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Abstract

We study output tracking for nonlinear impulsive switched systems with global relative degree one under prescribed
performance requirements. Classical funnel control is not directly applicable in this setting, since output jumps can
cause violations of funnel constraints. To address this, we design an adjusted funnel boundary that contracts prior
to jumps and expands afterward, computed offline based on the stability of the internal dynamics and bounded jump
maps. We also derive sufficient conditions ensuring bounded control input. To obtain tighter bounds, practical ISS is
employed in place of BIBO stability, yielding smaller input requirements. Additional refinements include asymmetric
jump bounds, level-set adjustments, and real-time funnel adaptation, which further improve performance. Numerical
examples confirm stability and practical tracking under disturbance impulses and switching.

Keywords: Funnel control, Impulsive Switched systems, Output tracking, Nonlinear control

1. Introduction

We consider the output tracking problem for a nonlin-
ear single-input single-output (SISO) impulsive switched
system with global relative degree one. We assume that
the system dynamics can be described by:

ẏ(t) = fσ(t)(y(t), z(t)) + gσ(t)(y(t), z(t)) · u(t), t , tk,
y(t+k ) = Jσ(t+

k
)(y(t−k ), z(t−k )), t = tk,

ż(t) = f z
σ(t)(y(t), z(t)), t , tk,

z(t+k ) = Jz
σ(t+

k
)(y(t−k ), z(t−k )), t = tk,

y(t+0 ) = y0 ∈ R, z(t+0 ) = z0 ∈ Rn−1.
(1)

• y : R≥0 → R denotes the system output.
• z : R≥0 → Rn−1 represents the internal state.
• u : R≥0 → R denotes the control input (to be designed).
• T = {tk | k ∈ N, tk ∈ R≥0, tk−tk−1 > 0} is the impulse

time sequence, where t0 := 0 and tk → ∞ as k → ∞.
• σ : R≥0 → Σ := {1, 2, . . . ,M} is the switching signal,

specifying the active mode of the system at t.
• The functions (fm, gm) : R × Rn−1 → R and f z

m :
R × Rn−1 → Rn−1, m ∈ Σ, describe the system’s be-
havior during continuous evolution, and are assumed to
be locally Lipschitz.

• Jm : R×Rn−1 → R and Jz
m : R×Rn−1 → Rn−1 charac-

terize the discrete jump maps in the output and internal
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states at impulse instances.1the implementation of our
proposed controller does not require explicit knowledge
of that coordinate transformation. Note that even if
no jumps occur in (∗), the coordinate transformation
leading to (1) is generally mode-dependent, introduc-
ing state jumps in the internal states. The switching
nature of the output map in (∗) also induces output
jumps in (1).

The objective is to design a control input u(t) such that
the system output y(t) tracks a given reference trajectory
yr : R≥0 → R, while ensuring that the tracking error
ideally remains within a prescribed, time-varying desired
boundary. Specifically, we define the tracking error as

e(t) = y(t) − yr(t), (2)

and ideally aim to enforce the constraint

|e(t)| < ψd(t), ∀t ≥ 0, (3)

where ψd : [0,∞) → R>0 is a smooth function that defines
the desired funnel boundary (Fig. 1).

Due to impulsive effects, the tracking error e(t) cannot
be guaranteed to remain within the desired funnel ψd(t)

1Our approach also works without change for nonlinear impulsive
switched system in the general form

ẋ(t) = Fσ(t)(x(t), u(t)), t , tk,

x(t+
k

) = Eσ(t)(x(t−
k

)), t = tk,

y(t) = Hσ(t)(x(t)),

(∗)

provided that there exists a nonlinear state-space coordinate trans-
formation that converts the system into the relative-degree one
Byrnes-Isidori form (1) (cf.[1, Thm. 13.1]);
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Figure 1: Schematic of the adjusted funnel ψ(t). The gray area
represents the jump uncertainty window. The light blue lines
at levels ηk and Ek represent parallel boundaries that are both
reserved throughout the jump window prior to the experiment.

after jumps. To address this, we exploit prior knowledge
of jump bounds to compute the maximum possible error
increase and, based on this, construct an extended funnel
boundary ψ(t) offline, independent of the closed-loop dy-
namics. After a jump, the error is allowed to temporarily
enter this extended funnel, while a recovery mechanism
ensures that it returns to ψd(t) within a prescribed time
interval. Thus, during normal operation the error remains
inside ψd(t), but immediately after jumps it may tran-
siently lie in ψ(t). Figure 1 illustrates this approach.

Impulsive switched systems arise in diverse applications,
including robotics [2], power systems [3], neural networks
[4], and communication networks [5]. Prior research has
focused on topics such as stability under switching [6, 7,
8], observability [9, 10, 11, 12], and robustness [13]. To
the best of our knowledge, however, funnel control has
not been investigated for impulsive switched systems with
output jumps.

Funnel control was first introduced in 2002 by Ilchmann
et al. [14] for nonlinear systems with relative degree one,
subject to bounded disturbances and uncertainties. Since
then, it has been extended to address a wide range of
systems, including functional differential equations [15],
those with higher relative degrees [16], input constraints
[17, 18], systems with non-minimum phase internal dy-
namics [19], infinite-dimensional systems [20], multi-agent
systems [21, 22, 23], and systems with unmatched uncer-
tainties with possible discontinuous functions [24]. For a
comprehensive survey of funnel controllers, see Berger et
al. [25].

The funnel controller is an adaptive high-gain output-
feedback scheme that ensures output tracking using only
output measurements, under minimal structural assump-
tions: having a well-defined relative degree, BIBO-stable
internal dynamics, and known input-channel sign.

Therefore, funnel control offers distinct advantages over
comparable tracking methods. Unlike control barrier func-

tions [26], it does not require full-state information or feed-
back linearization. Prescribed-performance control (PPC)
also shapes transients through performance functions, but
most classical PPC designs are more model-dependent and
assume full-state availability [27], while output-feedback
variants typically require observers [28]. Output-only im-
plementations exist, though at the cost of additional struc-
tural layers and assumptions [29]. A brief overview of the
classical funnel control framework is provided in Section 2.

However, classical funnel controllers are not applicable
to impulsive switched systems, since output jumps at im-
pulse times can drive the error outside the funnel, making
the controller ill-defined.

We therefore introduce an adjusted funnel controller tai-
lored to impulsive switched systems. In addition to the
assumptions of classical funnel control, it requires lim-
ited structural knowledge: the jump windows are assumed
known, while the exact jump instances remain unknown.
The jump maps themselves are not required, only bounds
on their effects. Accordingly, the funnel boundary ψ(t)
is contracted prior to each window, widened during it to
accommodate worst-case error growth, and smoothly re-
stored to the desired boundary afterward.

Berger and Lanza [30] address output dropouts via an
availability function: during loss intervals the input is set
to zero, and upon reappearance a shifted base funnel is
applied. Their approach widens the funnel without bound
during each loss interval and always restarts from a fixed
design. By contrast, our method handles jump events and
differs in several key respects: the funnel is pre-shrunk to
mitigate post-jump error, two concurrent boundaries are
maintained with widening triggered only at jump occur-
rences, the required expansion is computed per jump win-
dow with boundedness guarantees, and this expansion is
further refined online using information from past jumps.
A preliminary version of these results appeared in [31], but
without addressing whether the adjusted funnel boundary
remains bounded. This issue is crucial, since in impulsive
systems the interaction between internal states and output
jumps can lead to instability even when the internal states
are individually stable. The following example illustrates
this point. Consider the nonlinear system:

ẏ(t) = −z(t)y(t) − y(t), t < tk,

y(t+k ) = 2z(t−k ), t = tk,

ż(t) = −µz(t) + y(t)2,

(4)

where (y(0), z(0)) = (5, 5) and µ ≥ 0, and periodic im-
pulses occur at tk = 2k, k ∈ N.

This system without impulses is globally stable with the
Lyapunov function V (t) = 1

2 (y(t)2+z(t)2). In fact, V̇ (t) =
y(t)ẏ(t) + z(t)ż(t) = −y(t)2 − µz(t)2 ≤ 0. Moreover, by
expressing V̇ (t) = −2µV (t) − y(t)2(1 − µ), it follows that
for µ ≤ 1, V̇ (t) ≤ −2µV (t).

Now, to assess the effect of the impulses, we have V (t) ≤
V (t+k−1)e−2µ(t−tk−1) for t ∈ [tk−1, tk). Immediately after a
jump, V (t+k−1) = 1

2 (y(t+k−1)2 + z(t+k−1)2); using y(t+k−1) =
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Figure 2: Successive increases in jump heights and the internal
state norm in the system (4) with µ = 0.3. (a) Lyapunov
function. (b) Output. (c) Internal state.

(a) (b) (c)

Figure 3: Non-increasing jump heights and the internal state
norm in the system (4) with µ = 0.5. (a) Lyapunov function.
(b) Output. (c) Internal state.

2z(t−k−1), we find V (t+k−1) = 5
2z(t

−
k−1)2. Combining this

with the exponential decay between jumps, and knowing
z(t−k−1)2 ≤ 2V (t−k−1), we derive:

V (t−k ) ≤ 5
2z(t

−
k−1)2e−2µ(tk−tk−1)

≤ 5V (t−k−1)e−2µ(tk−tk−1).
(5)

Unrolling this recursion gives V (t−k ) ≤ 1
5V (0)(5e−4µ)k.

For µ = 0.3, V (t−k ) ≤ 1
5V (0)(1.51)k, demonstrating un-

bounded growth of the upper bound of the system energy
despite the system’s inherent stability. Fig. 2a, confirms
this behavior, as V (t−k ) diverges due to the impulses. This
analysis shows that instability arises from the interaction
between the output and the internal states: growth in y(t)
amplifies z(t), which in turn increases the impulse magni-
tude, leading to divergence over time (see Figs. 2b–2c). In
this case, any adjusted funnel inevitably grows unbounded.

However, this interplay does not always cause instabil-
ity. As shown in (5), longer dwell times (tk−tk−1) or more
stable internal dynamics (larger µ) can preserve stability.
For instance, with µ = 0.5 we obtain

V (t−k ) ≤ 1
5V (0)(0.68)k, ∀k,

demonstrating exponential decay of the system energy.
The corresponding trajectories of V (t), y(t), and z(t) are
shown in Fig. 3.

These observations naturally lead to the central ques-
tion: how can the combined effect of internal-state dynam-
ics and output jumps be systematically characterized to
assess stability in impulsive switched tracking problems?

To address this, we define a map that captures the inter-
play between the internal states and the output, enabling
us to derive sufficient conditions for ensuring a bounded

adjusted funnel and bounded control inputs. We demon-
strate that systems with a mix of stable and unstable
modes—such as those in the example (4) with µ = 0.5
and µ = 0.3, respectively—can still achieve bounded per-
formance. Based on this analysis, we determine a quanti-
tative upper bound for the control input required to return
the error to the desired funnel.

To further enhance performance, we replace the classi-
cal BIBO stability assumption of the internal dynamics,
commonly used in classical funnel controllers, with a prac-
tical input-to-state stability (ISS) assumption. This modi-
fication significantly improves the adjusted funnel bounds.
Under the practical ISS assumption, we also provide suffi-
cient conditions on the impulse time sequences to guaran-
tee bounded adjusted funnel and control input for multi-
mode systems.

Finally, to further refine the adjusted funnel bounds,
we propose three other strategies: (1) asymmetric jump
bounds, resulting in asymmetric funnel boundaries; (2) the
level-set method, which precomputes error levels to mit-
igate the error growth during experiments; and (3) real-
time funnel adaptation, which dynamically adjust the fun-
nel boundary based on actual output and post-jump error
values.

The main contributions are:
• Output-tracking control for relative-degree-one nonlin-

ear switched systems subject to disturbance jumps, un-
der prescribed performance requirements.

• Sufficient conditions for bounded control input un-
der disturbance jumps, including explicit quantitative
bounds.

• Extension of the framework to ISS internal dynamics
(instead of BIBO), yielding tighter input bounds.

• Conditions on impulse-time sequences that ensure
bounded inputs while maintaining tracking perfor-
mance under disturbance jumps.

• Real-time performance enhancement using measured
output data.
The paper is organized as follows: In Section 2, classical

funnel control is reviewed and afterwards the content is
split into two main parts. Part I develops the foundations
of the adjusted funnel framework, including adjusted fun-
nel construction (Section 3), boundedness conditions for
the adjusted funnel (Section 4), and quantitative bounds
on the control input (Section 4.2). Part II introduces re-
finement strategies that further tighten the funnel bound-
ary, including an extension to practical ISS-stable internal
dynamics (instead of BIBO stability), which substantially
improves both the funnel boundary and the control-input
bound (Section 5). Additional refinements include asym-
metric jump maps and real-time funnel boundary adap-
tation (Section 6). The paper concludes with a summary
and outlook (Section 7). Numerical examples are provided
throughout to illustrate the results.2

2The MATLAB implementation of the proposed controller is
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2. Preliminaries: Classical Funnel Controllers

In this section, we review the classical funnel control
framework, which is designed to achieve trajectory track-
ing for nonlinear systems with relative degree one. Foun-
dational works include the introduction of performance
funnels in [14] and their rigorous analysis in [15],

Consider a nonlinear system:

ẋ(t) = F (x(t), u(t)), x(0) = x0,

y(t) = H(x(t)),

where: x(t) ∈ Rn is the state vector, u(t) ∈ R is the
control input, y(t) ∈ R is the system output. Additionally,
F : Rn × R → Rn and H : Rn → R are assumed to be
locally Lipschitz mappings.

Suppose there exists a smooth, nonlinear coordinate
transformation x 7→ (y, z) such that the system can be
written in Byrnes–Isidori normal form for relative degree
one systems:

ẏ(t) = f(y(t), z(t)) + g(y(t), z(t)) · u(t), (6a)
ż(t) = f z(y(t), z(t)), (6b)

where f, g, and f z are assumed to be locally Lipschitz and
z(t) ∈ Rn−1 represents the internal states. Assume the
following:
(A1) g(y, z) > 0, ∀ y, z.
(A2) The internal dynamics (6b) are BIBO stable. Specif-
ically, for every bounded signal y and corresponding solu-
tion z of (6b) we have that

∥z(t)∥ ≤ b(∥z(t0)∥, ∥y[t0,t)∥∞), ∀t ∈ [t0,∞),

for some continuous function b. Also, we assume that
z(t0) ∈ Z0 for some bounded Z0 ∈ Rn−1.

Remark 2.1. Classical funnel controllers treat explicit
time-dependence of f and g as bounded disturbance terms
[14, 16, 32]. Our framework (systems (1), (6)) can likewise
accommodate such time-varying functions under the same
boundedness assumption. For simplicity and to avoid addi-
tional notations, we restrict ourselves to the time-invariant
case in the following.

The goal is to design a control input u(t) that ensures
the error e(t) strictly remains within the desired funnel,
namely,

|e(t)| ≤ ψd(t) − ε, for some ε > 0.

The surprisingly simple solution to achieve this goal is
the funnel controller consisting of a simple (time-varying)
proportional negative error feedback

u(t) = −k(t)e(t), (7a)

available at Zenodo: https://doi.org/10.5281/zenodo.15275315.

together with the simple (non-dynamic) funnel gain

k(t) = 1
ψd(t) − |e(t)| . (7b)

The intuition behind this controller design is that non-
linear systems equivalent to (6) possess a high-gain prop-
erty: a sufficiently large proportional error feedback sta-
bilizes the error dynamics. The funnel controller leverages
this property by increasing the feedback gain as the error
approaches the funnel boundary, thereby preventing con-
straint violation, while keeping the gain moderate when
the error is well inside the boundary.

We now present the fundamental result for classical fun-
nel controllers, which guarantees for any interval [t0, tf ) of
interest, that if the initial error satisfies |e(t0)| < ψd(t0),
the error remains strictly within the prescribed funnel for
the complete interval [t0, tf ) and the left-limit values of all
signals at t−f are well defined. While classical funnel con-
troller focuses on the case tf = ∞, we focus here on the
case that tf is finite, because in the context of impulsive
systems, we analyze the closed loop behavior inductively
from one jump instant to the next.

Lemma 2.2. Consider a nonlinear system which is equiv-
alent to (6) and suppose that assumptions (A1)–(A2)
hold. Let yr : [t0, tf ] → R be a reference trajectory that is
continuously differentiable, and let ψd : [t0, tf ] → (0,∞) be
a prescribed funnel boundary. If the initial error satisfies
|e(t0)| < ψd(t0), then the control law defined in (7) guar-
antees the existence of ε > 0 such that the unique solution
of the closed loop satisfies

|e(t)| ≤ ψd(t) − ε, ∀t ∈ [t0, tf ).

In particular, all closed loop signals remain bounded on
[t0, tf ) and have well-defined left-limits at t−f .

Proof. This is a simple consequence of the well established
classical funnel controller [14]; however, for the sake of
completeness we provide a proof-sketch here. Existence
and uniqueness of a local solution (y, z) : [t0, ω) → R ×
Rn−1 to (6) for some ω ∈ [t0, tf ) follow from the fact that,
under the continuous feedback, the closed-loop vector field
is locally Lipschitz in (y, z) on the set {|e| < ψd(t)} and
that |e(t0)| < ψd(t0).

We will now show that there exists C1, C2 ∈ R and γ > 0
(defined independently of ω) such that for all t ∈ [t0, ω)
we have

ė(t)
{

≤ C1 + γu(t), if u(t) < 0
≥ C2 + γu(t), if u(t) ≥ 0

(8)

Towards this goal, we first observe that |e(t)| < ψd(t) for
all t ∈ [t0, ω) (domain of the differential equation) and
since the funnel and the reference signal are assumed to
be bounded on [t0, tf ], we have that y = yd +e is bounded
on [t0, ω), i.e. there exists Y min < Y max (whose size is
independent from ω) such that y(t) ∈ [Y min, Y max] for all

4
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t ∈ [t0, ω). From assumption (A2), it then follows that
there exists Zmax (depending in Y min, Y max and Z0, but
not on ω) such that ∥z(t)∥ ≤ Zmax for all t ∈ [t0, ω).
Since f is continuous, we can define Fmax /min ∈ R as the
maximum/minimum of f(y, z) considered on the compact
domain [Y min, Y max]×

{
z ∈ Rn−1

∣∣ ∥z∥ ≤ Zmax}; similarly
we can define Gmin > 0 as the minimum of g(y, z) on the
same compact set. By observing that

ė(t) = ẏ(t) − ẏr(t) = f(y, z) + g(y, z)u(t) − ẏr(t),

we can now conclude that (8) holds with C1 := Fmax −
mint∈[t0,tf ] ẏ

d(t), C2 := Fmin − maxt∈[t0,tf ] ẏ
r(t) and γ :=

Gmin.
We will now show that for sufficiently small ε the (time-

varying) region

Fε :=
{

(t, e)
∣∣ |e(t)| ≤ ψd(t) − ε

}
is a positive invariant set for the error dynamics. Note
that by assumption mint∈[t0,tf ] ψ

d(t) := ψd > 0, we have
to assume in the following that ε < ψd to ensure that Fε
is well defined (i.e. for all t ∈ [t0, tf ) we have that (t, 0) is
in the interior of Fε).

Seeking a contradiction, we assume that there is a so-
lution for which the error signal leaves Fε. Then there is
a minimal tε ∈ (t0, ω) such that |e(tε)| = ψd(tε) − ε. In
the following we will only consider the case e(tε) > 0; the
other case follows completely analogous.

By (8) together with u(tε) = − 1
εe(tε) ≤ −ψd−ε

ε < 0, we
then have

ė(tε) ≤ C − γ
ψd − ε

ε
→ −∞ as ε → 0.

Let dψd := mint∈[t0,tf ] ψ̇d(t), then there exists ε > 0 (in-
dependent of ω) such that ė(tε) ≤ dψd ≤ ψ̇d(tε). But this
means that the error signal could not approach the bound-
ary of Fε from the inside, which shows that the error signal
cannot leave Fε for sufficiently small ε > 0.

Consequently, the solution (y, z) evolves within a com-
pact domain, hence for a maximally extended solution it
must hold that ω = tf . Furthermore, utilizing the above
derived bounds for y and z, we can conclude that also ẏ
and ż are bounded, whence y(t−f ) and z(t−f ) are well de-
fined.

Part I: Foundations of Adjusted Funnel Control

In this part, we establish the foundations of the proposed
framework. We begin by constructing an adjusted fun-
nel boundary for impulsive switched systems that accom-
modates output jumps. Next, we derive sufficient condi-
tions ensuring that the adjusted funnel remains bounded,
thereby guaranteeing bounded control input. Finally, we
provide quantitative bounds on the control input in terms

of the available prior information. In summary, Part I
shows that, under the stated sufficient conditions, a non-
linear relative-degree-one impulsive switched system (1)
can achieve output tracking via funnel control with an ex-
plicitly known bound on the control input.

3. Adjusted Funnel Controller Design

In this section, we introduce the assumptions and struc-
tural properties of the system. Based on these, we develop
algorithms for constructing an adjusted funnel boundary
tailored to impulsive switched systems. The main results
are formalized in a theorem showing that, with this ad-
justed boundary, the tracking error remains within the
funnel even in the presence of jumps.

Note that, for simplicity, x+
i and x−

i are used to denote
x(t+i ) and x(t−i ), respectively, where x represents a general
variable.

3.1. Key Properties and Assumptions
The proposed controller, like any other funnel controller,

operates without requiring precise knowledge of the system
model, initial conditions, or detailed information about
specific jump maps or instances. General structural as-
sumptions about the system model and a basic under-
standing of the jumps are sufficient.

The structural assumptions for the relative degree one
system described in (1) are formulated as follows.
(S1) For all y, z and m ∈ Σ, gm(y, z) > 0.
(S2) The internal states of each mode are BIBO stable.
Specifically, for all tk ≤ s < t < tk+1, we have

∥z(t)∥ ≤ bσ(t)
(
∥z(s+)∥, ∥y[s,t)∥∞

)
, (9a)

where each mode m ∈ Σ has an associated known con-
tinuous function bm : R≥0 × R≥0 → R≥0. The variables
tk and tk+1 denote two consecutive jump instances. Note
that the BIBO assumption will be sharpened later by a
practical ISS assumption in the refinement section (As-
sumption (S2)′).
(S3) The initial conditions of the internal states, z0 =
z(t+0 ), satisfy z0 ∈ Z0, where Z0 ⊂ Rn−1 is a bounded set
with a known bound Z+

0 ≥ supz∈Z0 ∥z∥.
(S4) The switching signal σ : R≥0 → Σ := 1, 2, . . . ,M is a
piecewise-constant, right-continuous function (i.e. σ(t+) =
σ(t) for all t), whose set of discontinuities is contained in
the impulse time sequence T . While the exact switching
times are not assumed to be known, the mode sequence
{σk}k∈N0 , where σ(t) = σk for all t ∈ [tk, tk+1), is assumed
to be known.

There are some assumptions regarding prior information
about jumps, which are specified below.
(J1) Exact knowledge of the jump instances tk is not re-
quired. Instead, we assume access to a known interval
Ik := [tk, tk] satisfying tk ∈ Ik. Throughout this pa-
per, we refer to Ik as the jump window. Furthermore,
it is assumed that for some known τs > 0, we have that
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tk+1 − tk ≥ τs (dwell time condition). For k = 0, we set
t0 := t0 = 0 and assume that no jump occurs at t0.
(J2) The jump maps Jm and Jz

m for m ∈ Σ are unknown.
However, we assume that the jump heights are bounded
(not necessarily tight) by known smooth functions αm and
αz

m. Specifically:

|y+
k − y−

k | = |Jσk
(y−
k , z

−
k ) − y−

k | ≤ ασk
(y−
k , ∥z

−
k ∥) (10a)

and
∥z+
k ∥ = ∥Jz

σk
(y−
k , z

−
k )∥ ≤ αz

σk
(y−
k , ∥z

−
k ∥) (11)

Notice that due to mode changes, a jump may occur as
a result of changes in the output map. Therefore, αm
must also account for this potential change in the output.
Moreover, in the refinement section, we will modify this as-
sumption—Assumption (J2)′—to account for asymmetry
in the jump heights.

Remark 3.1. The framework in (1), together with As-
sumption (S4), accommodates modes of different inter-
nal state dimensions. Provided the switching sequence is
known and the jump maps capture the coordinate changes
induced by mode-dependent internal states, the method ap-
plies without restriction. For notational simplicity, we de-
note the overall state dimension generically by n in (1)
and thereafter.

Finally, several assumptions and properties related to
the desired funnel and the reference output are outlined
below.
(P1) The desired funnel boundary is given by ψd :
[t0,∞) → (0,∞), which is assumed to be continuous, dif-
ferentiable almost everywhere, convex, bounded and with
bounded derivative; furthermore, we assume it is uni-
formly bounded away from zero. In particular, there are
constants ψd > 0 and dψd > 0 such that

ψd(t0) ≥ ψd(t) ≥ ψd and 0 > ψ̇d(t) > −dψd ∀t ≥ 0.

(P2) The initial error, e(t0), resides within the desired
funnel boundary, i.e.

|e(t0)| < ψd(t0).

(P3) The reference output yr : [t0,∞) → R is continuously
differentiable, bounded, and has a bounded derivative.
While yr(t) is unknown a priori and available only dur-
ing the experiment, its bounds are assumed to be known:

Y r ≤ yr(t) ≤ Y r, (12)

where Y r and Y r denote the global bounds of yr(t).
Similarly, the derivative bounds are known:

dY r ≤ ẏr(t) ≤ dY r, (13)

where dY r and dY r are the global bounds on ẏr(t).
Additionally, we define:

Y r
max = max

(
|Y r|, |Y r|

)
. (14)

Remark 3.2. The main restrictive assumptions are: (i)
each mode has relative degree one, although extensions to
higher relative degree systems are conceivable but techni-
cally more involved; and (ii) the setting is SISO, though
extending to MIMO systems should be feasible. The ap-
proach is not limited by the dimension of the internal
state, but practical limitations arise from the number of
switches, since verifying required boundedness conditions
(further will be investigated) becomes difficult for nonperi-
odic switching with infinitely many switches.

Table 1 provides a structured summary of the prior in-
formation available to us, the unknown quantities that re-
main inaccessible, and the parameters that become avail-
able only during the experiment. This clarifies that the
proposed method is not entirely model-free, but is tai-
lored for scenarios where only limited model information is
available. In contrast to the classical funnel controller [14],
which relies solely on output measurements and structural
assumptions, our approach additionally requires certain
bounds (cf. Table 1). However, aside from the earliest
works, the use of such bounds has become standard in the
funnel control literature (see, e.g., [32]).

Unknown Known a Priori Known at Runtime
fm, gm gm > 0 -
Jm αm -
f z

m bm, Z+
0 -

Jz
m αz

m -
- ψd(t0), ψd, dψd ψd(t)
- [tk, tk], τs > 0 tk

- Mode sequence (σk)k∈N0 σ(t)
- Y r, Y r yr(t)
- dY r, dY r ẏr(t)

Table 1: Overview of parameter availability, categorizing pa-
rameters into those known a priori, determined during runtime,
and those inaccessible.

3.2. Core Algorithm Development

In this section, we develop an adjusted funnel bound-
ary tailored to impulsive switched systems. The overall
concept is illustrated in Fig. 1.

In the figure, the variable ηk appears. To mitigate post-
jump error, we introduce ηk as the level to which the ad-
justed funnel boundary is temporarily contracted during
the interval τs/2 preceding the k-th jump. Since

|e+
k | ≤ |e−

k | + |∆ek| ≤ |e−
k | + ασk

(y−
k , ∥z

−
k ∥),

reducing the pre-jump error |e−
k | directly tightens the

bound on the post-jump error |e+
k |.

The constants ηk are assumed to satisfy

0 < ηk ≤ ψd(tk), ∀k. (15)
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For later use, define

ηmax := max
k∈N

ηk,

and assume that it is finite and positive.
The adjusted funnel boundary is constructed as follows:

It coincides with the desired funnel outside the extended
region around each jump window, i.e.,

t < [tk − τs
2 , tk + τs

2 ],

where τs > 0 is the dwell time from (J1).
a) Before the jump: For t ∈ [tk − τs

2 , tk], the adjusted
boundary is a connecting curve between(

tk − τs

2 , ψ
d(tk − τs

2 )
)

and (tk, ηk).

b) During the jump window: For t ∈ [tk, tk], where the
jump can occur at any time, the adjusted funnel consists
of two parallel boundaries:

ψ(t) = ηk and ψ(t) =
{
ψd(t), ψd(tk) ≥ Ek,

Ek, otherwise.
(16)

where Ek represents an upper bound for |e(t+k )|. The lower
boundary remains active before the jump, while the upper
boundary activates immediately afterward. The precise
calculation of Ek will be provided in the upcoming Sec-
tion 3.3.

c) After the Jump: For t ∈ [tk, tk + τs/2], the adjusted
boundary is a curve connecting:

(tk, ψ(tk)) and
(
tk + τs/2, ψd(tk + τs/2)

)
.

The connecting curves in a) and c) are defined by the
mapping t 7→ c(t, t1, ψ1, t2, ψ2), where t0 < t1 < t2 and
0 < ψ2 < ψ1. Each curve is constructed by scaling and
shifting a differentiable, monotonically increasing template
function ρ : [0, 1] → [0, 1] satisfying the boundary condi-
tions ρ(0) = 0 and ρ(1) = 1. The connecting curve is then
defined as

c(t) = ψ1 + (ψ2 − ψ1) · ρ
(
t− t1
t2 − t1

)
. (17)

This definition can be extended to ensure smoothness by
matching derivatives at the endpoints; one possible choice
is a cubic spline which was employed in Figure 1. However,
in this case, a whole family of template functions ρ must
be used which are parametrized by the derivatives at 0 and
1.

Nevertheless, matching derivatives at the boundaries of-
fers no clear advantage—at least in the relative degree one
scenario considered here. In fact, when estimating the re-
quired input magnitude, the dominant factor is the max-
imum derivative of the connecting curve. This maximum
is minimized by using a straight-line connection, which
corresponds to choosing

c(t, t1, ψ1, t2, ψ2) = ψ1 + (ψ2 − ψ1) t−t1t2−t1 . (18)

The complete procedure for constructing the adjusted
funnel boundary is outlined in Algorithm 1.

Algorithm 1: Adjusted Funnel Construction
Input : tk, tk, Ek, ∀k ∈ N. τs, t, ψd(t).
Output: ψ(t).
if t ∈ [t0, t1 − τs/2) or t ∈ [tk−1 + τs/2, tk − τs/2) then

ψ(t) = ψd(t);
else if t ∈ [tk − τs/2, tk) then

ψ(t) = ψd (tk − τs
2

)
+
(
ηk −ψd(tk − τs

2 )
)
ρ
(

2(t−t
k

)
τs

)
;

else if t ∈ [tk, tk) then
ψ(t) = ηk;

else if t ∈ [tk, tk) then

ψ(t) =
{
ψd(t), ψd(tk) ≥ Ek,

Ek, otherwise.
;

else if t ∈ [tk, tk + τ/2] then
ψ(t) = Ek +

(
ψd(tk + τs/2) − Ek

)
ρ(2(t− tk)/τs);

3.3. Determining adjusted funnel level Ek
To compute the adjusted funnel level during jump win-

dows, we utilize the given bounds on internal states (S2)
and jumps (J2).

We start with considering the initial interval [t0, t1). Let
us define

Y min
0 := Y r − ψd(t0) ≤ inf

t∈[t0,t1)
(yr(t) − ψ(t)),

Y max
0 := Y r + ψd(t0) ≥ sup

t∈[t0,t1)
(yr(t) + ψ(t)),

Zmax
0 := sup

∥z∥≤Z+
0 ,y∈[Y min

0 ,Y max
0 ]

bσ0(∥z∥, |y|). (19)

Then, under the assumption that the error remains within
the adjusted funnel, we have that y(t) ∈ [Y min

0 , Y max
0 ] and

hence, by utilizing (S2), ∥z(t)∥ ≤ Zmax
0 for all t ∈ [t0, t1).

To estimate a bound on the jump in the output at time
t = tk, k ≥ 1, and the corresponding required size of the
adjusted funnel, assume inductively that we have already
found a bound Zmax

k−1 such that ∥z(t)∥ ≤ Zmax
k−1 for all t ∈

[tk−1, tk). Let

Ck := max
y∈[−ηk+Y r,ηk+Y r]

∥z∥≤Zmax
k−1

ασk
(y, ∥z∥),

then,

|e+
k − e−

k | = |y+
k − y−

k | ≤ ασk
(y−
k , ∥z

−
k ∥) ≤ Ck. (20)

Provided that |e(t−k )| < ηk, we have,

|e(t+k )| ≤ |e(t−k )| + Ck < ηk + Ck =: Ek.

It now remains to estimates a bound for the internal
dynamics on the interval [tk, tk+1), which then can be used
inductively to estimate the next jump bound. For that, let
first

Z+
k := sup

y∈[−ηk+Y r,ηk+Y r]
∥z∥≤Zmax

k−1

αz
σk

(y, ∥z∥),
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Algorithm 2: Determination of |e(t+k )| Upper Bound
Input : tk, tk, ηk, σk, bm, αm, α

z
m for k ∈ N, m ∈ Σ;

t0, Z
+
0 , Y

r, Y r, ψd(t);
Output: Ek, k ∈ N.
Initialization: (i): Compute y(t) bounds in
[t0, t1):
Y max

0 (∗) = Y r + ψd(t0), Y min
0 (∗) = Y r − ψd(t0).

(ii): Compute ∥z(t−1 )∥ bounds:
Zmax

0 (∗) = max
∥z∥ ≤ Z+

0

y ∈ [ Y min
0 (∗), Y max

0 (∗) ]

bσ0 (∥z∥, |y|).

For k = 1, 2, 3, . . .:
Step 1: Calculate |e(t+k )| bounds:

Ck(Zmax
k−1 ,

∗ ) = sup
y∈[−ηk+Y r,ηk+Y r]

∥z∥≤Zmax
k−1

ασk (y, ∥z∥)

Ek(Zmax
k−1 ,

∗ ) = ηk + Ck(Zmax
k−1 ,

∗ )

Step 2: Compute ∥z(t+k )∥ bounds:

Z+
k

(Zmax
k−1 ,

∗ ) = sup
y∈[−ηk+Y r,ηk+Y r]

∥z∥≤Zmax
k−1

αz
σk

(y, ∥z∥)

Step 3: Determine ψ(tk):

ψk(Zmax
k−1 ,

∗ ) =
{
ψd(tk), ψd(tk) ≥ Ek(Zmax

k−1 ,
∗ ),

Ek(Zmax
k−1 ,

∗ ), otherwise.

Step 4: Compute y(t) bounds in [tk, tk+1):

Y max
k (Zmax

k−1 ,
∗ ) = Y r + ψk(Zmax

k−1 ,
∗ )

Y min
k (Zmax

k−1 ,
∗ ) = Y r − ψk(Zmax

k−1 ,
∗ ).

Step 5: Compute ∥z(t−k+1)∥ bounds:
Zmax

k (Zmax
k−1 ,

∗ ) = max
∥z∥≤Z+

k
(Zmax

k−1 ,∗)
y∈[Y min

k
(Zmax

k−1 ,∗),Y max
k

(Zmax
k−1 ,∗)]

bσk (∥z∥, |y|)

Note: ∗ denotes all external variables, including ηk, Y r, Y r.

then invoking (J2) we can conclude that |e(t−k )| < ηk im-
plies ∥z(t+k )∥ ≤ Z+

k . Similar as for the initial interval let

Y min
k :=Y r − ψk, Y max

k := Y r + ψk,

where,
ψk := max{Ek, ψd(tk)},

then |e(t)| < ψ(t) implies y(t) ∈ [Y min
k , Y max

k ] on [tk, tk+1).
Consequently, we can estimate the desired bound Zmax

k for
the internal dynamics on the interval [tk, tk+1) by

Zmax
k := max

y∈[Y min
k ,Y max

k ]
∥z∥≤Z+

k

bσk
(∥z∥, |y|). (21)

Algorithm 2 summarizes these steps.

Remark 3.3. In certain cases, the switching sequence
may be unavailable. Nonetheless, it remains feasible to de-
termine the adjusted funnel boundary. In these instances,
instead of computing the supremum of the functions bσk

,
ασk

, and αz
σk

for the specific mode σk over the given do-
main, we must consider the worst-case scenario by taking
the maximum over all modes. Formally, we define

Zmax
k = max

m∈Σ
max

y∈[Y min
k , Y max

k ]
∥z∥≤Z+

k

bm(∥z∥, |y|),

Ck = max
m∈Σ

sup
y∈[−ηk+Y r, ηk+Y r]

∥z∥≤Zmax
k−1

αm(y, ∥z∥),

Z+
k = max

m∈Σ
sup

y∈[−ηk+Y r,ηk+Y r]
∥z∥≤Zmax

k−1

αzm(y, ∥z∥).

3.4. Funnel Control with Adjusted Boundaries

In this section we employ the adjusted funnel bound-
ary ψ(t), computed in Algorithms 1–2, to design a funnel
controller tailored for impulsive switched systems. The
main result is stated in the following theorem, followed by
further discussion.

Theorem 3.4. Consider the system described in (1) un-
der Assumptions (S1)–(S3), with jump bounds specified
by Assumption (J2), and a reference output yr(t) satisfy-
ing Assumption (P3). Let the adjusted funnel boundary
ψ(t) be computed using Algorithms 1–2, which rely on the
desired funnel ψd(t) from Assumption (P1), the jump win-
dows from Assumption (J1), and the constants ηk defined
in (15). Then the classical funnel controller

u(t) = −k(t)e(t), k(t) = 1
ψ(t) − |e(t)| , e(t) = y(t) − yr(t),

ensures that the tracking error satisfies

|e(t)| < ψ(t), ∀t ∈ [t0,∞),

provided that the initial error satisfies

|e(t0)| < ψd(t0).

Proof. We proceed by induction on k. For the base case
on [t0, t1), the assumption |e(t0)| < ψd(t0) = ψ(t0) and
Lemma 2.2 imply that, under the classical funnel con-
troller with the adjusted funnel ψ, the error remains within
ψ for all t ∈ [t0, t1); in particular, e(t−1 ) is well defined
and satisfies |e(t−1 )| < η1. For the induction step, as-
sume |e(t−k )| < ηk ≤ ψ(tk). By the construction in the
previous section, the post-jump bound satisfies |e(t+k )| <
Ek ≤ ψ(tk). Applying Lemma 2.2 on [tk, tk+1) with ini-
tial condition |e(t+k )| < ψ(tk) yields |e(t)| < ψ(t) for all
t ∈ [tk, tk+1). In particular, just before the next jump
we have |e(t−k+1)| < ηk+1 ≤ ψ(tk+1). This completes the
induction.
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Remark 3.5. The proposed method can be extended easily
to the case that the error jump is (additionally) induced by
jumps in the reference signal, provided that their bounds
are known. The error jump bound in (20) has then to be
replaced by

|e+
k − e−

k | ≤ ασk
(y(t−k ), z(t−k )) + αr

σk
,

where αr
σk

represents the known bounds on reference signal
jumps; the calculation of Ck can then easily be adjusted
accordingly.

Remark 3.6. One of the primary features of the con-
troller is that during the continuous evolution of the sys-
tem, i.e., over the interval [tk, tk+1), various types of fun-
nel controllers can be employed. This includes advanced
variants that limit the derivative of the error [32] or which
employ some additional machine learning methods [33].

4. Control Input Analysis

Theorem 3.4 guarantees that the tracking error remains
within the adjusted funnel ψ(t), even in the presence of
jumps, and that the funnel level does not blow up in finite
time. However, it does not ensure boundedness as t → ∞.

For example, in the introductory case with µ = 0.3,
applying Algorithms 1–2 (with appropriate bounds on z(t)
and y(t+k )) yields an adjusted funnel ψ(t) that diverges.
In general, as the funnel level grows without bound, the
control input required to return the error to the desired
funnel may also become unbounded.

To address this issue, we first provide sufficient condi-
tions that ensure boundedness of the adjusted funnel, for-
malized in a theorem. Using these results, we then derive
an explicit quantitative bound on the control input and
conclude the section with a numerical example.

4.1. Sufficient Conditions for Bounded Control Input

As shown in Algorithm 2, the post-jump error Ck de-
pends on the internal states bound Zmax

k and on external
quantities (bounds of yr(t) and ηk), which are assumed
bounded; hence, boundedness of the post-jump error—and
hence of the input—as t → ∞ reduces to establishing
boundedness of the internal state, as formalized in the fol-
lowing lemma.

Lemma 4.1. The adjusted funnel computed via Algo-
rithms 1 and 2 remains bounded if the sequence {Zmax

k }∞
k=0

from Step 5 of Algorithm 2 is uniformly bounded by some
Mz ≥ 0, i.e., Zmax

k ≤ Mz for all k ∈ N.

Proof. We first show that the sequence Ck of upper bounds
on |e(t+k ) − e(t−k )| is uniformly bounded. In fact, with

Mc := sup
m∈Σ

sup
y∈[−ηmax+Y r,ηmax+Y r]

∥z∥≤Mz

αm(y, ∥z∥),

we immediately see from Step 1 of Algorithm 2 together
with Zmax

k ≤ Mz, ηk ≤ ηmax and Y r ≤ yr(t) ≤ Y r(t) that
Ck ≤ Mc. Altogether, we then have

ψ(t) ≤ max{ψd(t),Mc + ηmax} ∀t ≥ t0,

due to the monotonicity assumption of the connecting
function c; boundedness of ψ now follows from the bound-
edness of ψd.

In view of Lemma 4.1, we now present conditions under
which the sequence Zmax

k remains bounded. Towards this
goal, introduce the mapping ΦB

m : R≥0 → R≥0, as follows:

ΦB
m(z) := max

Y r∈[Y r,Y r]
bm

(
αz,sup

m (Y r, z),

Y r
max + max{ηmax + αsup

m (Y r, z), ψd(t0)}
)
(22)

where,

αsup
m (Y r, z) := sup

y∈[−ηmax−Y r,ηmax+Y r]
αm(y, ∥z∥),

αz,sup
m (Y r, z) := sup

y∈[−ηmax−Y r,ηmax+Y r]
αz

m(y, ∥z∥).
(23)

It is easy to see that

Zmax
k ≤ ΦB

σk
(Zmax

k−1 ).

Unlike Zmax
k (Zmax

k−1 , ηk, Y
r, Y

r) (Algorithm 2, Step 5), the
function ΦB

σ (z) depends only on z. Hence, to verify the as-
sumption of Lemma 4.1, it suffices to study the asymptotic
behavior of the nonlinear discrete-time system

zk+1 = ΦB
σk+1

(zk), z0 = Zmax
0 . (24)

To analyze the asymptotic behavior of (24) more precisely,
it is useful to characterize structural properties of the map
ΦB. For this purpose, we introduce the notions of affine-
boundedness and affine-contractiveness, formalized in the
following definition.

Definition 4.2. Let Z1, . . . , Zn,W be normed vector
spaces. A function T : Z1 × · · · × Zn → W is said to
be (λ, L)-affine-bounded on a subset D ⊆ Z1 × · · · ×Zn if
there exist constants λ1, . . . , λn ≥ 0 and L ≥ 0 such that,
for all (z1, . . . , zn) ∈ Z1 × · · · × Zn,

∥T (z1, . . . , zn)∥W ≤
n∑
i=1

λi∥zi∥Zi
+ L.

Here, λ = (λ1, . . . , λn) ∈ Rn≥0. In the special case where
n = 1, and T : Z1 → W with Z1 ⊆ W , if λ1 < 1, then T
is said to be affine-contractive.

This definition characterizes maps with controlled
growth. The (λ, L)-affine-bounded condition ensures that
the norm of the output of a function T (z1, . . . , zn) is
bounded above by an affine combination of the input
norms, ∥zi∥. The following lemma shows that this class
is closed under composition.
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Lemma 4.3. Let X and Z1, . . . , Zn,W be normed vector
spaces. For each i = 1, . . . , n, let αi : X → Zi be (µi,Mi)-
affine-bounded on a subset Ei ⊆ X. Let b : Z1 ×· · ·×Zn →
W be (λ, L)-affine-bounded on a subset D ⊆ Z1 ×· · ·×Zn.
Define the shared domain

D̃ := {z ∈ E1 ∩ · · · ∩ En : (α1(z), . . . , αn(z)) ∈ D} .

Then the composition

T (z) := b (α1(z), . . . , αn(z))

defines a function T : D̃ → W , and T is (λ′, L′)-affine-
bounded on D̃, where

λ′ :=
n∑
i=1

λiµi, L′ :=
n∑
i=1

λiMi + L.

That is, for all z ∈ D̃,

∥T (z)∥W ≤ λ′∥z∥X + L′.

Proof. Let z ∈ D̃. Then z ∈ Ei for all i, and
(α1(z), . . . , αn(z)) ∈ D. Since each αi is affine-bounded
on Ei, we have

∥αi(z)∥Zi ≤ µi∥z∥X +Mi.

Applying the affine bound for b, we get

∥T (z)∥W = ∥b(α1(z), . . . , αn(z))∥W

≤
n∑
i=1

λi∥αi(z)∥Zi
+ L

≤
n∑
i=1

λi(µi∥z∥X +Mi) + L

=
(

n∑
i=1

λiµi

)
︸            ︷︷            ︸

=λ′

∥z∥X +
(

n∑
i=1

λiMi + L

)
︸                   ︷︷                   ︸

=L′

.

Therefore, T is (λ′, L′)-affine-bounded on D̃.

Next, we apply Lemma 4.3 to our setting and show that
if αsup

m , αz,sup
m and bm are affine-bounded, then so is ΦB.

Fix Y r ∈ [Y r, Y r]. Let

α1(z) = αz,sup
m (Y r, z),

α2(z) = Y rmax + max{ηmax + αsup
m (Y r, z), ψd(t0)},

each (µi,Mi)-affine-bounded on E1, E2. If bm : Z×Z → Z
is (λ1, λ2;L)-affine-bounded on Dm, set

D̃m = {z ∈ E1 ∩ E2 : (α1(z), α2(z)) ∈ Dm}.

By Lemma 4.3,

∥bm(α1(z), α2(z))∥ ≤ λ′
i∥z∥ + L′

i, (i = 1, 2)

where

λ′
1 = λ1µ1 + λ2µ2, L

′
1 = λ1M1 + λ2(Y r

max + ηmax +M2) + L,

λ′
2 = λ1µ1, L′

2 = λ1M1 + λ2(Y r
max + ψd(t0)) + L.

Hence with λ′ = maxi λ′
i, L′ = maxi L′

i one gets

∥bm(α1(z), α2(z))∥ ≤ λ′∥z∥ + L′, ∀z ∈ D̃m.

Since everything is uniform in Y r, the same λ′, L′ work
when taking supY r∈[Y r,Y

r]. Therefore, the function ΦB
m(z)

is (λ′, L′)-affine-bounded on D̃m.
It is important to note that Lemma 4.3 provides only a

sufficient condition for affine-boundedness. In particular,
there may exist cases where the functions α or αz exhibit
superlinear growth in z, yet their composition with b re-
sults in a function ΦB that is affine-bounded.

The following theorem provides sufficient conditions for
the boundedness of the adjusted funnel boundary using
the ΦB

m maps.

Theorem 4.4. Consider the system described by (1), sub-
ject to Assumptions (S1)–(S3), with jump bounds given
by Assumption (J2), and a reference output yr(t) satisfy-
ing Assumption (P3). Each mode m is associated with a
map ΦB

m : R≥0 → R≥0, defined in (22). The classification
of each mode depends on the properties of its corresponding
ΦB

m map, which is (λm, Lm)-affine-bounded over

Dm :=
⋃

k:ΦB
σk+1

=ΦB
m

{
ΦB
σk

◦ · · · ◦ ΦB
σ2

◦ ΦB
σ1

(Zmax
0 )

}
, (25)

where Zmax
0 is defined in (19).

Let the adjusted funnel boundary ψ(t) be computed us-
ing Algorithms (1) –(2), which depend on the desired fun-
nel ψd(t) from Assumption (P1), the jump windows from
Assumption (J1), and the constants ηk from (15).

A sufficient condition for the boundedness of the ad-
justed funnel is that there exist constants Mλ ≥ 0 and
ML ≥ 0, independent of k, such that for all k ∈ N:

k∏
i=1

λσi
≤ Mλ, (26)

k∑
j=1

 k∏
i=j+1

λσi

Lσj
≤ ML. (27)

Under these conditions, an upper bound on the jump
heights is given by:

Mc = max
m∈Σ

sup
y∈[−ηmax+Y r,ηmax+Y r]

∥z∥≤Mz

αm(y, ∥z∥), (28)

where Mz is given by:

Mz = MλZ
max
0 +ML, (29)
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Proof. As shown in Lemma 4.1, the boundedness of
{Ck}∞

k=1 ensures the boundedness of ψ(t), and by the same
lemma, the boundedness of {Zmax

k }∞
k=0 implies the bound-

edness of {Ck}∞
k=1.

The set Dm represents the union of all domains reached
just before each occurrence of mode m, as dictated by the
mode sequence σk, thereby covering every possible pre-m
state of ΦB

m.
We observed that Zmax

k ≤ ΦB
σk

(Zmax
k−1 ), leading to the

recursive inequality:

Zmax
k ≤ λσk

Zmax
k−1 + Lσk

. (30)

Expanding this recursively yields:

Zmax
k ≤

(
k∏
i=1

λσi

)
Zmax

0 +
k∑
j=1

 k∏
i=j+1

λσi

Lσj
, (31)

From (31), the boundedness of the first term by Mλ (as
in (26)) and the second term by ML (as in (27)) ensures
that Zmax

k remains bounded. Thus, an upper bound for
Zmax
k is given by:

Zmax
k ≤ MλZ

max
0 +ML := Mz, ∀k ∈ N.

Finally, we determine the upper bound for the jump
heights by maximizing the supremum of αm across all
modes. The error before each jump satisfies:

−ηk + Y r < y(t−k ) < ηk + Y r,

which implies:

−ηmax + Y r < y(t−k ) < ηmax + Y r, ∀k ∈ N.

Hence, the largest feasible input domain for all αm func-
tions is:

[−ηmax + Y r, ηmax + Y r] × [0,Mz].

Evaluating αm for all m ∈ Σ over this domain and taking
the maximum yields the bound in (28).

Remark 4.5. There are alternative methods to directly
verifying the boundedness of the series in equation (27).
One approach is to define the following sequences [34]:

P kλ :=


k∏

i=j+1
λσi


k−1

j=1

, P kL := {Lσj
}kj=1,

P kλ2 :=


 k∏
i=j+1

λσi

2

k−1

j=1

, P kL2 := {L2
σj

}kj=1.

If any of the following conditions hold, the series in equa-
tion (27) is bounded:

a)
∑
P kL is bounded.

b)
∑
P kλ is bounded.

c) Both
∑
P kλ2 and

∑
P kL2 are bounded.

There are certain scenarios where the boundedness of
the adjusted funnel can be more readily determined based
on the properties of the ΦB

m maps or the characteristics of
the switching signal. These scenarios are outlined in the
following corollary.

Corollary 4.6. 1) If all modes are affine-contractive, the
adjusted funnel remains bounded regardless of the switch-
ing signal. This follows from the fact that (26) is bounded
since all λi < 1. Furthermore,

∑
P kλ in Remark 4.5 is

also bounded. Considering the largest contraction fac-
tor, maxm∈Σ λm, instead of all individual λi, the se-
quence forms a geometric series with a ratio less than 1.
Consequently, by Remark 4.5, the series in (27) remains
bounded.

2) If Lm = 0, ∀m ∈ Σ, the mere condition of bounded-
ness of

∏∞
k=1 λk is sufficient to ensure the boundedness of

the adjusted funnel. In this case, ML = 0.
3) If the switching signal becomes periodic from the kth

jump, define:

P = {σk, σk+1, . . . , σk+T }

where T denotes the period length, and let P[i] := σk+i−1.

If
∏T
i=1 λP[i] < 1, then the adjusted funnel remains

bounded. In this case, ML can be computed as:

ML = NλL
1 − Pλ

,

where

NλL = max
s∈{1,...,T−1}

s−1∑
j=1

 s∏
i=j+1

λP[i]

LP[j] + LP[s]+

T∑
j=s+1

 T−1∏
i=j−s

λP[ai]

LP[j].

ai =
{
s− i+ 1, i ≤ s,

T − (i− s− 1), i > s.

and

Pλ =
T∏
i=1

λP[i].

which holds for t > t+k .
4) Consider the special case of a system with two modes,

labeled as m1 and m2. If λ1λ2 < 1, then the adjusted
funnel is bounded. In this case, ML is given by:

ML = max
(
L1 + λ1L2

1 − λ1λ2
,
L2 + λ2L1

1 − λ1λ2

)
11



Remark 4.7. For a single-mode system with a (λ, L)-
affine-contractive ΦB, the adjusted funnel remains
bounded. In this case,

∏k
i=1 λσi

= λk < 1, implying
Mλ = 1. The constant ML can be calculated as:

ML =
k∑
j=1

λk−jL = L

1 − λ
.

Consequently, Mz simplifies to:

Mz = Zmax
0 + L

1 − λ
.

Remark 4.8. Even if the internal state dynamics are not
stable, as long as the ΦB maps are either affine-bounded
or affine-contractive and the conditions of Theorem 4.4
are satisfied, we can still conclude that the adjusted funnel
remains bounded over time. In fact, in such cases, the
jumps in the internal states and/or output may actually
help prevent the internal states from growing unbounded.

Remark 4.9. Consider the class of dynamical systems de-
scribed by (1), whose state trajectories (y(t), z(t)) satisfy
the inequalities (9a), (10a), and (11). Given the jump win-
dows Ik for all k ∈ N and the initial set Z0, if the condi-
tions of Theorem 4.4 are satisfied, then the adjusted funnel
boundary ψ(t), computed by Algorithms 1–2, remains in-
variant under the system dynamics. In other words, ψ(t)
is independent of any particular realization within the ad-
missible class of systems.

4.2. Quantitative Bounds on the Control Input
Having established the sufficient conditions for main-

taining a bounded adjusted funnel, we now focus on de-
termining a bound on the control input required to restore
the error to the desired funnel.

To derive a quantitative bound for the control input,
we require bounds on fm and gm. We assume that for
each m ∈ Σ there exist known functions fm, fm, gm (with
gm > 0) such that, for all admissible (y, z),

fm(y, ∥z∥) ≤ fm(y, z) ≤ fm(y, ∥z∥),
0 < gm(y, ∥z∥) ≤ gm(y, z).

(32)

where fm, fm, and gm are assumed to be continuous func-
tions, which may not necessarily represent the tightest pos-
sible bounds for fm and gm.

If no information is available about these bounds, then
as long as the conditions of Theorem 4.4 are satisfied, we
can still conclude whether the adjusted funnel remains
bounded. However, it is not possible to derive a quan-
titative upper bound for the control input.

Proposition 4.10. Assume the hypotheses of Theo-
rem 4.4 and the bounds (32) on fm and gm. Let the
adjusted funnel boundary ψ(t) be constructed by Algo-
rithms 1–2. Then the feedback input remains uniformly
bounded:

|u(t)| ≤ Umax, ∀ t ≥ t0,

where Umax := max
{

|umin|, |umax|
}
, with

umin := θ − Fmax + dY r

Gmin , umax := θ − Fmin + dY r

Gmin .

(33)

The constants Fmin, Fmax, and Gmin are defined by:

Fmin = min
m∈Σ

min
∥z∥≤Mz

y∈[−Emax+Y r, Emax+Y r]

fm(y, z),

Fmax = max
m∈Σ

max
∥z∥≤Mz

y∈[−Emax+Y r, Emax+Y r]

fm(y, z), (34)

Gmin = min
m∈Σ

min
∥z∥≤Mz

y∈[−Emax+Y r, Emax+Y r]

gm(y, z).

Here, Mz is given by (29), and Emax :=
max

{
ηmax +Mc, ψ

d(0)
}

, with Mc defined in (28).
The reference bounds dY r, dY r are from (13).

Also, the slope bounds θ, θ are defined as:

θ = min
{
Mcf , −dψd

}
, θ = −θ, (35)

where
Mcf := inf

k
inf

t∈[0, τs/2]
ċk(t),

with ck denoting the connecting function from (17), defined
on the interval [tk, tk+τs/2]. Moreover, dψd is as specified
in Assumption (P1).

Proof. From the system dynamics, the output evolves as

ẏ = fσ(t)(y, z) + gσ(t)(y, z)u.

For the tracking error e := y − yr, we have

ė = fσ(t)(y, z) + gσ(t)(y, z)u− ẏr.

Since fm, fm and gm are continuous and the domain

[−Emax + Y r, Emax + Y r] × {z : ∥z∥ ≤ Mz}

is compact, the extrema in (34) are well-defined. There-
fore,

ė ≤ Fmax +Gminu− dY r, ė ≥ Fmin +Gminu− dY r.

To ensure the error remains within the funnel during
recovery, Lemma 2.2 requires θ ≤ ė ≤ θ over every window
[tk, tk + τs/2].

As stated in (35), θ—defined as the smaller of the de-
sired funnel’s initial derivative and the minimum slope
of all connector functions—represents the lower bound of
ψ̇(t). Since the error must remain between θ and θ, we
substitute (35) into the inequality bounds on ė to obtain
the expressions for umin and umax in (33). Taking the
larger of their absolute values then gives the global input
bound Umax.
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Remark 4.11. There is a strong interrelation between the
dwell time τs and the input bound Umax. In fact, given
Umax, the bounds

θ = UmaxGmin+Fmax−dY r, θ = UmaxGmin+Fmin−dY r

yield the admissible slope

θadm := max
(
|θ|, |θ|, dψd

)
.

For the chosen template ρ in (17), the connecting functions
satisfy

ċk(t) =
2
(
ψd(tk + τs

2 ) − Ek
)

τs
ρ̇(·) ≥

2(ψd − Emax)
τs

Mρ,

with
Mρ := sup

k
max
t∈[0,1]

ρ̇k(t),

which exists since ρ ∈ C1([0, 1]). Equating θadm with this
lower bound yields

τs =
2(ψd − Emax)Mρ

θadm
.

If τs is given, we can reverse the above analysis to obtain
a sufficient bound for Umax.

4.3. Numerical Example: BIBO Internal States
Example 1. Consider the following academic impul-

sive switched system with two modes: Mode 1 has di-
mension n1 = 2, and Mode 2 has dimension n2 = 3 (see
Remark 3.1).
Mode 1

ẏ(t) = 2z(t)y(t) − 0.2y(t) + 0.6u(t), t , tk,

y(t+k ) = 1.3y(t−k ) + 1.4∥z(t−k )∥, t = tk,

ż(t) = −2z(t) +
√

|y(t)|, t , tk,

z(t+k ) = z2(t−k )/(1 + |z2(t−k )|), t = tk.

Mode 2

ẏ(t) = z1(t) + y(t) + u(t), t , tk,

y(t+k ) = 0.6y(t−k )|z(t−k )| + y(t−k ), t = tk,

ż1(t) = −2z1(t) + 2z2(t), t , tk,

ż2(t) = −2z1(t) − 2z2(t) + 3
√
y(t), t , tk,

z1(t+k ) = z(t−k ), t = tk,

z2(t+k ) = 2z(t−k ), t = tk.

The initial conditions are y(0) = 0.9 and z(0) =
[0.1, 0.8]T . The following are the corresponding bounds
for each mode.
Mode 1

b1 = ∥z(t+k )∥ + 0.5∥y[tk,tk+1)∥
1
2∞, (36)

α1 = 0.3|y(t−k )| + 1.4∥z(t−k )∥, αz
1 = 1,

f1 = −f1 = 2|z(t)||y(t)| + 0.2|y(t)|, g1 = 0.4.

Mode 2

b2 = ∥z(t+k )∥ + 0.5∥y[tk,tk+1)∥
1
3∞, (37)

α2 = 0.6|y(t−k )|∥z(t−k )∥, αz
2 = 2.25∥z(t−k )∥,

f2 = −f2 = ∥z(t)∥ + |y(t)|, g2 = 1.

Also, ∥z(0)∥ is initially within the range [0.75, 0.85]. The
system begins in Mode 2 at t0 = 0, following a repeating
mode sequence of {2, 1, 2, 1, . . . } in subsequent intervals.
The onset of the jump intervals occurs every five seconds,
with their lengths and exact jump instance determined
randomly.

The desired funnel is defined as ψd(t) = e−0.05t + 0.1
and yr(t) = 0.5 + 0.5 sin(t). Additionally, η(tk) = 1

2ψ
d(tk)

and τs = 1.
To proceed, we compute ΦB for both modes. Utiliz-

ing equation (22), we derive the following expressions,
given that ηmax = η1 = 1

2ψ
d(t1) = 0.42, Y r = 0, Y r =

1, and Y r
max = 1.

ΦB
1 (z) = 1 + 0.5

(
max{1.3ηmax + 0.3Y r + 1.4z, 1.1} + Y r

max
) 1

2 ,

≤ 1 + 0.5
(1

2 max{1.3 × 0.42 + 0.3 + 1.4z, 1.1} + 1
)
,

≤ 0.35z + 1.78.

Hence, ΦB1 (z) is affine-contractive. To demonstrate this,
we compute the upper bound on ∥z(t)∥ assuming only
Mode 1 is active, following Algorithm 2. The resulting
values are illustrated in Fig. 4a. For mode 2, we have,

(a) Only Mode 1. (b) Only Mode 2.

Figure 4: ∥z(t)∥ upper bound in the system of Example 1 for
one mode scenarios.

ΦB
2 (z) = 2.25z + 0.5

(
max{ηmax + 0.6(ηmax + Y r)z, 1.1} + Y r

max
) 1

3 ,

≤ 2.25z + 0.5
(1

3
max{0.42 + 0.6(0.42 + 1)z, 1.1} + 1

)
,

≤ 2.39z + 0.68.

Therefore, mode 2 is affine-bounded but not contractive.
In Fig. 4b, the Zmax

k sequence is depicted for the case where
only Mode 2 is active.

The multi-mode system incorporating modes 1 and 2
is characterized by a joint parameter Mλ = λ1λ2 =
0.35 × 2.39 = 0.84 < 1. According to Corollary 4.6, the
system guarantees a bounded Zmax

k , ensuring a bounded
jump sequence, and adjusted funnel.

The procedure for computing Ek is given in Equa-
tion (38). Figures 5 and 6 illustrate the upper bound on
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Figure 5: Evolution of ∥z(t)∥ and its upper bound in Example 1
with both modes active.

∥z(t)∥, along with the adjusted funnel boundary and the
evolution of the error within it.

Initial conditions: Z+
0 = 0.85. Initialization:

Y max
0 = 1 + 1.1 = 2.1, Y min

0 = 0 − 1.1 = −1.1

Zmax
0 = 0.85 + 0.5(max(|2.1|, | − 1.1|))

1
3 = 1.49.

For k = 1, 2, 3, . . .:

Ck =
{

0.3(ηk + 1) + 1.4Zmax
k−1 σk = 1,

0.6(ηk + 1)Zmax
k−1 σk = 2,

, Ek = ηk + Ck,

(38)

Z+
k

=
{

1 σk = 1,
2.25Zmax

k−1 σk = 2,
, ψk =

{
Ek, e−0.05tk + 0.1 < Ek,

e−0.05tk + 0.1, otherwise,

Y max
k = 1 + ψk;Y min

k = −ψk,

Zmax
k =

{
Z+

k
+ 0.5(max(|Y min

k |, |Y max
k |))

1
2 σk = 1,

Z+
k

+ 0.5(max(|Y min
k |, |Y max

k |))
1
3 σk = 2,

To determine an upper bound on the jump height in
accordance with (28), the value of Mz must first be com-
puted. Given the parameters L1 = 1.78, L2 = 0.68,
λ1 = 0.35, and λ2 = 2.39, and noting that mode 2 oc-
curs first, corollary 4.6 (item 4) implies that ML = 12.34.
Furthermore, with Z0 = Zmax

0 = 1.49 and Mλ = 0.84, we
find Mz = 13.59.

To compute an upper bound on the output jump, the
maximum values of αm for both modes must be evaluated.
Using (28), the computations are as follows:

max(α1)= max
−0.42≤y≤1.42, ∥z∥≤13.59

(0.3|y(t)|+1.4∥z(t)∥)=19.45,

max(α2)= max
−0.42≤y≤1.42, ∥z∥≤13.59

(0.6|y(t)|∥z(t)∥)=11.58. (39)

Thus, Mc = 19.45, and an upper bound on the error is
determined as Emax = ηmax +Mc = 0.42 + 19.45 = 19.87.

Given ψd = 0.1, Emax = 19.87, and τs = 1, the
maximum derivative of the linear connecting functions is
θ = 2(ψd − Emax)/τs = −39.54. With Mz = 13.59, dY r =

Figure 6: Computed adjusted funnel boundary and the actual
error development for Example 1.

−dY r = 0.5, Fmax = −Fmin = 571, and Gmin = 0.4, it
follows that Umax = 1331.

As shown in Figures. 5 and 6, whenever ∥z(t−k )∥ up-
per bound is large—such as after the second or fourth
jump—the upper bound on |e+

k | increases. Conversely,
when ∥z(t−k )∥ upper bound is relatively small—such as af-
ter the third or fifth jump—the adjusted funnel level is also
low. This is because both α maps depend on the internal
states, and variations in ∥z(t−k )∥ upper bound directly in-
fluence the error jump bounds.

One might argue that the α maps also depend on e−
k .

However, the key distinction is that e−
k can be regulated

by shrinking the adjusted funnel before each jump. In
contrast, ∥z(t−k )∥ is not directly controllable and plays a
dominant role in determining the jump height bounds.

Part II: Refinements and Extensions

Building on the adjusted funnel construction and bounded-
ness guarantees for relative-degree-one impulsive switched
systems, this part develops refinements that further
tighten the funnel boundary and reduce the control-input
bound. First, we replace the BIBO assumption with prac-
tical ISS, which, by exploiting time-dependent bounds on
the internal state, yields a substantial reduction of the
control-input bound and enables the design of admissi-
ble impulse-time sequences ensuring bounded inputs. In
addition, we introduce algorithmic enhancements such as
asymmetric jump maps, level-set refinements, and real-
time boundary adaptations, all of which lead to tighter
funnel boundaries. Their effectiveness is demonstrated
through numerical examples.
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5. Practical Input-to-State Stability of Internal
States

Figure 6 shows that, although the error remains within
the adjusted funnel, the funnel itself expands unnecessar-
ily. This arises because, under the assumption of merely
BIBO-stable internal dynamics, no decay of the upper
bound on ∥z(t)∥ is captured, leading to overly conservative
results.

To address this, we refine the stability assumption from
BIBO to ISS and update the computation of Zmax accord-
ingly. In this setting, we introduce the ΦI map, tailored to
ISS dynamics, as a replacement for ΦB . We then compare
the BIBO and ISS cases in a numerical example, extend
the calculation of Zmax by adding an intermediate refine-
ment step to further tighten the funnel boundary, and illus-
trate the improvement with another example. The section
concludes with the design of impulse-time sequences that
guarantee boundedness of the adjusted funnel boundary.

5.1. ISS-Based Adjusted Funnel Design
As demonstrated in Example 1, the upper bound of the

internal states plays a critical role in determining the ad-
justed funnel boundary level. Specifically, tighter bounds
on ∥z(t)∥ lead to more accurate estimates of post-jump
error bounds.

In the following section, we aim to establish less con-
servative bounds by refining the BIBO stability assump-
tions on internal states. The core limitation of the BIBO
property is that it provides only limited information about
internal state behavior. If more insights—particularly the
time evolution of ∥z(t)∥—were available, we could more
accurately track their behavior over time.

To address this, we introduce a Practical ISS version of
Assumption (S2), as follows:
(S2)′ For every m ∈ Σ and for all tk ≤ s < t < tk+1, the
following holds:

∥z(t)∥ ≤ βm(∥z(s+)∥, t− s) + γm(∥y[s,t)∥∞) + cm, (9b)
where βm : R≥0 × R≥0 → R≥0 and γm : R≥0 → R≥0 are
known KL and K continuous functions 3, respectively.

The constant cm ∈ R≥0 accounts for the fact that, in
the absence of input, the internal states are not necessarily
required to decay to zero as t → ∞; it is sufficient for them
to remain bounded.

The dependence of βm on t allows us to account for the
diminishing influence of the initial condition ∥z(s+)∥ over
time. Assuming the internal states are Practical ISS, it is
possible to find an upper bound for ∥z(t−k+1)∥ as follows:

∥z(t−k+1)∥ ≤ Zmax
k = βσk

(Z+
k , tk+1 − tk)

+ γσk

(
max

y∈{Y min
k

,Y max
k

}
|y|

)
+ cσk

.
(40)

3A function α : [0,∞) → [0,∞) is of class K if it is continuous,
strictly increasing, and α(0) = 0. A function β : [0,∞)2 → [0,∞)
is of class KL if β(·, t) ∈ K for each fixed t, and β(s, ·) is decreasing
with β(s, t) → 0 as t → ∞.

Here, Z+
k and Y

min /max
k are defined as in Algorithm 2.

Note that, unlike in (21), β belongs to the class KL-
functions and γ belongs to the class K-functions. There-
fore:

sup
r∈D,δt∈∆T

β(r, δt) = β
(

supD, inf ∆T
)
,

sup
r∈D′

γ(r) = γ
(

supD′).
where D = [0, Z+

k ], ∆T =
{
tk+1 − tk : tk+1 ∈

[tk+1, tk+1], tk ∈ [tk, tk]
}

, and D′ = max
(
|Y min
k |, |Y max

k |
)
.

Then:

supD = Z+
k , supD′ = max

(
|Y min
k |, |Y max

k |
)
,

inf ∆T = tk+1 − tk.

simplifying the calculation of Zmax
k . Also, we introduce

the map ΦI : R≥0 × R≥0 → R≥0,

ΦI
m(z,∆t) = βm

(
αz,sup

m (Y r
max, z),∆t

)
+ (41)

γm
(

max{ηmax + αsup
m (Y r

max, z), ψd(t0)} + Y r
max
)

+ cm.

It follows that Zmax
k ≤ ΦI

σk
(Zmax

k−1 ,∆t) as long as ∆t ≤
tk − tk−1 for all k.

Under this construction, Theorem 4.4 remains valid.
Suppose each mode m persists for at least τs +τm, where τs
is constant across all modes and τm ≥ 0 is mode-specific.
For each mode we define the time-independent map

ΦI
m(z) := ΦI

m(z; ∆t = τs + τm). (42)

If the maps ΦI
m(z) are either (λm, Lm)-affine-bounded or

affine-contractive for all m ∈ Σ, then Theorem 4.4 ensures
boundedness of the adjusted funnel boundary

In the following, we examine the effect of replacing
BIBO with ISS internal dynamics in the numerical exam-
ple of Section 4.3 (Example 1).

5.2. Numerical Example: ISS Internal States
In cases where we have access to the following tighter

bounds, the conservative bounds in (36) and (37) in Ex-
ample 1 can be replaced with:

∥z(t)∥ ≤ ∥z(t+k )∥e−2t + 0.5∥y(t)∥1/2
∞ , t ∈ [tk, tk+1),

∥z(t)∥ ≤ ∥z(t+k )∥e−2t + 0.5∥y(t)∥1/3
∞ , t ∈ [tk, tk+1).

To calculate ΦI
m maps for modes 1 and 2, we follow the

procedure outlined in (41), given that τ1 = 1, τ2 = 1.5,
and τs = 1,

ΦI1(z, 2) = e−2×2+

0.5 (max{1.3ηmax + 0.3Y r
max + 1.4z, 1.1} + Y r

max)
1
2 ,

≤ 0.35z + 0.79.
ΦI

2(z, 2.5) = 2.25e−2×2.5z+

0.5 (max{ηmax + 0.6(ηmax + Y r
max)z, 1.1} + Y r

max)
1
3 ,

≤ 0.16z + 0.68.
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Figure 7: Development of ∥z(t)∥ and its upper bounds for Ex-
ample 1, with ISS internal dynamics.

According to corollary 4.6 (item 1), since both ΦI maps are
affine-contractive, the adjusted funnel remain bounded. In
this case, given L1 = 0.79, L2 = 0.68, λ1 = 0.35, and
λ2 = 0.16, it follows that, ML = 1.09, and Z0 = Zmax

0 =
0.85e−2×2.5 + 0.5(ψd(0) + 1) 1

3 = 0.65, and therefore, Mz =
1.13. Notice that, in the ISS case, Mz represents the upper
bound of ∥z(tk)∥ for all k (the worst-case scenario, namely
tk−1 = tk−1 and tk = tk ).

To compute the error bounds, similar to (39) but with
Mz = 1.13, we have maxα1 = 2.00 and maxα2 = 0.96.
Thus, Mc = 2.00, and therefore, Emax = 2.42.

To compute Ek, Equations (38) must be followed. How-
ever, the first term in Zmax

k relation should be replaced by
e(tk+1−tk)Z+

k .
The ∥z(t)∥ upper bound and the adjusted funnel bound-

ary in this case are illustrated in Figures 7 and 8.
A notable improvement in the adjusted funnel can be

observed when z(t) exhibits ISS stability instead of BIBO
stability. As depicted in Fig. 8, the maximum adjusted
funnel level—equivalently, the maximum permissible er-
ror—reaches 9.74 in the BIBO-stable case, whereas in the
ISS-stable case, this value is reduced to 1.75. Moreover,
the upper bound on the control input in the ISS-stable case
is Umax = 11, compared to Umax = 1331 in the BIBO-
stable case.

5.3. Resetting the Calculation of Zmax
k

In previous sections, we derived the bounds ∥z(t)∥ for
all t ∈ [tk, tk+1) by considering the infinity norm of y over
this interval. However, if y undergoes a large jump dur-
ing [tk, tk], the infinity norm of the output over the entire
interval [tk, tk+1) will be dominated by this large value,
without accounting for any subsequent decreases in y. This
approach does not fully capture the expected behavior, as
y typically decreases when the error returns to the desired
funnel at tk + τs/2.

Figure 8: Adjusted funnel boundary and actual error develop-
ment for Example 1, comparing the obtained ψ(t) under ISS
internal dynamics (solid black lines) and BIBO internal dynam-
ics (dashed blue lines).

To address this, one approach is to compute Zmax
k in

two steps: first, when the error upper bound is outside the
desired funnel, and second, when it returns to the desired
funnel. Specifically, we define:

Zmax,int
k := βσk

(Z+
k , τs/2)+

γσk

(
max

y∈{Y min,int
k

,Y max,int
k

}
|y|

)
+ cσk

,

Zmax
k = βσk

(Zmax,int
k , tk+1 − (tk + τs/2))+

γσk

(
max

y∈{Y min
k

,Y max
k

}
|y|

)
+ cσk

.

(43)

Z+
k is defined as before (Step 2, Algorithm 2). However,

the output bounds are now calculated as follows:

Y min,int
k = Y r − ψ(tk), Y max,int

k = Y r + ψ(tk),
Y min,int
k ≤ y(t) ≤ Y max,int

k , ∀t ∈ [tk, tk + τs/2),
Y min
k = Y r − ψd(tk + τs/2), Y max

k = Y r + ψd(tk + τs/2),
Y min
k ≤ y(t) ≤ Y max

k , ∀t ∈ [tk + τs/2, tk+1).

The notation “int” indicates that it represents an inter-
mediate value used to calculate Zmax

k . We observe that
Y

max /min,int
k depends on the adjusted funnel level ψ(tk),

which could potentially be large. In contrast, Y max /min
k

depends only on ψd(t), thereby eliminating the influence
of potentially large errors during the interval [tk, tk+τs/2).

Furthermore, as shown in (43), if the interval between
consecutive jumps is sufficiently long, the effect of the ini-
tial value—i.e., Zmax,int

k —will also diminish. This leads to
a tighter bound for ∥z(t−k+1)∥.

The remainder of the algorithm follows exactly as be-
fore. In Fig. 9, you can see the regions where we use to
find an upper bound for ∥z(t−k+1)∥.
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tk tk tk tk + τs/2 tk+1 − τs/2 tk+1 tk+1

Zmax
k time calculation interval

τm

Zmax,int
k Zmax

k

Figure 9: Calculation of the upper bound for ∥z−
k+1∥ in the

interval [tk, tk+1) based on two sub-intervals: [tk, tk + τs/2)
(red hatched area) and [tk + τs/2, tk+1) (green hatched area).

To determine the Φ map in this case, we consider the
ΦI map of the mode. This map must be applied twice:
first, over the interval [tk, tk + τs/2), and second, over the
interval [tk + τs/2, tk+1).

Suppose the dwell time of each mode is at least τs +
τm, where τs is fixed and τm is mode-specific. Then, the
duration of the interval [tk, tk + τs/2) is τs/2, while the
duration of the interval [tk+τs/2, tk+1) is at least τm+τs/2.
Therefore, we define:

Φreset
m (z, τs, τm) = βm

(
ΦI

m(z, τs/2), τm + τs/2
)
+

γm
(
ψd(t1 + τs/2) + Y r

max
)

+ cm. (44)

Notice that ΦI
m(z, τs/2) serves as the initial condition,

equivalent to Zmax,int
k . Moreover, since in [tk + τs/2, tk+1)

the upper bound of y depends only on the desired funnel,
the largest value of ψd(tk+τs/2) for all k, i.e., ψd(t1+τs/2)
is used.

Similar to ΦB and ΦI, as long as Φreset is affine-bounded
or affine-contractive, Theorem 4.4 can still be applied to
determine whether the adjusted funnel remains bounded
over time.

In the following, we numerically analyze the effect of
resetting the calculation of Zmax

k .

5.4. Numerical Example: Zmax
k Resetting

Example 2. Consider the following academic impulsive
switched system.

Mode 1

ẏ(t) = z(t) + 0.2y(t) + u(t), t , tk,

y(t+k ) = 1
1 + e−y(t−

k
)

+ z(t−k ) + y(t−k ), t = tk,

ż(t) = −0.7z(t) + y(t), t , tk,

z(t+k ) = 1.5z(t−k ), t = tk.

Mode 2

ẏ(t) = −z(t) − 0.8y(t) + u(t), t , tk,

y(t+k ) = 2z(t−k ) + y(t−k ) +
{

0.1 if |y(t−k )| ≤ 0.3,
0.6 if |y(t−k )| > 0.3

, t = tk,

ż(t) = −0.5z(t) + y(t), t , tk,

z(t+k ) = 2.5z(t−k ), t = tk.

Here, y(0) = 0.7, z(0) = 0.5, and ∥z(0)∥ ∈ [0.2, 0.7]. The
desired funnel is given by ψd(t) = 1.5e−0.07t + 0.12, with
ηk = 1

5ψ
d(tk). The reference signal follows yr(t) = sin(t)+

1, where Y r = 0, Y r = 2, and Y r
max = 2. Also, ηmax = η1 =

0.25. Mode 2 occurs first, with τ1 = 6, τ2 = 11, and τs = 3.
The mode transition follows tk+1 − tk = τσk

+ τs, ∀k.
All jump uncertainty windows have a length of 1, starting
from t = 3, with jumps occurring 0.4 seconds after tk. The
bounds are:
Mode 1

β1(∥z∥, t− tk) = ∥z(t+k )∥e−0.7(t−tk),

γ1(∥y∥∞) = 1.43∥y(t)∥∞, c1 = 0, t ∈ [tk, tk+1)
α1(y, ∥z∥) = 1 + ∥z(t−k )∥, αz

1(y, ∥z∥) = 2∥z(t−k )∥.

Mode 2

β2(∥z∥, t− tk) = ∥z(t+k )∥e−0.5(t−tk),

γ2(∥y∥∞) = 2∥y(t)∥∞, c2 = 0, t ∈ [tk, tk+1)
α2(y, ∥z∥) = 0.6 + 2∥z(t−k )∥, αz

2(y, ∥z∥) = 3∥z(t−k )∥.

First, we examine the case without resetting the calcu-
lation of Zmax

k to determine whether the upper bound of
the jump height remains finite. To this end, ΦI for the two
modes is calculated as follows:

ΦI
1(z, 9) = 2e−0.7×9z + 1.43(max{ηmax + 1 + z, 1.62} + Y r

max),
≤ 1.43z + 4.65,

ΦI
2(z, 14) = 3e−0.5×14z + 2(max{ηmax + 0.6 + 2z, 1.62} + Y r

max),
≤ 4.00z + 7.24.

Both λ values are greater than 1; therefore, the Zmax
k

sequence and the jump height bounds will become un-
bounded if the calculation of ∥z(t)∥ is not reset. Next,
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Figure 10: Evolution of ∥z(t)∥ and its computed upper bounds
for Example 2 with Zmax

k resetting. The red dashed line shows
the bound on ∥z(t)∥ if no reset had occurred at tk + τs/2.

we calculate Φreset,

ΦI
1(z, 1.5) = 2.13z + 4.65,

Φreset
1 (z, 3, 6) = (2.13z + 4.65)e−0.7×7.5+

1.43(ψd(5.5) + Y r
max) = 0.01z + 4.52.

ΦI
2(z, 1.5) = 5.41z + 7.24,

Φreset
2 (z, 3, 11) = (5.41z + 7.24)e−0.5×12.5+

2(ψd(5.5) + Y r
max) = 0.01z + 6.30.

Now, λ1λ2 = 0.00, which ensures that the ∥z(t)∥ up-
per bound and the corresponding error jump bounds for
the switched system remain bounded. In Figs. 10 and 11,
the ∥z(t)∥ upper bound and the resulting adjusted funnel
boundary are illustrated. The red dashed line in Fig. 10
shows the bound on ∥z(t)∥ without resetting at tk + τs/2.
With resetting, ∥z(t)∥ exhibits a sudden increase at this
instant, but this is compensated by the contribution of a
much smaller bound on y(t) from tk+ τs/2 onward, result-
ing in a significantly lower value at tk+1 compared to the
red dashed line.

5.5. Impulse Time Sequence Design
A key advantage of having Practical ISS-stable internal

states is the ability to design the impulse time sequence
T , when applicable, to ensure that the adjusted funnel
remains bounded.

Specifically, given a time constant τs, τm can be designed
for each mode to guarantee that the adjusted funnel re-
mains bounded.

In other words, we can establish a lower bound on the
time each mode persists before the next mode emerges.
This ensures that the internal states have sufficient time
to decrease, thereby preventing the escalation of the ad-
justed funnel boundary. The following theorem formal-

Figure 11: Adjusted funnel boundary and actual error evolution
for Example 2 with Zmax

k resetting.

izes this property and provides the sufficient conditions
for achieving this behavior.

Theorem 5.1. Consider the system defined in (1) under
assumptions (S1)-(S3). Suppose prior information about
the output and internal state jumps is given, as specified
in (J1)-(J2). Additionally, assume the reference signal
and the desired funnel boundary satisfy assumptions (P3)
and (P1).

Let a lower bound on the dwell time for each mode be
denoted by τs + τm, where τs > 0 is given and fixed across
all modes, and τm ≥ 0 is mode-specific and to be deter-
mined. Define the set: τ = {τ1, τ2, . . . , τM}, where M is
the number of modes.

Suppose the internal states are Practical ISS-stable as
defined in (9b). Assume that each mode m is associated
with either the map ΦI

m(z, τs + τm), as defined in (41),
or the map Φreset

m (z, τs, τm), as defined in (44). Further,
suppose these maps are (λm(τm), Lm(τm))-affine-bounded
over Dm as in (25), in the sense of Definition 4.2.

Then, the adjusted funnel boundary computed by Algo-
rithms 1–2 remains bounded for every time sequence τ that
satisfies the following conditions:

Sk(τ) :=
k∏
i=1

λσi
(τσi

) < ∞,

Ck(τ) :=
k∑
j=1

 k∏
i=j+1

λσi
(τσi

)

Lσj
(τσj

) < ∞.

Proof. Define the set T as:

T = {τ = {τ1, τ2, . . . , τm} | S(τ) < ∞, C(τ) < ∞} .

For all τ ∈ T , the first and second conditions of The-
orem 4.4 are satisfied. Consequently, the adjusted funnel
boundary computed by Algorithms 1–2 remains bounded
for every τ ∈ T .
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Although Theorem 5.1 provides sufficient conditions for
the mode dwell-times to ensure a bounded adjusted fun-
nel, finding such a set is not always straightforward. In
these cases, we introduce a conservative yet computation-
ally simple method to construct an impulse time sequence
that is independent of the switching signal and guarantees
a bounded adjusted funnel. This method is formalized in
the following corollary.
Corollary 5.2. Let m∗ denote the mode with the slowest
decay rate with respect to ∆t among all maps ΦI

m(z,∆t).
Suppose that either ΦI

m∗(z, τs + τm∗) or Φreset
m∗ (z, τs, τm∗)

is affine-bounded for every τm∗ ≥ 0 with parameters
(λm∗(τm∗), Lm∗(τm∗)). Choose τm∗ such that

λm∗(τm∗) < 1.

Then, for any arbitrary mode sequence {σk}k∈N0 , the ad-
justed funnel remains bounded for all

τ = {τ1, τ2, . . . , τM | τm ≤ τm∗ , ∀m ∈ Σ}. (45)

Proof. Let the mode m∗ have the slowest decay rate, and
suppose there exists a τm∗ satisfying (45). Then, for all
modes m ∈ Σ, it holds that:

τm ≤ τm∗ , λm(τm) ≤ λm∗(τm∗).

Therefore, we derive:
k∏
i=1

λσi
(τσi

) ≤
k∏
i=1

λm∗(τm∗) < 1,

and,
k∑
j=1

 k∏
i=j+1

λσi(τσi)

Lσj (τσj ) ≤

k∑
j=1

λm∗(τm∗)k−jLσj
(τσj

) < ∞.

In the last inequality, since the geometric series
∞∑
k=1

λm∗(τm∗)k

is convergent, it follows from Remark 4.5 that the entire
series is bounded.

Therefore, Sk(τ) and Ck(τ) remain bounded as k → ∞,
ensuring the boundedness of the adjusted funnel.

Remark 5.3. For a single-mode system, define the set

T = {τ ∈ R≥0 | λ(τ) < 1} .

Every τ ∈ T guarantees that the adjusted funnel boundary
remains bounded.
Remark 5.4. For multi-mode systems with periodic
switching signals, the adjusted funnel remains bounded for
any dwell-time set

T =
{

{τ1, τ2, . . . , τM}

∣∣∣∣∣
M∏

m=1
λm(τm) < 1

}
.

5.6. Numerical Example: Impulse Sequences Derivation
Let us determine a lower bound on the dwell times for

modes 1 and 2 in Example 2 expressed in Section 5.4 that
guarantees the adjusted funnel remains bounded. By re-
calculating Φreset

1/2 with τs = 3 while keeping τ1 and τ2 as
parameters, the resulting expressions for λ1(τ1) and λ2(τ2)
are given by:

λ1(τ1) = 0.75e−0.7(τ1), λ2(τ2) = 2.56e−0.5(τ2).

To ensure λ1(τ1)λ2(τ2) < 1, we multiply and simplify
the inequality, yielding:

1.4τ1 + τ2 > 1.3. (46)

Thus, any pair (τ1, τ2) satisfying (46) will necessarily
result in a bounded adjusted funnel.

Note that L1 and L2 also depend on τ1 and τ2. However,
for systems with periodic mode sequence, ensuring that
λ1λ2 < 1 is sufficient to guarantee a bounded adjusted
funnel, without requiring further conditions.

6. Additional Algorithm Enhancements

In this section, we explore further strategies to obtain
tighter adjusted funnel boundaries. First, we consider
asymmetric jump maps and refine Assumption (J2) ac-
cordingly. Next, we introduce level sets that cap the error
in real time, preventing excessive growth, and illustrate
their effect in a numerical example. Finally, we present an
algorithm that adapts the adjusted funnel boundary online
and demonstrate its effectiveness with another example.

6.1. Handling Asymmetric Jumps
In Assumption (J2), the output jump height is as-

sumed to be upper-bounded by the function αm. However,
if additional information about the jump maps is avail-
able—such as a lower bound for the jump that is different
from −αm—the resulting boundaries can be less conserva-
tive.

Therefore, we modify Assumption (J2) to account for
the asymmetry in the bounds of error jumps.
(J2)′ Jump heights are presumed to be bounded by
known smooth, possibly asymmetric functions αm and αm.
Specifically:

ασk
(y−
k , z

−
k ) ≤ Jσk

(y−
k , ∥z

−
k ∥) − y−

k ≤ ασk
(y−
k , z

−
k ). (10b)

As before, there is no requirement for the functions αm
and αm to be the tightest bounds.

With the new assumption of (J2)′, the y(t) bounds
change to the following

Y min,int
k = Y r + ψ−(tk), Y max,int

k = Y r + ψ+(tk),
Y min
k = Y r + ψd−(tk + τs/2), Y max

k = Y r + ψd+(tk + τs/2).

Here, ψ−(t) and ψ+(t) represent the negative and posi-
tive funnel boundaries, respectively. Since the jump maps
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are asymmetric, the resulting adjusted funnel may also
be asymmetric. Additionally, ψd−(t) and ψd+(t) denote
the negative and positive boundaries of the desired funnel,
which may also be asymmetric.

Cmin
k := inf

y∈[−ηk+Y r,ηk+Y r]
∥z∥≤Zmax

k−1

ασk
(y, ∥z∥)

Cmax
k := sup

y∈[−ηk+Y r,ηk+Y r]
∥z∥≤Zmax

k−1

ασk
(y, ∥z∥)

The bounds of e(t+k+1) also can be computed as:

Emin
k = −ηk + Cmin

k , Emax
k = ηk + Cmax

k .

The rest of the algorithm remains unchanged. Moreover,
the Φ maps are calculated as before. The only difference
in this case is the existence of two maps: Φ, which is cal-
culated based on α, and Φ, which is calculated based on
α. To ensure a bounded adjusted funnel, the tests in The-
orems 4.4 must be applied to both maps.

6.2. Adjusted Funnel Boundary Level Sets
The adjusted funnel boundaries achieved based on the

presented method assume that the worst-case scenario al-
ways occurs. This means that, simultaneously, the jump
heights of the output and internal states reach their max-
imum possible magnitudes, the reference signal attains its
largest value between consecutive jumps, and the error be-
fore each jump equals the maximum allowable value, ηk.
However, in reality, unless one is particularly unlucky, it is
rare for all these worst-case conditions to occur, let alone
simultaneously. Consequently, the actual error jumps are
often much smaller than the computed adjusted bound-
aries.

Although even a significant difference between the fun-
nel boundary and the actual error value does not destabi-
lize the system, it may lead to undesired behaviors such
as overshoots or undershoots, which could even exceed the
error jump itself. Such behaviors are illustrated in Figs. 6
and 11.

One way to mitigate these effects is by precomputing
level sets. Level sets are obtained by dividing the distance
between the desired funnel and the adjusted funnel at tk
into n levels. When a jump in the error is detected, the
nearest precomputed level is selected and becomes the ac-
tive funnel boundary. Since the feedback gain is given by
k(t) = 1/(ψ(t) − |e(t)|), choosing the closest ψ(t) to e(t)
(with at least an ε-margin) makes k(t) immediately large,
which prevents further error growth and drives it back to-
ward lower levels.

Furthermore, detecting the direction of the jump allows
the opposite side of the adjusted funnel to revert to the
desired funnel, thereby preventing the error from crossing
to the other side (see Fig. 11, second and fourth jumps).

Specifically, for each jump, given Emin
k and Emax

k al-
ready calculated based on Section 6.1, the following sets

are defined:

Eℓ,min
k =

{
ψd+(tk) + i

n

(
Emin
k + ψd(tk)

) ∣∣ i = 0, . . . , n−1
}
,

Eℓ,max
k =

{
ψd−(tk) + i

n

(
Emax
k − ψd(tk)

) ∣∣ i = 0, . . . , n−1
}
.

where ψd+ and ψd− represent the positive and negative
desired funnel boundaries, respectively.

Then, for each member of the sets, an adjusted funnel
boundary is recomputed during the interval [tk, tk + τs/2],
based on Algorithm 1.

A key requirement for this improvement is the ability to
detect jumps in real time. In the absence of a dedicated
jump-detection device, or if there are delays in detecting
jumps, an alternative is to monitor the error. If the er-
ror suddenly jumps out of the desired funnel boundary, it
indicates that a jump has occurred.

6.3. Numerical Example: Asymmetric Jumps, Level Sets

In Example 2 (Section 5.4), instead of using −α and α
for the bound on |y+

k − y−
k |, the following output jump

bounds are considered.

Mode 1: α(∥z∥) = 0.5 + ∥z∥, α(∥z∥) = 1 + ∥z∥.
Mode 2: α(∥z∥) = 0.1 − 2∥z∥, α(∥z∥) = 0.6 + 2∥z∥.

Φreset
1/2 remains the same as Φreset

1/2 . However, Φreset
1/2 must

be recalculated based on α1/2. Therefore,

ΦI
1(z, 9) = 2e−0.7×9z + 1.43| min{−ηmax + 0.5 + z,−1.62} + 0|,

≤ 1.43z + 2.32.

ΦI
2(z, 14) = 3e−0.5×14z + 2| min{−ηmax + 0.1 − 2z,−1.62} + 0|,

≤ 4.00z + 3.24.

Next, we calculate Φreset
1/2 ,

ΦI
1(z, 1.5) = 2.13z + 2.32,

Φreset
1 (z, 3, 6) = (2.13z + 2.32)e−0.7×7.5 + 1.43| − ψd(5.5) + 0|,

= 0.01z + 1.64.

ΦI
2(z, 1.5) = 5.41z + 3.24,

Φreset
2 (z, 3, 11) = (5.41z + 3.24)e−0.5×12.5 + 2| − ψd(5.5) + 0|,

= 0.01z + 2.29.

Φreset
1/2 suggests that ψ(t) remains bounded.

Additionally, to prevent undershoots (even jumps) and
overshoots (odd jumps) in Fig. 11, we precompute ten
level sets. Fig. 12 illustrates these precomputed adjusted
funnel levels for all jumps, with the actual boundary
used online shown in thick black. During the intervals
[tk + τs

2 , tk+1 − τs
2 ], all levels coincide with the desired

funnel, since recovery occurs after tk + τs
2 . As shown in

Fig. 12, this strategy eliminates undershoots and over-
shoots. Moreover, the resulting boundaries are asymmet-
ric, which is advantageous as it avoids unnecessary expan-
sion of the adjusted funnel.
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Figure 12: Precomputed level sets and the final adjusted funnel
boundary (thick black line) based on the actual error jumps
during online experiments for Example 2 with asymmetric
jumps.

The tracking performance is also illustrated in Fig.
13. This figure shows small, smooth kinks in the out-
put shortly after each jump. These arise from the abrupt
change of the funnel boundary at tk + τs/2 when it reverts
to the desired funnel, which transiently bends the error
(see Fig. 12 at the first and third jumps). A second source
is error undershoot, which is clipped by the opposite side
of the funnel, producing a similar short-lived bending (sec-
ond and fourth jumps).

Figure 13: Tracking of yr(t) using the funnel controller for Ex-
ample 2.

6.4. Real-Time Adjusted Funnel Boundary Update
Observations indicate that a decrease in ∥y[t

k
,tk+1]∥∞

leads to a lower upper bound for ∥z−
k+1∥, which in turn

results in equal or smaller bounds for the next error jump.

In other words, a smaller error jump height (reflected by a
reduced ∥y[t

k
,tk+1]∥∞) decreases the bounds for subsequent

jumps. Moreover, utilizing the actual e(t) values allows
us to modify the upper bounds of ∥z+

k ∥, which further
contributes to reducing the upper bound of ∥z−

k+1∥.
This observation can be exploited to reestablish the ad-

justed funnel boundaries during the experiment. Namely,
instead of relying on the worst-case scenario for the error
after the jump (i.e., the adjusted funnel boundary level),
we can use the actual value of the error. Furthermore, hav-
ing access to y(t) allows us to determine the actual ∥y∥∞
rather than its supremum.

The procedure for updating the adjusted funnel bound-
ary at the kth jump, occurring at time tk, is presented
in Algorithm 3. It is assumed that, after each jump, the
closest level—maintaining at least an ε-distance from the
error value—is selected from the predefined set of levels.

In short, the algorithm works as follows: first, Zmax
k−1

is updated based on the actual values of y(t) during
[tk−2, tk−1] (the optimal point for resetting is calculated to
result in the minimum Zmax

k−1 ). Then, based on the updated
Zmax
k−1 and the actual value of y(t−k−1), Z+

k−1 is updated.
Next, using the updated Z+

k−1 and the actual values of
y(t) during [tk−1, tk], Zmax

k is updated (again, the optimal
resetting point for the calculation of Zmax

k is determined
and used). Finally, based on the updated value of Zmax

k ,
Ek, which indicates the funnel level during Ik, is updated.

It should be noted that the Φm maps will not change due
to the online update of the adjusted funnel boundaries, un-
less experimental data provides a better approximation for
the bounds of the internal states (βm, γm, cm), the output
jump (αm, αm), or the internal states jump (αz

m).

6.5. Numerical Example: ψ(t) Online Update
For Example 2 in Section 5.4, the adjusted funnel

boundary is updated online based on Algorithm 3. The
result is presented in Fig. 14. The final adjusted funnel
boundary, incorporating online updates and the selection
of the best level, is shown in Fig. 15.

7. Conclusion and Future Directions

This work proposed an adjusted funnel controller for
nonlinear impulsive switched systems of relative degree
one. The adjusted funnel boundary, computed offline and
independent of system trajectories, contracts before jump
windows and expands during them to ensure the tracking
error remains within bounds.

By introducing maps that capture the interplay between
internal states and output jumps, we derived sufficient con-
ditions guaranteeing boundedness of the adjusted funnel
boundary, along with quantitative bounds on the control
input. Assuming Practical ISS rather than BIBO stabil-
ity yielded tighter funnel bounds and quantitative bounds
on dwell times. A resetting scheme for the internal-state
bound further mitigated the effect of output jumps.
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Algorithm 3: Real-Time Adjusted Funnel Update
Input : tk−2, tk−1, y(t) ∀t ∈ [tk−2, tk], k ∈ N≥2;

tk, tk ∀k ∈ N
Output : Emax

k , Emin
k

For each k ≥ 2:
Step 1: Update Zmax

k−1 (m = σ(t+k−2), t∗ ∈ [tk−2, tk−1]):

Z̃ int(t∗) := βm(Z+
k−2, t

∗ − tk−2) + γm(∥y∥[tk−2,t∗]) + cm,

Z̃(t∗) := βm(Z̃ int(t∗), tk−1 − t∗) + γm(∥y∥[t∗,tk−1]) + cm,

Zmax
k−1 := min

t∗
Z̃(t∗)

Step 2: Update Z+
k−1

Z+
k−1 := sup∥z∥≤Zmax

k−1
αz

σ(t+
k−1)(y(t−k−1), ∥z∥)

Step 3: Update Zmax
k (m = σ(t+k−1), t∗ ∈ [tk−1, tk)):

Y −
k := max(| − ηk + Y r|, |ηk + Y r|),

ỹ(t) :=
{
y(t), t ∈ [tk−1, tk),
Y −

k , t ∈ [tk, tk),

∆t(t∗) :=
{
tk − t∗, t∗ ∈ [tk−1, tk),
tk − tk−1, t∗ ∈ [tk, tk),

Z̃ int(t∗) := βm(Z+
k−1, t

∗ − tk−1) + γm(∥y∥[tk−1,t∗]) + cm,

Z̃(t∗) := βm(Z̃ int(t∗),∆t(t∗)) + γm(∥y∥[t∗,t
k

]) + cm,

Zmax
k := min

t∗∈[tk−1,t
k

)
Z̃(t∗)

Step 4: Update error bounds:

Emax
k = ηk + sup

y∈[−ηk+Y r, ηk+Y r]
∥z∥≤Zmax

k

ασk (y, ∥z∥),

Emin
k = −ηk + sup

y∈[−ηk+Y r, ηk+Y r]
∥z∥≤Zmax

k

ασk
(y, ∥z∥).

We also developed refinement strategies such as asym-
metric jump map bounds, nearest-level selection, and dy-
namic online adjustments, each improving performance as
confirmed by numerical examples.

Future work includes extending the approach to higher
relative-degree systems and to interconnected hybrid sys-
tems with impulsive switching.
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