Patil, Deepak; Tesi, Pietro; Trenn, Stephan Indiscernible topological variations in DAE networks Journal Article In: Automatica, vol. 101, pp. 280-289, 2019. @article{PatiTesi19,
title = {Indiscernible topological variations in DAE networks},
author = {Deepak Patil and Pietro Tesi and Stephan Trenn},
url = {https://stephantrenn.net/wp-content/uploads/2019/01/Preprint-PTT181205.pdf, Preprint},
doi = {10.1016/j.automatica.2018.12.012},
year = {2019},
date = {2019-03-01},
journal = {Automatica},
volume = {101},
pages = {280-289},
abstract = {A problem of characterizing conditions under which a topological change in a network of differential algebraic equations (DAEs) can go undetected is considered. It is shown that initial conditions for which topological changes are indiscernible belong to a generalized eigenspace shared by the nominal system and the system resulting from a topological change. A condition in terms of eigenvectors of the nominal system is derived to check for existence of possibly indiscernible topological changes. For homogenous networks this condition simplifies to the existence of an eigenvector of the Laplacian of network having equal components. Lastly, a rank condition is derived which can be used to check if a topological change preserves regularity of the nominal network.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
A problem of characterizing conditions under which a topological change in a network of differential algebraic equations (DAEs) can go undetected is considered. It is shown that initial conditions for which topological changes are indiscernible belong to a generalized eigenspace shared by the nominal system and the system resulting from a topological change. A condition in terms of eigenvectors of the nominal system is derived to check for existence of possibly indiscernible topological changes. For homogenous networks this condition simplifies to the existence of an eigenvector of the Laplacian of network having equal components. Lastly, a rank condition is derived which can be used to check if a topological change preserves regularity of the nominal network. |