Hu, Jiaming; Trenn, Stephan; Zhu, Xiaojin A novel two stages funnel controller limiting the error derivative Journal Article In: Systems & Control Letters, vol. 179, no. 105601, pp. 1-10, 2023, (open access). @article{HuTren23,
title = {A novel two stages funnel controller limiting the error derivative},
author = {Jiaming Hu and Stephan Trenn and Xiaojin Zhu},
url = {https://stephantrenn.net/wp-content/uploads/2024/02/HuTren23.pdf, Paper},
doi = {10.1016/j.sysconle.2023.105601},
year = {2023},
date = {2023-09-01},
urldate = {2023-09-01},
journal = {Systems & Control Letters},
volume = {179},
number = {105601},
pages = {1-10},
abstract = {As a powerful adaptive control method for the output tracking problem, funnel control has attracted considerable attention in theoretical research and engineering practice. The funnel control strategy can guarantee both transient behavior and arbitrary good accuracy. A noticeable shortcoming is however that the derivative of the tracking error may become unnecessarily large resulting in a bouncing behavior of the tracking error between the funnel boundaries. To avoid this phenomenon, we present a novel two stages funnel control scheme to solve the output-tracking control problem for uncertain nonlinear systems with relative degree one and stable internal dynamics. This new scheme defines the control input in terms of a desired error derivative while still ensuring that the tracking error evolves within the prescribed funnel. In particular, we can quantify the range of the error derivative with a derivative funnel in terms of the known bounds of the system dynamics. Furthermore, we extend our approach to the situation where input saturations are present and extend the control law outside the funnel to ensure well-defined behavior in case the input saturations are too restrictive to keep the error within the funnel.},
note = {open access},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
As a powerful adaptive control method for the output tracking problem, funnel control has attracted considerable attention in theoretical research and engineering practice. The funnel control strategy can guarantee both transient behavior and arbitrary good accuracy. A noticeable shortcoming is however that the derivative of the tracking error may become unnecessarily large resulting in a bouncing behavior of the tracking error between the funnel boundaries. To avoid this phenomenon, we present a novel two stages funnel control scheme to solve the output-tracking control problem for uncertain nonlinear systems with relative degree one and stable internal dynamics. This new scheme defines the control input in terms of a desired error derivative while still ensuring that the tracking error evolves within the prescribed funnel. In particular, we can quantify the range of the error derivative with a derivative funnel in terms of the known bounds of the system dynamics. Furthermore, we extend our approach to the situation where input saturations are present and extend the control law outside the funnel to ensure well-defined behavior in case the input saturations are too restrictive to keep the error within the funnel. |