x0 ∈ S1 ∩ Oks,K . Then there
exists a unique, non-trivial solution x with x(0) = x0. Since
x(0) ∈ Oks,K then y(k) = 0, 0 ≤ k ≤ K. This means
that there exists a non-trivial solution of x with zero output.
Hence, (3) is not observable.
Necessity: Consider a solution of (1) then x(0) ∈ S1.
Furthermore, if y(k) = 0 for all k ∈ [0,K], then x(0) ∈
Oks,K . Hence x(0) ∈ S1 ∩ Oks,K = {0}, which shows the
desired implication (6).

In general, the second and the third subspaces in the
observability condition (12) depend on the switching time



as ks is explicitly appeared on them. This means that in
discrete time, changing the switching time might change the
observability property (see Example 2 for illustration). In
contrast, the observability condition in continuous time does
not depend on the switching time in the single switch case
(see [16, Theorem 9]).

B. Large Enough Observation Time

The dependence on the switching time ks in the observ-
ability characterization (12) can be reduced by exploiting the
Cayley-Hamilton-Theorem as follows:

Corollary 3.2: Consider the index-1 SLSS (1) with the
switching signal (11) and assume n ≤ ks ≤ K − n. Then
(1) is observable on [0,K] if, and only if,

S1 ∩ O1 ∩
[
Φ2,1Φks−11

]−1
(O2) = {0} (13)

where for i = 1, 2

Oi := ker[C>i , (CiΦi)
>, . . . , (CiΦ

n−1
i )>]>.

Furthermore, if Φ1 is idempotent, then (1) is observable on
[0,K] if, and only if,

S1 ∩ O1 ∩ Φ−12,1 (O2) = {0}. (14)
Note that the observability characterization (14) is almost

identical to the one obtained in continuous time (under an
impulse-free, i.e. index-1, assumption), however, the assump-
tion that Φ1 is idempotent (i.e. Φ1 is a projector) is extremely
restrictive (and implies that the first mode has constant
state trajectories). Nevertheless, we do actually believe that
despite the explicite presence of the switching time ks in the
general observability condition (13) the observability does
not depend on the switching time; this is ongoing research.

Due to the current lack of a general result about the
independence of the observability condition (13) from the
switching time ks, we provide some further sufficient con-
ditions, which are based on the following properties.

Lemma 3.3: Let M,Φ ∈ Rn×n.
(i) If kerM ∩ im Φ = {0} then there is a k, 0 ≤ k ≤ n,

such that

ker(MΦk) = ker(MΦk+j) ∀j ∈ N.

(ii) If, for some k, ker(MΦk) ⊇ ker(MΦk+1) then

ker(MΦk) ⊇ ker(MΦk+j) ∀j ∈ N.

(iii) If, for some k, ker(MΦk) ⊆ ker(MΦk+1) then

ker(MΦk) ⊆ ker(MΦk+j) ∀j ∈ N.

(iv) If, for some k, ker(MΦk) = ker(MΦk+1) then

ker(MΦk) = ker(MΦk+j) ∀j ∈ N.
Proof: The proofs easily follow from basic linear

algebra and are therefore omitted.
From Lemma 3.3 part (i) and (iv), we can derive the

following corollary explaining the independence of observ-
ability on the switching time under some certain conditions.

Corollary 3.4:

(i) Assume that ker(O2ΠkerE1

S2 ) ∩ im Φ1 = {0} and n ≤
ks ≤ K − n. Then the observability of SLSS (1)
does not depend on ks. Moreover, the third subspace
in (13) can be replaced by the simpler condition[
ΠkerE1

S2 Φn1

]−1
(O2).

(ii) If, for some k ∈ N,

Ok−11 = Ok1 and (15)[
Φ2,1Φk−11

]−1
(O2) =

[
Φ2,1Φk1

]−1
(O2) (16)

then the observability of SLSS (1) does not depend on
the switching time for any ks with k ≤ ks ≤ K − n.
Moreover, if (16) holds for some k ≥ n, then the
observability of SLSS (1) does not depend on the
switching time ks with n ≤ ks ≤ K − n.

From part (ii) and (iii) in Lemma 3.3, we can derive some
situations where the observability property would be inde-
pendent of the switching time as explained in the following
remark.

Remark 3.5: If for some ks with n ≤ ks ≤ K − n the
third subspace in (13) satisfies[

Φ2,1Φks−11

]−1
(O2) ⊇

[
Φ2,1Φks1

]−1
(O2)

then [
Φ2,1Φks1

]−1
(O2) ⊇

[
Φ2,1Φks+1

1

]−1
(O2) ⊇ · · · .

In this situation the third subspace in (13) will not grow for
bigger ks resulting that if the switched system is observable
with the given switching time ks then it remain observable
for any bigger switching time (with ks < K −n). Similarly,
if for some ks with n ≤ ks ≤ K − n[

Φ2,1Φks−11

]−1
(O2) ⊆

[
Φ2,1Φks1

]−1
(O2)

then [
Φ2,1Φks1

]−1
(O2) ⊆

[
Φ2,1Φks+1

1

]−1
(O2) ⊆ · · · .

In this situation the third subspace in (13) will not shrink
for bigger ks resulting that if the switched system is not-
observable for the given switching time ks then the switched
system will remain non-observable for any bigger switching
time. �

So far, we have obtained some sufficient conditions as in
Corollary 3.4 to verify the independence of the observability
on the switching time. When restricting to a two-dimensional
state (n = 2), we are actually able to prove that observability
cannot depend on the switching time as long as both modes
are active for at least two time steps.

Theorem 3.6: Consider the SLSS (1) of index-1 with state
space dimension n = 2 and singular E-matrices. Assume
that both modes are active for at least two time steps, i.e. 2 ≤
ks ≤ K − 2. Then the observability of the switched system
does not depend on ks. In fact, the observability condition
(13) can be reduced to

S1 ∩ O1 ∩ [Φ2,1Φ1]
−1

(O2) = {0} (17)



where Oi := ker[C>i , (CiΦi)
>]> for i = 1, 2.

Proof: The proof is based on transforming Φ1 via
a coordinate change into [ λ 0

0 0 ] (which is possible due to
the index-1 assumption) and by carefully considering the
different cases for λ (equal or unequal to zero) and for the
entries in the matrix C1; the details are omitted due to space
limitations.

At the moment it is not clear to the authors whether
Theorem 3.6 remains valid for higher dimensional systems.

IV. ILLUSTRATIVE EXAMPLE

We have seen already in the introduction that even if all
modes of the switched systems are observable on a given
interval [0,K], the switched system considered on the same
interval is not necessarily observable.

On the other hand it is also possible that the switched
system is observable although the individual modes are not
observable, this is illustrated in the following example.

Example 2: Consider the SLSS (1) on [0,K] with K = 10
under single switch switching signal (11), where

E1 =


0 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 , E2 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 ,

A1 =


1 0 0 0
1 0 0 0
1 1 0 1
0 0 1 0

 , A2 =


1 1 1 1
0 0 0 1
1 0 0 1
1 0 1 1

 ,
C1 =

[
0 1 1 1

]
, C2 =

[
1 1 0 1

]
.

Then S1 = span

{(
1
0
0
−1

)
,

(
0
1
0
−1

)}
,S2 = span

{(
1
0
0
−1

)
,(

0
1
0
0

)}
, kerE1 = kerE2 = span

{(
0
0
1
0

)
,

(
0
0
0
1

)}
. Con-

sequently, the switched system is jointly index-1, because
Si ∩ kerEj = {0}, i, j = 1, 2. The corresponding one-step-
map matrices are

Φ1 =


0 0 0 0
1 0 0 0
0 0 0 0
−1 0 0 0

 ,Φ1,2 =


−1 0 0 0
0 1 0 0
0 0 0 0
1 −1 0 0

 ,

Φ2 =


−1 0 0 0
0 1 0 0
0 0 0 0
1 0 0 0

 ,Φ2,1 =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 .
Each individual system i.e. mode-1 and mode-2 are both not-

observable on [0,K] since S1 ∩ O1 = span

(
0
1
0
−1

)
6= {0},

and S2 ∩ O2 = span

(
1
0
0
−1

)
6= {0}.

We observe here the observability on [0,K] for varying
switching times ks ∈ [1,K] illustrated in Fig. 2.

Mode sequence 1-2 (i.e. the system starts from mode-1
and switches to mode-2) always produces a not-observable
switched system since the observability condition (12) for
ks < 4 or (13) for ks ≥ 4 does not hold. This is not

Fig. 2. Switching time vs observability Example 2

surprising because each individual system is not-observable.
Furthermore, by checking the condition in part (i) of Corol-
lary 3.4 we have that

ker(O2ΠkerE1

S2 ) ∩ im Φ1 = {0}

which means that independently of the switching time ks
the mode sequence 1-2 will always give a non-observable
switched system.

On the other hand, for mode sequence 2-1 the switched
system actually becomes observable for all switching times
ks = 2, 3, . . . , 9 because (12) is satisfied. This illustrates
that even though each mode is not-observable, the switched
system could be observable. For mode sequence 2-1, the
condition in part (i) of Corollary 3.4 is not satisfied but the
condition in part (ii) is satisfied i.e. we have that[

Φ1,2Φ3
2

]−1
(O1) =

[
Φ1,2Φ4

2

]−1
(O1) .

This implies that we also can make sure analytically that the
mode sequence 2-1 is always observable for any 3 ≤ ks ≤ 7
i.e. it doesn’t depend on the switching time anymore. �

V. SUMMARY AND FUTURE WORKS

We have presented two necessary and sufficient conditions
for observability characterizations of singular linear switched
systems in discrete time with single switch switching signals.
The first characterization corresponds to arbitrary switching
time cases whereas the second characterization corresponds
to large enough switching time cases. The switching time
variable appears explicitly in the condition which means
that in general the observability property seems to depend
on the switching time. However, we have provided some
sufficient conditions when the observability is not depend
on the switching time anymore. Furthermore, for systems
with two-dimensional states, we have proved that it does not
depend on the switching time. Finally, we have illustrated
via the example that 1) even if each individual subsystem
is not-observable, the switching may produce an observable
switched system, and 2) swapping the mode sequence may
change the observability.

The study in this paper leaves many open problems which
will be studied in our future works. First, the dependence of
observability on the switching time for systems with higher
dimensional states. Next, the observability characterizations
for multiple switches cases. Then, forward observability
and observer design are also interesting to study. Last, we



will also study the controllability characterization for such
systems. Moreover, we expect that in some sense there is a
duality between the observability and the controllability as
in ordinary systems.
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