Skip to content
Stephan Trenn

Stephan Trenn

Projects, publications, slides and other research related news

  • About me
  • Projects
  • Publications
    • All publications
    • Books and Book Chapters
    • Journals
    • Conferences
    • Submitted
    • Miscellaneous
  • Talks
Posted on 2021-05-172021-05-17 by stephan

Nonlinear DAE paper accepted

Our paper

Chen, Yahao; Trenn, Stephan; Respondek, Witold

Normal forms and internal regularization of nonlinear differential-algebraic control systems Journal Article

In: International Journal of Robust and Nonlinear Control, vol. 2021, no. 31, pp. 6562-6584, 2021, (open access).

Abstract | Links | BibTeX

@article{ChenTren21d,
title = {Normal forms and internal regularization of nonlinear differential-algebraic control systems},
author = {Yahao Chen and Stephan Trenn and Witold Respondek},
url = {https://stephantrenn.net/wp-content/uploads/2021/06/ChenTren21d.pdf, Paper},
doi = {10.1002/rnc.5623},
year = {2021},
date = {2021-04-13},
urldate = {2021-04-13},
journal = {International Journal of Robust and Nonlinear Control},
volume = {2021},
number = {31},
pages = {6562-6584},
abstract = {In this paper, we propose two normal forms for nonlinear differential-algebraic control systems (DACSs) under external feedback equivalence, using a notion called maximal controlled invariant submanifold. The two normal forms simplify the system structures and facilitate understanding the various roles of variables for nonlinear DACSs. Moreover, we study when a given nonlinear DACS is internally regularizable, i.e., when there exists a state feedback transforming the DACS into a differential-algebraic equation (DAE) with internal regularity, the latter notion is closely related to the existence and uniqueness of solutions of DAEs. We also revise a commonly used method in DAE solution theory, called the geometric reduction method. We apply this method to DACSs and formulate it as an algorithm, which is used to construct maximal controlled invariant submanifolds and to find internal regularization feedbacks. Two examples of mechanical systems are used to illustrate the proposed normal forms and to show how to internally regularize DACSs.},
note = {open access},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

In this paper, we propose two normal forms for nonlinear differential-algebraic control systems (DACSs) under external feedback equivalence, using a notion called maximal controlled invariant submanifold. The two normal forms simplify the system structures and facilitate understanding the various roles of variables for nonlinear DACSs. Moreover, we study when a given nonlinear DACS is internally regularizable, i.e., when there exists a state feedback transforming the DACS into a differential-algebraic equation (DAE) with internal regularity, the latter notion is closely related to the existence and uniqueness of solutions of DAEs. We also revise a commonly used method in DAE solution theory, called the geometric reduction method. We apply this method to DACSs and formulate it as an algorithm, which is used to construct maximal controlled invariant submanifolds and to find internal regularization feedbacks. Two examples of mechanical systems are used to illustrate the proposed normal forms and to show how to internally regularize DACSs.

Close

  • Paper
  • doi:10.1002/rnc.5623

Close

was accepted for publication.

Furthermore, Yahao and I have finished a follow-up paper discussing the generalization of the consistency-projector to the nonlinear case: 

Chen, Yahao; Trenn, Stephan

Impulse-free jump solutions of nonlinear differential-algebraic equations Journal Article

In: Nonlinear Analysis: Hybrid Systems, vol. 46, no. 101238, pp. 1-17, 2022, (open access).

Abstract | Links | BibTeX

@article{ChenTren22a,
title = {Impulse-free jump solutions of nonlinear differential-algebraic equations},
author = {Yahao Chen and Stephan Trenn},
url = {https://stephantrenn.net/wp-content/uploads/2024/02/ChenTren22a.pdf, Paper},
doi = {10.1016/j.nahs.2022.101238},
year = {2022},
date = {2022-11-01},
urldate = {2022-11-01},
journal = {Nonlinear Analysis: Hybrid Systems},
volume = {46},
number = {101238},
pages = {1-17},
abstract = {In this paper, we propose a novel notion called impulse-free jump solution for nonlinear differential-algebraic equations (DAEs) of the form E(x)x' = F(x) with inconsistent initial values. The term “impulse-free” means that there are no Dirac impulses caused by jumps from inconsistent initial values, i.e., the directions of jumps stay in ker E(x). We find that the existence and uniqueness of impulse-free jumps are closely related to the notion of geometric index-1 and the involutivity of the distribution defined by ker E(x). Moreover, a singular perturbed system approximation is proposed for nonlinear DAEs; we show that solutions of the perturbed system approximate both impulse-free jump solutions and C1-solutions of nonlinear DAEs. Finally, we show by some examples that our results of impulse-free jumps are useful for the problems like consistent initializations of nonlinear DAEs and transient behavior simulations of electric circuits.},
note = {open access},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

In this paper, we propose a novel notion called impulse-free jump solution for nonlinear differential-algebraic equations (DAEs) of the form E(x)x' = F(x) with inconsistent initial values. The term “impulse-free” means that there are no Dirac impulses caused by jumps from inconsistent initial values, i.e., the directions of jumps stay in ker E(x). We find that the existence and uniqueness of impulse-free jumps are closely related to the notion of geometric index-1 and the involutivity of the distribution defined by ker E(x). Moreover, a singular perturbed system approximation is proposed for nonlinear DAEs; we show that solutions of the perturbed system approximate both impulse-free jump solutions and C1-solutions of nonlinear DAEs. Finally, we show by some examples that our results of impulse-free jumps are useful for the problems like consistent initializations of nonlinear DAEs and transient behavior simulations of electric circuits.

Close

  • Paper
  • doi:10.1016/j.nahs.2022.101238

Close

CategoriesPublications, Submitted

Post navigation

Previous PostPrevious Final version of conference papers submitted
Next PostNext Quasi-feedback forms paper accepted

Upcoming Travel

9 – 13 February 2025: Elgersburg Workshop, Bad Blankenburg, Germany

9 – 12 March 2025: Descriptor 2025, Paderborn, Germany

18-20 March 2025: Benelux Meeting 2025, Egmond aan Zee, Netherlands

24-27 June 2025: ECC25, Thessaloniki, Greece

28-30 July 2025: SIAM CT25, Montreal, Canada

Categories

  • Conferences (23)
  • General (5)
  • Projects (3)
  • Publications (28)
  • Slides (16)
  • Submitted (12)

Archive

  • 2025 (1)
  • 2024 (1)
  • 2023 (6)
  • 2022 (4)
  • 2021 (7)
  • 2020 (6)
  • 2019 (14)
  • 2018 (11)
  • 2017 (16)
Proudly powered by WordPress