Funnel control

Origin and recent advances

Stephan Trenn

Jan C. Willems Center for Systems and Control University of Groningen, Netherlands

Control Lab Guest Lecture, University of Naples Federico II, 26 November 2025

Who am I?

Stephan Trenn

https://stephantrenn.net

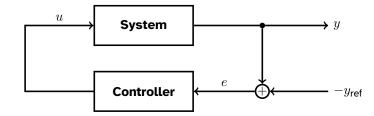
Associate Professor for Systems & Control, Bernoulli Institute **Programme Director** for master degrees Math., Applied Math., Systems & Control

- > studied Mathematics and Computer Science in Ilmenau, Germany
- six month Erasmus student in Southampton, UK
- > PhD 2009 in mathematical control theory in Ilmenau
- Postdoc (9 month) at University of Illinois, Urbana-Champaign, USA
- Postdoc (17 month) at University of Würzburg, Germany
- > Assistant Professor for Math. Control Theory (2011 2017), Kaiserslautern, Germany

Research:

- Switched systems
- > Differential-algebraic equations (DAEs)
- > Funnel control

Control Task

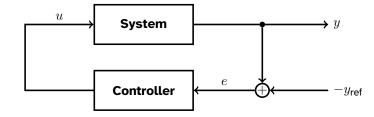


Goal: Output tracking $y(t) \approx y_{\text{ref}}(t)$

Applications

- Flying to the moon
- > Robotics
- > (Adaptive) cruise control in cars
- Chemical processes

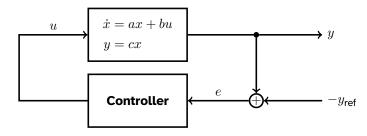
Introduction



Goal: Output tracking $y(t) \approx y_{\rm ref}(t)$

Challenge

- no exact knowledge of system model
- > no future knowledge or model for reference signal

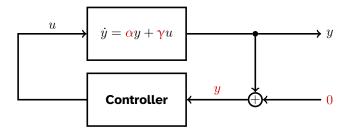


Assumptions

- > Known model structure
- \rightarrow Known sign of high frequency gain $\gamma := cb$, assume $\gamma > 0$
- $y_{ref} = 0$

Introduction

Unknown system parameters α and γ



Goal

Introduction

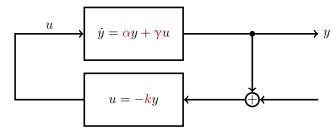
Design output feedback u such that $y(t) \to 0$ as $t \to \infty$

If we would know α, γ , how would we choose u?

Goal: $\dot{y} \stackrel{!}{=} -\lambda y \quad \Rightarrow \quad \text{achievable with } u = -ky \text{ and } k := \frac{\alpha + \lambda}{\gamma}$

In general, with u = -ky we have $\dot{y} = (\alpha - \gamma k)y$

The scalar linear case with $y_{ref} = 0$



Hence we have arrived at our first high gain control result:

Theorem

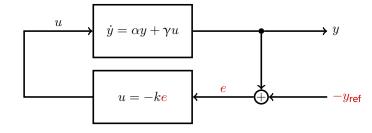
The proportional negative feedback

$$u = -ky$$

achieves convergence for all $k > \frac{\alpha}{\gamma}$.

university of

What happens for $y_{ref} \neq 0$?



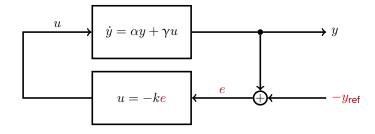
Error dynamics: $\dot{e} = \dots = (\alpha - \gamma k)e + \alpha y_{ref} - \dot{y}_{ref}$

Equilibrium for constant y_{ref} :

$$0 = (\alpha - \gamma k)e + \alpha y_{\text{ref}} \quad \Longleftrightarrow \quad e = \frac{\alpha}{\gamma k - \alpha} y_{\text{ref}} \neq 0$$

→ no convergence to zero anymore

What happens for $y_{ref} \neq 0$?



In general: Practical tracking with high gain control:

Theorem

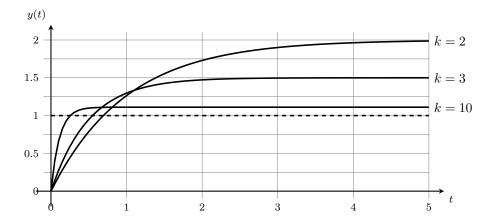
Introduction

If y_{ref} and \dot{y}_{ref} are bounded, then

$$\forall y_0 \ \forall \varepsilon > 0 \ \exists K_{\varepsilon} > 0 \ \forall k > K_{\varepsilon} \ \exists T_{k,\varepsilon,y_0} > 0 : \quad |e(t)| < \varepsilon \quad \forall t \geq T_{k,\varepsilon,y_0}$$

university of groningen

Example $\alpha = 1$, $\gamma = 1$, $y_{\text{ref}} \equiv 1$



Introduction

High gain for relative degree one systems

Relative degree and zero dynamics High gain stabilization Nonlinear systems

Adaptive choice of gain

Adaptive stabilization λ -tracking

The funnel controller

The original funnel controller with proof sketch Relative degree two funnel controller Bang-bang funnel control Funnel synchronization

Summary

Relative degree

$$\dot{x} = Ax + bu$$

$$y = cx$$

$$A \in \mathbb{R}^{n \times n}, b, c^{\top} \in \mathbb{R}^{n}$$
(*)

Definition (Relative degree)

Write
$$g(s) := c(sI - A)^{-1}b$$
 as $g(s) = \frac{p(s)}{g(s)}$.

Then $r := \deg q(s) - \deg p(s)$ is called relative degree of (*).

Remarks:

- For $p(s) \not\equiv 0$: $0 \le \deg p(s) < \deg q(s) \le n \quad \rightsquigarrow \quad r \in \{1, 2, \dots, n\}$.
- $if q(s) = 0 = p(s); r = \infty$
- If (*) has feedthrough term, i.e. y = cx + du with $d \neq 0$, then r := 0
- > For descriptor systems the relative degree can also be negative

Relative degree and Markov parameters

$$\dot{x} = Ax + bu
 y = cx$$

$$A \in \mathbb{R}^{n \times n}, b, c^{\top} \in \mathbb{R}^{n}$$
(*)

Definition (Markov parameters)

The numbers $M_k := cA^kb$, $k \in \mathbb{N}$, are called Markov parameters of (*).

Lemma (Transfer function and Markov parameters)

$$g(s) = c(sI - A)^{-1}b = c\sum_{k=0}^{\infty} \frac{A^k}{s^{k+1}}b = \sum_{k=0}^{\infty} \frac{M_k}{s^{k+1}}$$

Lemma (Markov parameters and relative degree)

$$r = \min \{ k \in \mathbb{N}_{>0} \mid M_{k-1} \neq 0 \}$$

Intuition for relative degree

$$\begin{aligned} \dot{x} &= Ax + bu \\ y &= cx + du \end{aligned} \qquad A \in \mathbb{R}^{n \times n}, b, c^{\top} \in \mathbb{R}^{n}$$
 (*)

 $d \neq 0 \iff \text{r.d. } 0$

 \rightarrow input u directly influences y = cx + du

d=0 and $cb \neq 0 \iff \text{r.d. } 1$

 $\rightarrow y$ not directly influenced by u, but $\dot{y} = c\dot{x} = cAx + cbu$ directly influenced by u

d=0, cb=0 and $cAb \neq 0 \iff$ r.d. 2

ightharpoonup y, \dot{y} not directly influence by u, but $\ddot{y}=cA\dot{x}=cA^2x+cAbu$ directly influenced by u

:

 $d=0,\,cb=0,\,\ldots,\,cA^{r-2}b=0$ and $cA^{r-1}b\neq 0\iff r.d.\,r$ $y,\ldots,y^{(r-1)}$ not influenced by u, but $y^{(r)}=cA^rx+cA^{r-1}b\,u$ directly influence by u

Intuition behind relative degree

Relative degree = lowest derivative of y which is directly influence by input u

Zero dynamics

Zero dynamics

Question

What input is needed to keep the output identically zero?

Relative degree
$$r \in \{1,2,\dots,n\}$$
 $\qquad 0 \stackrel{!}{=} y^{(r)}(t) = cA^rx(t) + \underbrace{cA^{r-1}b}_{=:\gamma}u(t) \; \forall t$ $\qquad \qquad u(t) = -\frac{1}{\gamma}cA^rx(t) \; \text{keeps output identically zero}$ $\qquad \qquad \dot{x} = (A - \frac{1}{\gamma}bcA^r)x \; \text{is called zero dynamics}^1 \; \text{(ZD)}$

Problem

Unstable ZD \rightarrow unbounded state x

→ unbounded input needed to keep output bounded

¹when considered on the subspace $\ker[c/cA/\dots/cA^{r-1}]$, which results from the conditions $0=y^{(k)}(t)=cA^kx(t)$, $k=0,1,\dots,r-1$, i.e. $x(t)\in\ker[c/cA/\dots/cA^{r-1}]$

Stable zero dynamics

Theorem

(*) has stable ZD
$$\iff$$
 rank $\begin{bmatrix} \lambda I - A & b \\ c & 0 \end{bmatrix} = n + 1$ for all $\lambda \in \mathbb{C}_{\text{Re} \geq 0}$.

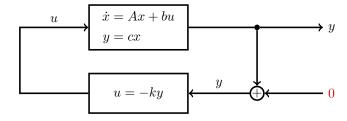
If (*) is controllable and observable, then it has stable ZD $\iff p(s)$ is stable

Remarks

- The property of having stable ZD is related to the notion minimum phase²: $|g_1(i\omega)| = |g_2(i\omega)|$ and the first has stable ZD $\implies \arg g_1(i\omega) \le \arg g_2(i\omega)$
- if (*) is stabilizable, unstable ZD can be stabilized by state feedback, but not by (static) output feedback
- > Stable ZD implies stabilizability and detectability, but not the other way around in general

²For more on minimum phase see: Ilchmann, A., Wirth, F. (2013). On minimum phase. at-Automatisierungstechnik, 61(12), 805-817.

High gain stabilization for r.d.-one systems

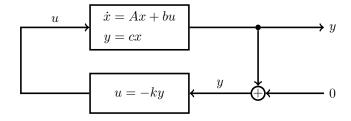


Assumptions:

> Relative degree $r=1 \Leftrightarrow \gamma := cb \neq 0$, in particular:

- \rightarrow positive high frequency gain $\Leftrightarrow \gamma > 0$
- \rightarrow stable zero-dynamics (minimum phase) \Leftrightarrow A_{22} Hurwitz

High gain stabilization for r.d.-one systems

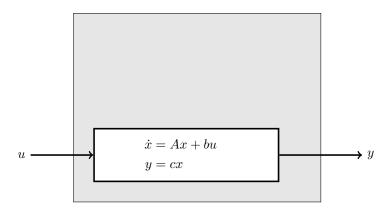


Theorem (High-gain stabilization)

cb>0 and stable zero-dynamics

$$\Rightarrow \exists K > 0 \ \forall \ k \geq K$$
: Closed loop is asymptotically stable

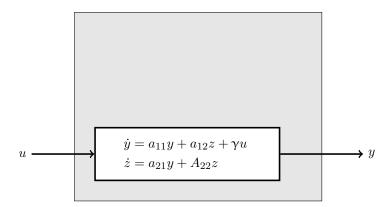
Key idea of proof: Show that $\begin{bmatrix} a_{11} - \gamma k & a_{12} \\ a_{21} & A_{22} \end{bmatrix}$ is Hurwitz for sufficiently large k.



Adaptive choice of gain

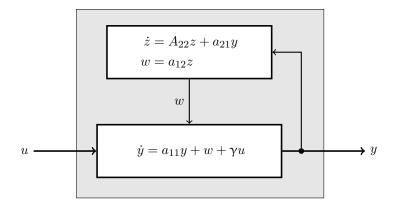
Introduction

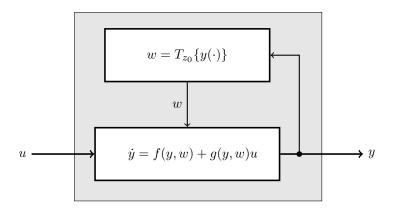
university of groningen



Introduction

university of groningen

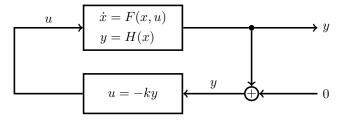




Assumptions:

- T_{z_0} is causal BIBO operator, i.e. $\exists \kappa(\cdot): \|w\| \leq \kappa(\|y\|)$
- \rightarrow f and g continuous and g > 0

High gain stabilization for nonlinear systems



Theorem

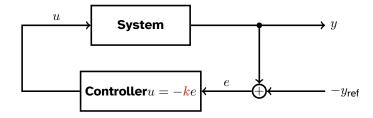
Assume there exists (nonlinear) coordinate transformation such that system is equivalent to

$$\dot{y} = f(y, w) + g(y, w)u, \quad w = T_{z_0}\{y(\cdot)\}\$$

with f, g continuous, T_{z_0} causal BIBO operator and g > 0, then

$$\forall y_0 \ \forall \eta_0 \ \forall \varepsilon > 0 \ \exists K > 0 \ \forall k \geq K \ \exists T > 0 : \quad |e(t)| < \varepsilon \quad \forall t \geq T$$

Summary high gain feedback



Goal: Output tracking

Challenge: Unknown system parameters

Structural assumptions

- Relative degree one with known sign of "high frequency gain"
- Stable zero dynamics

High gain feedback: u = -ke "works" for sufficiently large gain k > 0

Remaining challenge: When is k sufficiently large?

Introduction

Introduction

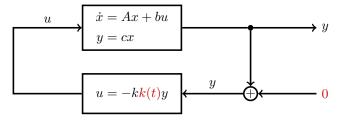
High gain for relative degree one systems

Adaptive choice of gain

Adaptive stabilization λ -tracking

The funnel controller

Summary



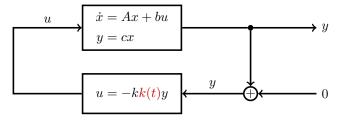
Theorem (High-gain stabilization)

$$cb > 0$$
 and stable zero-dynamics $\Rightarrow \exists K > 0 \ \forall \ k \geq K : y(t) \rightarrow 0$

Key idea

Why not make k time-varying with $\dot{k}(t) > 0$ as long as y(t) > 0?

Choosing gain adaptively, linear case



Theorem (Adaptive High-Gain Feedback, Byrnes & Willems 1984)

cb>0 and stable zero-dynamics \Rightarrow

$$\dot{k}(t) = y(t)^2$$
 makes closed loop asymptotically stable

and $k(\cdot)$ remains bounded

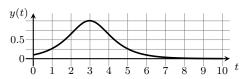
Boundedness of $k(t) = \int_0^t y(s)^2 ds$ follows from final exponential decay of y.

Simulations

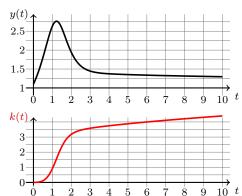
Introduction

$$\dot{y} = y + u, \quad u(t) = -k(t)(y(t) - y_{\mathsf{ref}}(t)), \quad \dot{k} = (y - y_{\mathsf{ref}})^2$$

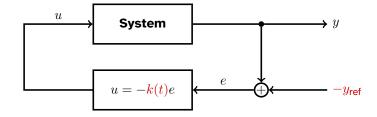
output and gain for $y_{\mathsf{ref}} = 0$



output and gain for $y_{ref} = 1$



High gain adaptive control and tracking?

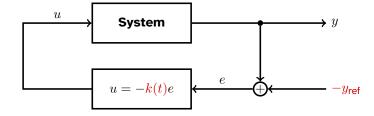


Unbounded gain

For $y_{\text{ref}} \neq 0$ the adaptation rule $\dot{k} = e^2$ leads to unbounded gain.

Recall: Constant gain for $y_{\text{ref}} \neq 0$ only leads to practical tracking, i.e. $e(t) \not\to 0$

High gain adaptive control and tracking?

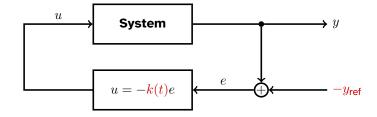


How to prevent unbounded growth?

Stop increasing gain when error is sufficiently small, e.g. via

$$\dot{k}(t) = \begin{cases} 0 & |e(t)| \le \lambda \\ |e(t)|(|e(t)| - \lambda) & |e(t)| > \lambda \end{cases}$$

High gain adaptive control and tracking?



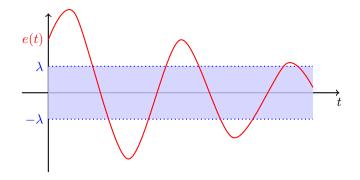
Theorem (λ -tracking, Ilchmann & Ryan 1994)

Assume r.d.-one with " $\gamma > 0$ ", stable zero-dynamics and $y_{\rm ref}, \dot{y}_{\rm ref}$ bounded. For $\lambda > 0$ consider

$$\dot{k}(t) = \begin{cases} 0, & |e(t)| \le \lambda, \\ |e(t)| (|e(t)| - \lambda), & |e(t)| > \lambda. \end{cases}$$

Then the closed loop is practically stable, i.e. $\limsup_{t\to\infty} |e(t)| \leq \lambda$.

Remaining problems of λ -tracker



Problems:

- No guarantees when $|e(t)| \le \lambda$
- > No bounds on transient behaviour
- \rightarrow Monotonically growing $k(\cdot)$ \Rightarrow Measurement noise unnecessarily amplified

Introduction

Introduction

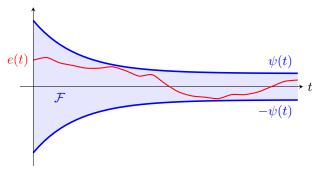
High gain for relative degree one systems

Adaptive choice of gain

The funnel controller

The original funnel controller with proof sketch Relative degree two funnel controller Bang-bang funnel control Funnel synchronization

Summary



$$\mathcal{F} = \mathcal{F}(\psi) := \{(t, e) \mid |e| < \psi(t)\}$$

Idea: k(t) large

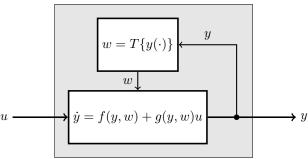
 \iff

Distance of e(t) to funnel boundary small

 \sim Funnel gain:

 $k(t) = \frac{1}{\psi(t) - |e(t)|}$

Funnel controller works



System class

Equivalent to structure left:

- \rightarrow T is causal and BIBO
- \rightarrow f, g continuous
- g > 0

Theorem (Ilchmann, Ryan, Sangwin 2002)

Assume $y_{\text{ref}}, \dot{y}_{\text{ref}}, \psi, \dot{\psi}$ bounded, $\liminf_{t \to \infty} \psi(t) > 0$ and $|e(0)| < \psi(0)$ where $e := y - y_{\text{ref}}$. Then

$$u(t) = -k(t)e(t)$$
 with $k(t) = \frac{1}{\psi(t) - |e(t)|}$

ensures that e(t) remains within funnel $\mathcal{F}(\psi)$ while k(t) remains bounded.

Proof

Step 1: Existence of solution

- Standard ODE theory: solution of closed loop exists on $[0,\omega)$ for $\omega \in (0,\infty]$
- Choose $\omega > 0$ maximal
- If $\omega < \infty$ then " $|e(\omega)| = \psi(\omega)$ "

Step 2: We show that $\omega < \infty$ implies $|e(t)| - \psi(t) > \varepsilon$ for some $\varepsilon > 0$ Error dynamics are given by

$$\dot{e} = f(y, w) - \dot{y}_{ref} + g(y, w)u$$

Step 2a: Boundedness of e, y, and w

e(t) within funnel for $t \in [0, \omega)$

(domain of ODE)

 $\Rightarrow e$ bounded on $[0,\omega)$

(because ψ is bounded)

 $\Rightarrow y$ bounded on $[0,\omega)$

(because y_{ref} is bounded)

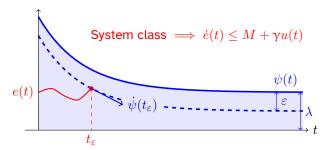
 $\Rightarrow w$ bounded on $[0,\omega)$

(because T is BIBO) (continuity)

 $\Rightarrow f(y,w)$ bounded and g(y,w) bounded away from zero on $[0,\omega)$

 $\Rightarrow \dot{e}(t) < M + \gamma u(t)$ if u(t) < 0 and $\dot{e}(t) > -M + \gamma u(t)$ if u(t) > 0

Step 2b: Funnel invariant (case e(t) > 0)



$$\text{Assumptions: } \varepsilon < \psi(0) - e(0) \qquad \quad \varepsilon < \lambda/2 \qquad \quad \psi(t) \geq \lambda$$

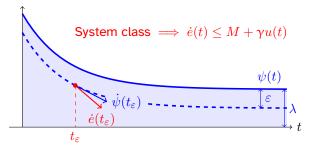
$$\psi(t) \ge 1$$

$$e(t_{\varepsilon}) = \psi(t_{\varepsilon}) - \varepsilon \implies k(t_{\varepsilon}) = \frac{1}{\psi(t_{\varepsilon}) - |e(t_{\varepsilon})|} = \frac{1}{\varepsilon}$$

$$\implies u(t_{\varepsilon}) = -k(t_{\varepsilon})e(t_{\varepsilon}) \le -\frac{1}{\varepsilon}\frac{\lambda}{2}$$

$$\implies \dot{e}(t_{\varepsilon}) \le M - \frac{\gamma\lambda}{2\varepsilon}$$

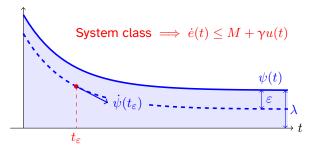
Step 2b: Funnel invariant (case e(t) > 0)



Assume
$$\dot{\psi}(t) > -\Psi$$
 and $\varepsilon \leq \frac{\gamma \lambda}{2(\Psi + M)}$ we have

$$\dot{e}(t_{arepsilon}) \leq M - rac{\gamma \lambda}{2arepsilon} \leq -\Psi < \dot{\psi}(t_{arepsilon})$$

university of



Consequence: For sufficiently small $\varepsilon > 0$,

$$\mathcal{F}_{\varepsilon} := \{ (t, e) \mid |e(t)| < \psi(t) - \varepsilon \}$$

is positively invariant, i.e.

$$(0, e(0)) \in \mathcal{F}_{\varepsilon} \quad \Rightarrow \quad (t, e(t)) \in \mathcal{F}_{\varepsilon} \ \forall t \ge 0$$

and $\omega < \infty$ impossible!

Extensions of funnel controller

- Asymptotic tracking (Lee & Trenn 2019)
- > Multi-Input Multi-Output (MIMO) (already in Ilchmann et al. 2002)
- > Higher relative degree (Ilchmann et al. 2007, Berger et al. 2018)
- > Input saturation (Ilchmann et al. 2004, Hopfe et al. 2010)
- Bang-Bang funnel control (Liberzon & Trenn 2013)
- > Funnel synchronization for multi-agent systems (Shim & Trenn 2015)
- For DAE-systems (Berger 2016)
- For impulsive systems (Karimi Pour & Trenn 2025)

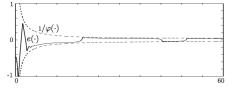
Relative degree two via backstepping

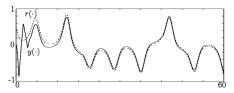
For rel. deg. two systems, Funnel Controller is given by (Ilchmann et al. 2007):

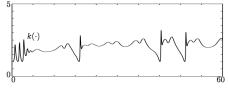
$$u(t) = -k(t)e(t) - (\|e(t)\|^2 + k(t)^2)k(t)^4(1 + \|\xi(t)\|^2)(\xi(t) + k(t)e(t))$$

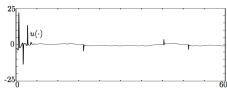
$$k(t) = 1/(1 - \varphi(t)^2 \|e(t)\|^2)$$

$$\dot{\xi}(t) = -\xi(t) + u(t)$$









Alternative Approach for relative degree two

Use two funnels, one for error and one for derivative of error

Simple Control Law

$$u(t) = -k_0(t)^2 e(t) - k_1(t)\dot{e}(t)$$

$$k_i(t) = \frac{1}{\psi_i(t) - |e^{(i)}(t)|}, \quad i = 0, 1$$

System class:
$$\ddot{y}(t) = f(p_f(t), T_f\{y, \dot{y}\}(t)) + g(p_g(t), T_g\{y, \dot{y}\}(t))u(t)$$

Theorem (Hackl et al. 2012)

The above Funnel Controller for relative-degree-two-systems works (under mild assumptions on ψ_0 and ψ_1).

Experimental verification

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ \gamma \end{bmatrix} (u(t) + u_L(t) - (Tx_2)(t)),$$

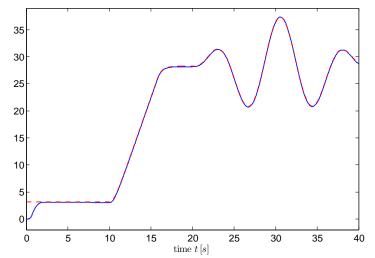
$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t),$$

 x_1 : angle of rotating machine, $x_2 = \dot{x}_1$: angular velocity

 u_L : unknown (bounded) load

 $T: \mathbb{C}(\mathbb{R}_{\geq 0} \to \mathbb{R}) \to \mathbb{L}^{\infty}_{loc}(\mathbb{R}_{\geq 0} \to \mathbb{R})$ friction operator

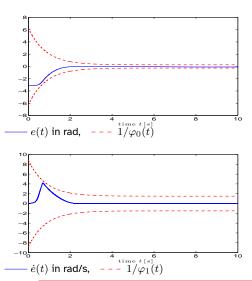
Tracking control in experiment

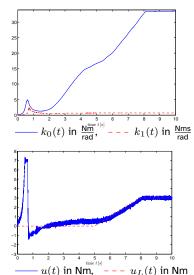


Measured angle y(t) in rad, --- reference angle $y_{ref}(t)$ in rad

Introduction

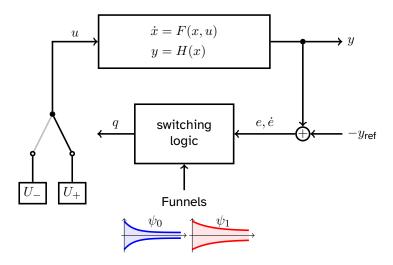
Experiment: Error, gains, input





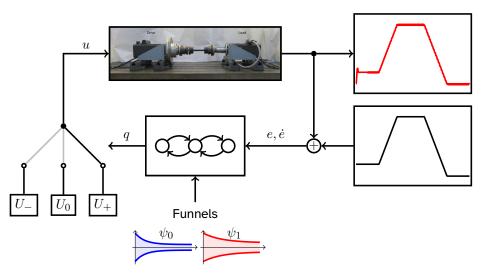
Introduction

Bang-Bang Funnel Control



Introduction

Bang-Bang Funnel Control



Funnel synchronization - setup

Given

 \rightarrow N agents with individual n-dimensional dynamics:

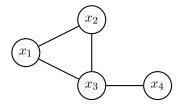
$$\dot{x}_i = f_i(t, x_i) + u_i$$

- \rightarrow undirected connected coupling-graph G = (V, E)
- \rightarrow local feedback $u_i = \gamma_i(x_i, x_{\mathcal{N}_i})$

Desired

Control design for practical synchronization

$$x_1 \approx x_2 \approx \ldots \approx x_n$$



$$u_1 = \gamma_1(x_1, x_2, x_3)$$

$$u_2 = \gamma_2(x_2, x_1, x_3)$$

$$u_3 = \gamma_3(x_3, x_1, x_2, x_4)$$

$$u_4 = \gamma_4(x_4, x_3)$$

A "high-gain" result

Let $\mathcal{N}_i := \{j \in V \mid (j,i) \in E\}$ and $d_i := |\mathcal{N}_i|$ and \mathcal{L} be the Laplacian of G.

Diffusive coupling

$$u_i = -k \sum_{j \in \mathcal{N}_i} (x_i - x_j)$$
 or, equivalently, $u = -k \mathcal{L} x$

Theorem (Practical synchronization, Kim et al. 2013)

Assumptions: G connected, all solutions of average dynamics

$$\dot{s}(t) = \frac{1}{N} \sum_{i=1}^{N} f_i(t, s(t))$$

remain bounded. Then $\forall \varepsilon > 0 \ \exists K > 0 \ \forall k \geq K$: Diffusive coupling results in

$$\limsup_{t \to \infty} |x_i(t) - x_j(t)| < \varepsilon \quad \forall i, j \in V$$

Remarks on high-gain result

Common trajectory

It even holds that

$$\limsup_{t\to\infty} |x_i(t) - s(t)| < \varepsilon/2,$$

where
$$s(\cdot)$$
 solves $\dot{s}(t)=rac{1}{N}\sum_{i=1}^{N}f_i(t,s(t))$, $s(0)=rac{1}{N}\sum_{i=1}^{N}x_i$.

Independent of coupling structure and amplification k.

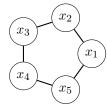
Error feedback

With $e_i:=x_i-\overline{x}_i$ and $\overline{x}_i:=\frac{1}{d_i}\sum_{i\in\mathcal{N}_i}x_j$ diffusive coupling has the form

$$u_i(t) = -ke_i(t)$$

Attention: $e_i \neq x_i - s$, in particular, agents do not know "limit trajectory" $s(\cdot)$

Example (taken from Kim et al. 2015)



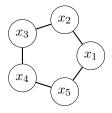
Simulations in the following for ${\cal N}=5$ agents with dynamics

$$f_i(t, x_i) = (-1 + \delta_i)x_i + 10\sin t + 10m_i^1\sin(0.1t + \theta_i^1) + 10m_i^2\sin(10t + \theta_i^2),$$

with randomly chosen parameters $\delta_i, m_i^1, m_i^2 \in \mathbb{R}$ and $\theta_i^1, \theta_i^2 \in [0, 2\pi]$.

Parameters identical in all following simulations, in particular $\delta_2 > 1$, hence agent 2 has unstable dynamics (without coupling).

Example (taken from Kim et al. 2015)



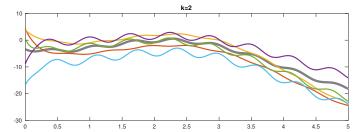
university of

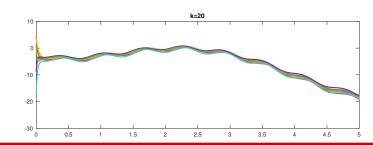
$$u = -k \mathcal{L} x$$

gray curve:

$$\dot{s}(t) = \frac{1}{N} \sum_{i=1}^{N} f_i(t, s(t))$$

$$s(0) = \frac{1}{N} \sum_{i=1}^{N} x_i(0)$$





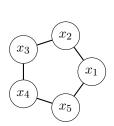
Funnel synchronization: Initial idea

Reminder diffusive coupling: $u_i = -k_i e_i$ with $e_i = x_i - \overline{x}_i$.

Combine diffusive coupling with Funnel Controller

$$u_i(t) = -k_i(t) \, e_i(t)$$
 with $k_i(t) = \frac{1}{\psi(t) - |e_i(t)|}$

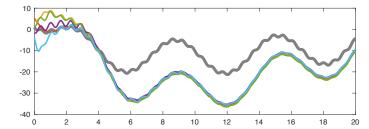
First simulations

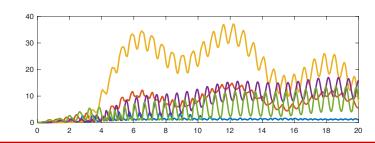


$$u_i(t) = -k_i(t)e_i(t)$$
$$k_i(t) = \frac{1}{\psi(t) - |e_i(t)|}$$

$$\psi(t) = \underline{\psi} + (\overline{\psi} - \underline{\psi})e^{-\lambda t}$$

$$\overline{\psi}=20$$
, $\psi=1$, $\lambda=1$





Observations from simulations

Funnel synchronization seems to work

- > errors remain within funnel
- > practical synchronizations is achieved
- ightarrow limit trajectory does not coincide with solution $s(\cdot)$ of

$$\dot{s}(t) = \frac{1}{N} \sum_{i=1}^{N} f_i(t, s(t)), \qquad s(0) = \frac{1}{N} \sum_{i=1}^{N} x_i(0).$$

What determines the new limiting trajectory?

- Coupling graph?
- > Funnel shape?
- Gain function?

Diffusive coupling revisited

Diffusive coupling for weighted graph

$$u_i = -k \sum_{i=1}^{N} \alpha_{ij} \cdot (x_i - x_j) \longrightarrow u_i = -\sum_{i=1}^{N} k_{ij} \cdot \alpha_{ij} \cdot (x_i - x_j)$$

where $\alpha_{ij} = \alpha_{ji} \in \{0,1\}$ is the weight of edge (i,j)

Conjecture

If $k_{ij} = k_{ji}$ are all sufficiently large, then practical synchronization occurs with desired limit trajectory s of average dynamics.

Proof technique from Kim et al. 2013 should still work in this setup.

Edgewise Funnel synchronization

Diffusive coupling \rightarrow edgewise Funnel synchronization

$$u_i = -\sum_{i=1}^{N} k_{ij} \cdot \alpha_{ij} \cdot (x_i - x_j) \longrightarrow u_i = -\sum_{i=1}^{N} \frac{\mathbf{k}_{ij}(\mathbf{t})}{\mathbf{k}_{ij}} \cdot (x_i - x_j)$$

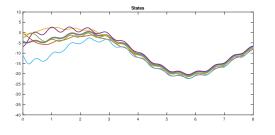
Edgewise error feedback

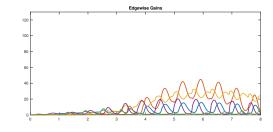
$$k_{ij}(t) = \frac{1}{\psi(t) - |e_{ij}|}, \quad \text{with} \quad e_{ij} := x_i - x_j$$

Properties:

- \rightarrow Decentralized, i.e. u_i only depends on state of neighbors
- \rightarrow Symmetry, $k_{ij} = k_{ji}$
- \rightarrow Laplacian feedback, $u = -\mathcal{L}_K(t, x)x$

Simulation (from Trenn 2017)

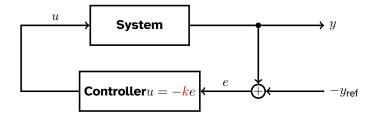




Properties

- + Synchronization occurs
- + Predictable limit trajectory (given by average dynamics)
- + Local feedback law
- + Convergence recently proved (Lee et al. 2023)

Summary high gain feedback and funnel control



Goal: Output tracking

Challenge: Unknown system parameters

Structural assumptions

- Relative degree one with known sign of "high frequency gain"
- > Stable zero dynamics

High gain feedback: u = -ke "works" for sufficiently large gain k > 0

Funnel gain: $k(t) = \frac{1}{\psi(t) - |e(t)|}$ achieves tracking with prescribed perfomance