Borsche, Raul; Kocoglu, Damla; Trenn, Stephan A distributional solution framework for linear hyperbolic PDEs coupled to switched DAEs Journal Article Mathematics of Control, Signals, and Systems (MCSS), 2020, (Open Access). Abstract | Links | BibTeX @article{BorsKoco20,
title = {A distributional solution framework for linear hyperbolic PDEs coupled to switched DAEs},
author = {Raul Borsche and Damla Kocoglu and Stephan Trenn},
url = {https://stephantrenn.net/wp-content/uploads/2020/11/23-MCSS2020.pdf, Paper},
doi = {10.1007/s00498-020-00267-7},
year = {2020},
date = {2020-11-18},
journal = {Mathematics of Control, Signals, and Systems (MCSS)},
abstract = {A distributional solution framework is developed for systems con- sisting of linear hyperbolic partial differential equations (PDEs) and switched differential-algebraic equations (DAEs) which are coupled via boundary conditions. The unique solvability is then characterize in terms of a switched delay DAE. The theory is illustrated with an example of electric power lines modeled by the telegraph equations which are coupled via a switching transformer where simulations confirm the predicted impulsive solutions.},
note = {Open Access},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
A distributional solution framework is developed for systems con- sisting of linear hyperbolic partial differential equations (PDEs) and switched differential-algebraic equations (DAEs) which are coupled via boundary conditions. The unique solvability is then characterize in terms of a switched delay DAE. The theory is illustrated with an example of electric power lines modeled by the telegraph equations which are coupled via a switching transformer where simulations confirm the predicted impulsive solutions. |