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Abstract

Switched descriptor systems characterized by a repetitive finite sequence of modes can exhibit state discontinuities at the
switching time instants. The amplitudes of these discontinuities depend on the consistency projectors of the modes. A switched
ordinary differential equations model whose continuous state evolution approximates the state of the original system is proposed.
Sufficient conditions based on linear matrix inequalities on the modes projectors ensure that the approximation error is of
linear order of the switching period. The theoretical findings are applied to a switched capacitor circuit and numerical results
illustrate the practical usefulness of the proposed model.
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1 Introduction

Switched descriptor systems represent the dynamic be-
havior of several physical apparatus, e.g. mechanical sys-
tems [20] and electronic circuits [17]. The dynamics of
switched descriptor systems is determined by the switch-
ing among different modes, where each mode is charac-
terized by a set of linear differential equations and alge-
braic constraints. A mathematical representation of this
class of systems can be obtained in terms of switched
linear differential algebraic equations (DAE).

Several modeling and control aspects related to switched
DAE have been considered in the literature, e.g. observer
design [25], stability [20,22], initial value problems [4,5],
switched control systems with impulsive dynamics [1,2].

Switched DAE can exhibit specific behaviors, such as
impulses and state discontinuities at the switching in-
stants, which are not possible in switched ordinary dif-
ferential equations (ODE). These complexities inspired
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studies which have investigated simpler models able to
approximate the behaviour of the original system and to
deduce properties. Each of these approaches is restricted
to a specific class of switched descriptor systems. The
reduced-order model proposed in [25] for observer de-
sign in the presence of unknown inputs assumes a com-
mon E matrix. Continuous ODE have been proposed for
approximating the solution of switched DAE by using
averaging techniques [13–15], but the conditions to be
satisfied by the modes projectors do not hold for many
practical systems [17]. In [20] reduced-order models of
switched descriptor systems are used for deriving ex-
ponential stability conditions about the origin, but the
results therein require nonsingular A matrices and the
rank of the E matrices to be the same.

In this paper, we propose a switched ODE model which
approximates the switched DAE system under milder
assumptions with respect to those used in the previous
literature. The use of switched ODE with a continuous
state evolution approximating the dynamic behavior of
a switched DAE has been shown to be useful for the
analysis of switched descriptor systems. One of these sit-
uations is the simulation of descriptor systems with sin-
gularities, e.g. inconsistent initial conditions [21], where
numerical issues could be amplified by the presence of
switching modes. In this scenario switched ODE models
could help to obtain numerical results by using standard
software suited for systems with a continuous state evo-
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lution. The approximation of a switched descriptor sys-
tem with a switched ODE has also been used for stability
analysis [12] and observer design [18]. In particular, the
analysis in [12] is based on a constant switching period,
but in many practical applications, such as for power
converters, the switching among the different modes are
not repetitive in the sense that different duty cycles and
different switching periods are required for the system
operations [16].

The model proposed in this paper, by covering the sit-
uation when the switching period is not fixed a priori,
can be considered as an extension of the model presented
in [12]. The dynamic matrix of each mode of our switched
ODE model depends on the switching period and we pro-
vide a design rule for this dependence. This technique
allows us to prove an approximation result between the
solution of the proposed model and that of the original
switched DAE, showing that the difference of the two
solutions is of the same order as the switching period.
Moreover, we also provide operative sufficient conditions
expressed in terms of linear matrix inequalities (LMIs)
which allow one to verify the hypotheses of our main re-
sult. The approximation result is shown to be useful for
asymptotic stability analysis of both the switched DAE
and the proposed switched ODE systems.

The paper is organized in several sections. In Section 2
the class of switched descriptor systems of interest is pre-
sented. Section 3 presents the new switched ODE model.
The main result of the paper is shown in Section 4. In
Section 5 a numerical verification of the theoretical re-
sults obtained by considering a practical switched ca-
pacitor circuit is proposed. In Section 6 the results are
summarized. All proofs of the lemmas and theorem pro-
posed in the paper are collected in the Appendix.

2 Switched descriptor system

The switched descriptor system of interest can be repre-
sented as an homogeneous switched DAE with q modes,
i.e.

Eσ(t)ẋ = Aσ(t)x (1)

where σ : R+ → Σ, with R+ the set of positive real num-
bers, is a piecewise constant right-continuous function,
that selects at each time instant the index of the active
mode from the finite index set Σ := {1, 2, . . . , q}. We as-
sume that each mode is given by a regular matrix pair
(Ei, Ai), i.e. the polynomial det(sEi − Ai) is not iden-
tically zero, and that the switching signal σ repeats the
sequence of modes in any switching period p > 0, i.e.,

σ(t) =


1, t ∈ [tk, sk,2),

2, t ∈ [sk,2, sk,3),
...

q, t ∈ [sk,q, tk+1)

(2)

with k ∈ N, with N the set of positive integers, i ∈ Σ,
the time instants tk being the multiple of the period p,
the switching time instants sk,i being the time instant
when the i-th mode starts within the k-th period. In
particular, we assume sk,1 = tk for all k ∈ N. Then we
have

tk := kp, sk,i := tk +

i−1∑
j=1

dj,kp, (3)

where di,k ∈ D, D = (0, 1), is the duty cycle of the i-th
mode for the k-th period; in particular,

∑q
i=1 di,k = 1,

see Fig. 1.

d1,kp d2,kp dq,kp

sk,1 sk,2 tk,3 sk,q sk+1,1sk−1,1

Fig. 1. Illustration of the switching times notation.

The solution of a switched DAE can also contain Dirac
impulses, i.e., each mode can have impulsive modes of
arbitrary degree. The impulse-free part of the solution is
independent from the impulsive part (however the oppo-
site does not hold, see [23]), which justifies the analysis
of this paper that concentrates on the impulse-free part
of the solution (which may still contain jumps). The im-
pulse free part of the solution of the descriptor system
can be obtained as the solution of a suitable switched
ODE model. This model is defined by using the consis-
tency projector and the flow matrix of each mode which
can be obtained through a specific transformation. In
particular, for any regular matrix pair (Ei, Ai) there ex-
ist transformation matrices Si and Ti which put (Ei, Ai)
into the quasi Weierstrass form, i.e.

(SiEiTi, SiAiTi) =

([
I 0

0 Ni

]
,

[
Ji 0

0 I

])
, (4)

with Ti = [Vi, Wi], Si = [EiVi, AiWi]
−1 where Ni

is a nilpotent matrix, I is the identity matrix, Ji, Vi
and Wi are matrices of appropriate size. Then, for any
regular matrix pair (Ei, Ai) it is possible to define the
consistence projector Πi and the flow matrixFi as follow:

Πi = Ti

[
I 0

0 0

]
T−1
i , Fi = Ti

[
Ji 0

0 0

]
T−1
i . (5)

It is easy to verify that the consistency projector is an
idempotent matrix, i.e., Π2

i = Πi, and that the projector
and the flow matrix are commutative with their product
equal to the flow matrix itself, i.e., FiΠi = Fi = ΠiFi.
The consistency projectors allow one to easily verify the
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impulse freeness of all distributional solution of (1).The
solution of switched system (1) is impulse free under
arbitrary switching if and only if for all i 6= j ∈ Σ it
holds Ei(I −Πi)Πj = 0.

In [15, Theorem 12] it is shown that x : R+ → Rn is the
impulse-free part of any (distributional) solution of (1)
if and only if it is a solution of the following switched
ODE model with jumps

ẋ(t) = Fix(t), t ∈ (sk,i, sk,i+1) (6a)

x(s+
k,i) = Πix(s−k,i) (6b)

with x(0−) = x0, for k ∈ N, i ∈ Σ, where the matrices
Fi are given by (5) and sk,q+1 := tk+1 = sk+1,1.

The solution of (6) can be written by cascading the so-
lutions of the different modes and by considering the
jumps at the switching time instants. In particular, at
the switching time instants one can write

x(s−k,i) =

k−1∏
m=1

 q∏
j=1

eFjdj,mpΠj

 i∏
j=1

eFjdj,mpΠjx0 (7)

and at the time instants internal to the mode evolution
it is

x(τ) = eFi(τ−sk,i)Πix(s−k,i) (8)

for any τ ∈ (sk,i, sk,i+1), k ∈ N and i ∈ Σ.

Note that throughout the paper the product of any q
matrices Gi ∈ Rn×n, i = 1, . . . , q is defined as (note the
order)

∏q
i=1Gi = GqGq−1 · · · · ·G2G1.

3 Proposed approximating model

The main objective of this paper consists of finding a
switched ODE model whose continuous solution approx-
imates the discontinuous solution (7)-(8) with an error
of order of the switching period p, except for small time
intervals after the switching time instants.

3.1 Switched ODE model

The proposed switched model has the following modes
dynamics

ẋs(t) = F
εp
i xs(t), t ∈ [sk,i, sk,i+1) (9)

with xs(0) = x0, for k ∈ N, i ∈ Σ. Each matrix F
εp
i ,

i ∈ Σ, is defined as the sum of the flow matrix of that
mode and a suitable matrix Φi(p) which allows a smooth
approximation of the possible state jump:

F
εp
i = Fi + Φi(p) (10)

i ∈ Σ, where the matrix Fi is defined in (5) and

Φi(p) = Ti

0 0

0 − 1
εp
I

T−1
i . (11)

In [12] a model similar to (9)–(11) was proposed but a
constant parameter ε was considered therein. The inter-
est in including a dependence on p comes from the fact
that in many practical systems the switching period is
not fixed a priori and a constant value for ε could lead to
a weaker approximation result when the switching pe-
riod varies. Specifically, we consider

εp = − ∆pp

log p2
(12)

where without loss of generality we assumed p < 1, and

∆p ≤ ∆p, 0 < ∆� min{di,k}i∈Σ,k∈N (13)

for all p < p̄. Since p < 1, the logarithm will be negative,
so εp is actually positive.

The solution of (9) for any τ ∈ [sk,i, sk,i+1], k ∈ N and
i ∈ Σ, can be written as

xs(τ) = eF
εp
i

(τ−sk,i)xs(sk,i) (14)

where

xs(sk,i) =

k−1∏
m=1

 q∏
j=1

eF
εp
i
dj,mp

 i∏
j=1

eF
εp
i
dj,mpx0 (15)

is the solution at the switching time instants.

3.2 Model motivation

In order to motivate the choice (12) it is useful to recall
the following definition of an O(p) function

Definition 1 For any finite integer m ∈ N, a matrix
function G : R+ → Rµ×ν , µ ∈ N, ν ∈ N, is said to be an
O(pm) function as p → 0 (G(p) = O(pm) for short), if
there exist positive constants α and p̄ such that

‖G(p)‖ ≤ αpm, ∀p ∈ (0, p̄)

where ‖ · ‖ indicates the (induced) Euclidean norm.

In the following we show that the choice (12) implies that

xs(sk,i + ∆pp) = Πix̄+ O(p2) (16)

where x̄ = xs(sk,i). In other words, by choosing εp as
in (12), the solution of (9) after a time interval ∆pp from

3



the beginning of the i-th mode approximates with an
error O(p2) the jump that the solution of the switched
DAE (1) would exhibit at the beginning of the i-th mode
by starting from x̄. Let us verify (16). With simple alge-
braic manipulations one can write

−εpΦi(p) =
∆pp

log p2
Φi(p) = Ti

[
0 0

0 I

]
T−1
i

= Ti

[
I 0

0 I

]
T−1
i − Ti

[
I 0

0 0

]
T−1
i = I −Πi. (17)

Therefore, by using (17) and (12) one can write:

eΦi(p)∆pp = e
−∆pp

εp
(I−Πi) = e(I−Πi) log p2

=

∞∑
n=0

(I −Πi)
n logn p2

n!

= I +

∞∑
n=1

(I −Πi)
n logn p2

n!

= I + (I −Πi)

∞∑
n=1

logn p2

n!

= I + (I −Πi)

∞∑
n=0

logn p2

n!
− (I −Πi)

= (I −Πi)e
log p2

+ Πi = Πi + (I −Πi)p
2. (18)

By using xs(sk,i) = x̄, (14) with τ = sk,i+∆pp and (18)
it follows that

xs(sk,i + ∆pp) = e(Φi(p)+Fi)∆ppx̄
a
= eΦi(p)∆ppeFi∆ppx̄

= (Πi + (I −Πi)p
2)(I + Fi∆pp+ O(p3))x̄

= Πix̄+ O(p2) (19)

where in
a
= has been used the commutativity property

between Fi and Φi(p) which follows from

Fi(I −Πi) = (I −Πi)Fi = Fi − FiΠi = Fi − Fi = 0.

The confirmation of (16) through (19) is a preliminary
step for proving the approximation of the solution of the
switched descriptor system (1) by the solution of the
proposed switched ODE model (9). This result, which is
proved in next section, is not a straightforward implica-
tion of (16) because the error between the two solutions
accumulates period by period.

4 Main result

In this section we provide sufficient conditions such that
the solution (14)–(15) of the switched ODE (9) is an O(p)
approximation of the solution (7)–(8) of the switched
DAE (1). In particular, we show that x(t) − xs(t) =
O(p) holds uniformly for any t ∈ [0, T ] \ {(sk,i, sk,i +
∆pp)}k∈N,i∈Σ. Note that in principle it is not possible
to approximate a discontinuous function (solution of
switched descriptor system) with a continuous function
(solution of switched ODE) uniformly for all t ∈ [0, T ]
unless the jump magnitude converges to zero, which we
do not assume here. However, with the proposed approx-
imation method we are able to show uniform convergence
of order p outside a set (a union of small intervals fol-
lowing the switchings) whose measure is also of order p.

The proof of our main result combines some O(p) ap-
proximations of parts of the solutions (7)–(8) and (14)–
(15). To do this, it is useful to provide some preliminary
expressions for the exponential of the systems flow ma-
trices which are proved through the following lemma.

Lemma 2 Given a set of matrices defined as in (5)
and (10)–(13), the following relations hold

eFidip = I + Fidip+O(p2) (20a)

eF
εp
i
dip = Πi + Fidip+O(p2) (20b)

q∏
i=1

eF
εp
i
dip =

q∏
i=1

eFidipΠi +O(p2) (20c)

for all p, di ∈ D = (0, 1), i ∈ Σ.

The solutions (7)–(8) and (14)–(15) present repetitions,
period by period, of products of exponential matrices. In
order to analyze these terms, let us define the Lipschitz
continuous matrix function M : Dq×R+ → Rn×n, with
D = (0, 1), as

M(δk, p) =

q∏
i=1

eFidi,kpΠi (21)

where k ∈ N and vector signal δk = [d1,k, . . . , dq,k]> ∈
Dq indicates the duty cycles of all modes over time. The
solution (7) of the switched descriptor system at the k-
th switching period involves the product of k matrices
in the form (21). When p goes to zero over the time
interval (0, T ), one should consider k ∈ {1, . . . , `(p)},
where ` : R+ → N is the number of intervals of length p
from 0 to T :

`(p) =

⌊
T

p

⌋
(22)

with bxc the largest integer less than or equal to x ∈ R.
Clearly, when p goes to zero `(p) goes to infinity. In
particular, it is 1/`(p) = O(p). Indeed it is 1/`(p) ≤
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p/(T − p) ≤ αp with α ≥ 1/(T − p̄) where p̄ is chosen
according to Definition 1. In our case, the proof of the
approximation result between x(t) and xs(t), t ∈ [0, T ],
requires some O(p) conditions on products of `(p) terms
in the form (21). This result is proved in the following
lemma.

Lemma 3 Consider a finite T ∈ R, `(p) as in (22), a
discrete time signal (δk)k∈N with values in Dq = (0, 1)q,
and generic Lipschitz continuous matrix functions M :
Dq × R+ → Rn×n and G : Dq × R+ → Rn×n. Assume
that there exists a γ1 ≥ 0 such that

‖M(δk, p)‖ ≤ 1 + γ1p (23a)

G(δk, p) = O(p2), (23b)

for all k ∈ {1, . . . , `(p)}. Then

`(p)∏
k=1

M(δk, p) = O(1) (24a)

`(p)∏
k=1

(M(δk, p) +G(δk, p)) =

`(p)∏
k=1

M(δk, p) + O(p).

(24b)

It is interesting to compare the results in Lemma 3
with those of Lemma 2 in [7]. Therein, by considering
constant duty cycles, i.e. δk = δ for all k ∈ N, it is
shown that if M(p)`(p) = O(1) and G(p) = O(p) it
is (M(p) + G(p))`(p) = O(1). The assumption (23a) in
the particular case that δk is constant, is more restric-
tive than M(p)`(p) = O(1), so as it can be deduced
from (A.1d). On the other hand, from Lemma 3 it fol-
lows that if (23) hold one can write the more explicit
expression (M(p) +G(p))`(p) = M(p)`(p) + O(p).

The condition (23a) cannot be easily checked a priori
from the structure of the model (9). The following lemma
provides more operative conditions based on linear ma-
trix inequalities which must be satisfied by the system
projectors in order to let (23a) be satisfied.

Lemma 4 Consider a set of matrices defined as in (5)
and (10)–(13). Assume that there exists a symmetric ma-
trix P such that the following set of linear matrix inequal-
ities

P � 0 (25a)

Π>i PΠi − P � 0 (25b)

with i = 1, . . . , q, has a solution, then there exists a γ1 ≥
0 such that the following condition holds

∣∣∣∣∣∣∣∣∣ q∏
i=1

eFidi,kpΠi

∣∣∣∣∣∣∣∣∣ ≤ 1 + γ1p (26)

for any k ∈ {1, . . . , `(p)} and for all p with |||·||| being the
norm induced by the matrix P .

Conditions (25) can be relaxed under the hypothesis that
the sequence of the projectors is fixed. In particular one
could replace (25b) with the weaker condition Π>∩PΠ∩−
P � 0, where Π∩ =

∏q
i=1 Πi. Note that if im Π∩ ⊆ im Πi

and ker Π∩ ⊇ ker Πi then Π∩ is a projector himself,
see [15].

By using the lemmas above, it is now possible to prove
our main result.

Theorem 5 Consider the switched DAE system (1) and
the smooth model (9) with the same initial conditions
x(0−) = xs(0

−) = x0. Assume that there exists a sym-
metric matrix P such that the set of LMIs (25) is satis-
fied. Then

x(t)− xs(t) = O(p) (27)

holds for any t ∈ [0, T ] \ {(sk,i, sk,i + ∆pp)}k∈N,i∈Σ.

Theorem 5 can be useful for providing some stability
properties of (1) and (9). In order to make some con-
siderations on this, first note that the approximation re-
sult (27) is based on the existence of a norm |||·||| such
that (26) holds. It is easy to see that this condition is
not sufficient for having the asymptotic stability of the
switched descriptor system (1). On the other hand, if
some tighter conditions on the modes dynamics are as-
sumed, one can obtain a sufficient condition which en-
sures the asymptotic stability of (1) and (9). In partic-
ular, from (7) it is easy to verify that if there exists a
γ2 > 0 such that∣∣∣∣∣∣∣∣∣eFidi,kpΠi

∣∣∣∣∣∣∣∣∣ ≤ 1− γ2p (28)

for all i ∈ Σ, for any k ∈ {1, . . . , `(p)} and for all p,
than (1) is asymptotically stable. On the other hand,
if condition (28) hold, the proposed switched ODE
model (9) is asymptotically stable either. Indeed, one
can write

eF
εp
i
di,kp = eFidi,kpeΦi(p)di,kp

= eFidi,kp
(

Πi + (I −Πi)p
2di,k

∆̄p

)
= eFidi,kpΠi + (I −Πi)p

2di,k

∆̄p . (29)

Now, since di,k < 1 for all i ∈ Σ and k ∈ N, from (28)
and (29) one obtains that there always exists a p̄ such
that ∣∣∣∣∣∣∣∣∣eF εpi di,kp

∣∣∣∣∣∣∣∣∣ ≤ 1− γ2p+
∣∣∣∣∣∣∣∣∣I −Πi

∣∣∣∣∣∣∣∣∣ p 2
∆̄p

≤ 1− γ2p+ γ3p ≤ 1− γ4p (30)

for any p ∈ (0, p̄), with γ4 = γ2 − γ3 > 0, for all k ∈ N.
By taking the norm in (14)–(15) and by using (30) the
asymptotic stability of (9) directly follows.

5



R

−
+u

C2

−

+

x2
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S2

S3
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C1
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+

x3

Fig. 2. Elementary cell of a ladder step-up switched capacitor
converter.

In synthesis, if (28) hold then the switched descriptor
system (1) and the proposed switched ODE system (9)
with the design rule of εp expressed by (12), are both
asymptotically stable. In this scenario, one can apply to
the proposed model (9) some analysis and control design
techniques which are standard for models which do not
exhibit discontinuities and, thanks to the approximation
result in Theorem 5, conclude corresponding results for
the switched descriptor system (1).

5 Example

In this section we verify the approximation (27) in Theo-
rem 5 by using numerical results obtained by considering
a practical switched capacitor electrical circuit. Let us
consider the typical elementary cell of a ladder step-up
switched capacitor shown in Fig. 2. The circuit consists
of two capacitors and four switches that are controlled
in a complementary way. The analysis of linear electrical
circuit by means of state space models has been exten-
sively considered in the literature, e.g. [9,11,19,24]. The
circuit in Fig. 2 can be represented in the form (1) with
two modes corresponding to the pair {S1,S2} turned on
together with the pair {S3,S4} turned off (σ = 1), and
viceversa (σ = 2).

By considering as input a constant voltage source u the
circuit can be modeled by adding a dummy state vari-
able, say x1, together with x2 and x3 being the state
variables corresponding to the voltages on the capaci-
tors C1 and C2, respectively. Then the matrices pairs
and the consistence projectors of the two modes are:

E1 =
[

1 0 0
0 0 0
0 C2R C1R

]
A1 =

[
0 0 0
0 −1 1
−1 −1 0

]
E2 =

[
1 0 0
0 0 0
0 C2R 0

]
A2 =

[
0 0 0
1 0 −1
−1 −1 0

]
Pi1 =

[ 1 0 0
0 C2ρ C1ρ
0 C2ρ C1ρ

]
Π2 =

[
1 0 0
0 1 0
1 0 0

]
where ρ = 1

C1+C2
. It can be easily verified that the linear

matrix inequalities (25) are satisfied, even though the
projectors have euclidean norms larger than 1.

0 0.07 0.14 0.21 0.28 0.35 0.42

0
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0 0.07 0.14 0.21 0.28 0.35 0.42
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0 0.1 0.2 0.3 0.4 0.5 0.6

0

4

8

12

14

  p=0.1 s   p=0.07

s

Fig. 3. Time evolution of the state variables (second top,
third bottom) of the switched capacitor circuit with p = 0.1 s
and p = 0.07 s: switched DAE system (blue lines) and pro-
posed model (red lines).

The matrices Fi and Φi, i = 1, 2, are:

F1 =
ρ2

R

[ 0 0 0
− 1
ρ −C2 −C1

− 1
ρ −C2 −C1

]
Φ1 =

ρ log p2

p∆p

[
0 0 0
0 C1 −C1

0 −C2 C2

]
F2 =

[
0 0 0

− 1
C2R

− 1
C2R

0

0 0 0

]
Φ2 =

log p2

p∆p

[
0 0 0
0 0 0
−1 0 1

]

The simulation has been carried out by selecting the fol-
lowing parameters: C1 = C2 = 120 µF, R = 10 kΩ and
∆p = 0.9p. In Fig. 3 is shown the behavior of the state
variables for different switching periods, i.e. p = 0.1 s
and p = 0.07 s respectively, over six periods. Note that
the duty cycles are different for each period. The state
variable x3 presents jumps when the system switches
from mode 1 to mode 2 and viceversa. The state evolu-
tion of the error related to the second state variable to-
gether with the state evolution of the error obtained by
reproposing the same scenario with the model presented
in [12], where ε = 0.004 are shown in Fig. 4. At the
switching time instants state jumps occur and the error
becomes quite small after few switching periods. Clearly
the amplitudes of the peak values of the errors at the
switching time instants are the same for the two (con-
tinuous) models. Nevertheless the error decreases much
faster with our model. Indeed, the root mean square of
the state errors with respect to the solutions of (1) with
p = 0.1 s (p = 0.07 s) are 0.1178 (0.0752) for our model
and 0.1983 (0.2324) for the model proposed in [12] with
ε = 0.004. The integral of the error for the model in [12]
is 23% (165%) larger than the error obtained with our
model.

6 Conclusion

Many practical switched systems are characterized by a
repetitive sequence of a finite number of modes and can
be represented as descriptor systems. For switched de-
scriptor systems which present jumps in the state at the
switching time instants it is of practical interest to find
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Fig. 4. Error time evolution over six periods for the state
variable x3 of the switched capacitor circuit for p = 0.1 s
(top) and p = 0.07 s (bottom) by using the proposed method
(left) and the model presented in [12] (right).

possible smooth models which approximate the behav-
ior of the discontinuous system. In this paper a switched
ODE model whose state continuous solution approxi-
mates the evolution of the switched descriptor system
solution has been proposed. Linear matrix inequalities
depending on the system projectors provide sufficient
conditions for proving that the approximation error be-
tween the two models is of order of the switching pe-
riod. The practical operating conditions of not constant
duty cycles and varying switching periods have been
considered. Numerical results obtained by considering a
switched capacitor circuit have validated the theoretical
results. In this paper we have considered homogeneous
switched DAE and non-homogeneous systems that can
be represented in this form too if inputs are such that the
state can be enlarged by including a model of the input
generator in the switched DAE model. Future step will
extend this result for non-homogeneous switched DAE
with more general inputs.

A Appendix

A.1 Properties on O(p) functions

We can state some properties of matrix functions which
satisfy Definition 1. In particular, for any finite integer
m ∈ N, the following implications hold:

G(p) = O(pm) =⇒ G(p)`(p) = O(pm−1) (A.1a)

G(p) = O(p) =⇒ G(p)`(p) = O(pm) (A.1b)

G(p) = O(p2) =⇒ (G(p)`(p))`(p) = O(pm) (A.1c)

G(p)`(p) = O(1) =⇒ G(p) = O(1). (A.1d)

These properties can be verified as partially done in [6].
The implication (A.1a) follows from

‖G(p)`(p)‖ ≤ αpm
⌊
T

p

⌋
≤ αpT

p
= αTpm−1.

The implication (A.1b) follows from

‖G(p)`(p)‖ ≤ ‖G(p)‖`(p) ≤ (αp)`(p)

= αmpm(αp)`(p)−m ≤ αmpm

and one can choose p̂ ≤ p̄ such that αp̂ ≤ 1, for some
p̂ ≤ p̄. The implication (A.1c) follows from

‖(G(p)`(p))`(p)‖ ≤ ‖G(p)`(p)‖`(p) ≤ (αpT )`(p)

= αmTmpm(αpT )`(p)−m ≤ αmTmpm

and one can choose p̂ ≤ p̄ such that αp̂T ≤ 1, for some
p̂ ≤ p̄.

The implication (A.1d) is a direct consequence of Defi-
nition 1. Note that the opposite of (A.1d) do not hold,
in general.

Clearly, any linear combination of functions which are
O(pm) is an O(pm) function itself.

A.2 Proof of Lemma 2

The condition (20a) is straightforward by using a Taylor
expansion of the exponential matrix.

The condition (20b) is obtained as follows

eF
εp
i
di,kp = eFidi,kp+Φi(p)di,kp

a
= eFidi,kpeΦi(p)di,kp

= (I + Fidi,kp+O(p2))eΦi(p)di,kp

b
= (I + Fidi,kp+O(p2))(Πi +O(p2))

= Πi + Fidi,kp+O(p2)

where in
a
= has been used the commutativity property

between Fi and Φi(p) and in
b
= has been used the fol-

lowing result:

eΦi(p)di,kp =

∞∑
n=0

(I −Πi)
n logn p2

n!

dni,k
∆n
p

= I +

∞∑
n=1

(I −Πi)
n logn p2

n!

dni,k
∆n
p

= I + (I −Πi)

∞∑
n=1

logn p2

n!

dni,k
∆n
p

= I + (I −Πi)

∞∑
n=0

(
di,k log p2

∆p

)n
1

n!
− (I −Πi)

= (I −Πi)e
di,k
∆p

log p2

+ Πi

= Πi + (I −Πi)p
2di,k
∆p = Πi +O(p2).
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The condition (20c) is obtained by applying (20a)
and (20b). Indeed by using (20b) it follows that the left
hand side of (20c) can be written as

q∏
i=1

eF
εp
i
di,kp =

q∏
i=1

(Πi + Fidi,kp+O(p2))

=

q∏
i=1

(Πi + Fidi,kp) +O(p2).

By using (20a) it follows that the first term in the right
hand side of (20c) can be written as

q∏
i=1

eFidi,kpΠi =

q∏
i=1

(I + Fidi,kp+O(p2))Πi

=

q∏
i=1

(Πi + Fidi,kp) +O(p2)

where we exploited the property FiΠi = Fi which holds
for all i ∈ Σ. By combining the last two expressions the
expression (20c) directly follows.

A.3 Proof of Lemma 3

For the sake of notation let us indicate M(δk, p) with
Mk,p and G(δk, p) with Gk,p, respectively.

Since the constant γ1 is the same for all matrices Mk,p

one has
∥∥∥∏`(p)

k=1Mk,p

∥∥∥ ≤∏`(p)
k=1 ‖Mk,p‖ ≤ (1 +γ1p)

T/p ≤
eγ1T . Then condition (24a) directly follows.

In order to obtain (24b) one can write

`(p)∏
k=1

(Mk,p+Gk,p) =

`(p)∏
k=1

Mk,p+

`(p)∑
k=1

N(`(p),k)∑
i=1

Hi,k,p (A.2)

with

N(`(p), k) =
`(p)!

k!(`(p)− k)!
=

∏k−1
i=0 (`(p)− i)

k!

and Hi,k,p suitable linear combinations of matrices
where each Hi,k,p contains a product with k matrices

Gj,p with j ∈ N. Therefore one can write∥∥∥∥∥∥
`(p)∑
k=1

N(`(p),k)∑
i=1

Hi,k,p

∥∥∥∥∥∥ ≤
`(p)∑
k=1

N(`(p),k)∑
i=1

‖Hi,k,p‖

≤
`(p)∑
k=1

N(`(p),k)∑
i=1

(1 + γ1p)
`(p)−k(αi,kp

2)k

≤
`(p)∑
k=1

N(`(p),k)∑
i=1

(1 + γ1p)
`(p)(αi,kp

2)k

≤
`(p)∑
k=1

N(`(p),k)∑
i=1

eγ1T (αi,kp
2)k

≤ eγ1T

`(p)∑
k=1

N(`(p), k)(ᾱkp
2)k

= eγ1T

`(p)∑
k=1

∏k−1
i=0 (`(p)− i)

k!
(ᾱkp

2)k

≤ eγ1T

`(p)∑
k=1

`(p)k

k!
(ᾱkp

2)k

= eγ1T

`(p)∑
k=1

(ᾱk`(p)p
2)k

k!
≤ eγ1T

`(p)∑
k=1

(ᾱpT )k

k!

≤ eγ1T p

`(p)∑
k=1

(ᾱT )k

k!
≤ eγ1T p

∞∑
k=1

(ᾱT )k

k!

= eγ1T
(
eᾱT − 1

)
p (A.3)

where for all k it is ᾱk ≥ max{αi,k}N(`(p),k)
i=1 , ᾱ ≥

max{ᾱk}`(p)k=1 and p ≥ pk because without loss of gener-
ality one can assume p ≤ 1.

From (A.3) it follows that

`(p)∑
k=1

N(`(p),k)∑
i=1

Hi,k,p = O(p)

and then by using (A.2) the condition (24b) directly
follows.

A.4 Proof of Lemma 4

Let us consider the following

q∏
i=1

eFidi,kpΠi =

q∏
i=1

(I + Fidi,kp+ O(p2))Πi

=

q∏
i=1

Πi + O(p) (A.4)
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Let us consider the difference equation ξk+1 = Fkξk with
ξk ∈ Rn, k ∈ N0, Fk ∈ F and F = {Π1, . . . ,Πq}. By
using the piecewise quadratic stability based on Lya-
punov theory [8] it follows that the existence of a matrix
P which solves the LMIs (25) imply that the system is
absolutely stable for any sequence of matrices in F , see
Sec. 5 in [3]. Then, by using Theorem 3 in [10] it follows
that ∣∣∣∣∣∣∣∣∣Πi

∣∣∣∣∣∣∣∣∣ ≤ 1 (A.5)

for all i = 1, . . . , q with |||·||| being the norm induced by
the matrix P . Therefore, by applying such norm to (A.4)
and by using (A.5) one to write

∣∣∣∣∣∣∣∣∣ q∏
i=1

eFidi,kpΠi

∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣ q∏
i=1

Πi

∣∣∣∣∣∣∣∣∣+ γ1p

≤
q∏
i=1

∣∣∣∣∣∣∣∣∣Πi

∣∣∣∣∣∣∣∣∣+ γ1p ≤ 1 + γ1p (A.6)

which completes the proof.

A.5 Proof of Theorem 5

We first show that (27) holds at any switching time in-
stant by considering for x the value before the possible
jump, i.e.

x(s−k,i)− xs(sk,i) = O(p) (A.7)

for any k ∈ {1, . . . , `(p)} and i ∈ Σ.

By using Lemma 4 and Lemma 3 with M(dk, p) =∏q
j=1 e

Fjdj,kpΠj it follows

q∏
j=1

eFjdj,kpΠj = O(1) (A.8a)

q∏
j=1

(
eFjdj,kpΠj +O(p2)

)
=

q∏
j=1

eFjdj,kpΠj + O(p)

(A.8b)

for any k ∈ N0. Let us compute the solution of the

smooth system:

xs(sk,i) =

k−1∏
m=1

 q∏
j=1

eF
εp
j
dj,mp

 i∏
j=1

eF
εp
j
dj,kpx0

a
=

 k−1∏
m=1

 q∏
j=1

eFjdj,mpΠj + O(p2)


·

i∏
j=1

(Πj + Fjdj,kp+O(p2))

x0

b
=

 k−1∏
m=1

 q∏
j=1

eFjdj,mpΠj


·

i∏
j=1

(Πj + Fjdj,kp+ O(p2)) + O(p)

x0

c
=

k−1∏
m=1

 q∏
j=1

eFjdj,mpΠj

 i∏
j=1

Πjx0 + O(p)

(A.9)

where in
(a)
= has been used (20c) and (20b) in Lemma 2,

in
(b)
= has been used (A.8b), in

(c)
= has been used (A.8a).

The solution of the switched DAE can be written as

x(s−k,i) =

k−1∏
m=1

 q∏
j=1

eFjdj,mpΠj

 i∏
j=1

eFjdj,mpΠjx0

=

k−1∏
m=1

 q∏
j=1

eFjdj,mpΠj

 i∏
j=1

(Πj +O(p))x0

=

k−1∏
m=1

 q∏
j=1

eFjdj,mpΠj

 i∏
j=1

Πjx0 +O(p).

(A.10)

By subtracting (A.9) to (A.10) one obtains (A.7).

Now, it can be proven that x(t) − xs(t) = O(p) holds
for time instants different from switching time instants
except for the time intervals τ ∈ (sk,i, sk,i + ∆pp) for
any k ∈ N and i ∈ Σ. Let us assume that τ ∈ [sk,i +
∆pp, sk,i+1). Then the solution of the switched DAE sys-
tem is given by

x(τ) = eFi(τ−sk,i)Πix(s−k,i).

In the same time interval, the solution of the smooth
system is given by

xs(τ) = eF
εp
i

(τ−∆pp−sk,i)xs(s
−
k,i)

9



Then one can write

x(τ)− xs(τ)

= eFi(τ−sk,i)Πix(s−k,1)− eF
εp
i

(τ−∆pp−sk,i)xs(s
−
k,i)

= (Πi +O(τ − sk,i))x(s−k,1)

− (Πi +O((τ −∆pp− sk,i))xs(s−k,i)
= Πi(x(s−k,i)− xs(s

−
k,i)) +O(p) = O(p) (A.11)

for any τ ∈ [sk,i + ∆pp, sk,i+1), k ∈ N, i ∈ Σ, where in
the last manipulation we used (A.7). By combining (A.7)
and (A.11) the proof is complete.
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