

Model reduction of singular switched systems in discrete time

Stephan Trenn

university of

groningen

Jan C. Willems Center for Systems and Control University of Groningen, Netherlands

Joint work with **Do Duc Thuan and Ha Phi**, Hanoi University for Science and Technology, Vietnam **Sutrisno**, Diponegoro University, Indonesia

ECC 2025, Thessaloniki, Greece, 27 June 2025

System class and motivation

$$\begin{split} E_{\sigma(k)}x(k+1) &= A_{\sigma(k)}x(k) + B_{\sigma(k)}u(k) \\ y(k) &= C_{\sigma(k)}x(k) + D_{\sigma(k)}u(k) \end{split}$$

-) $x:\mathbb{N}\to\mathbb{R}^n$ state, $u:\mathbb{N}\to\mathbb{R}^m$ input, $y\in\mathbb{N}\to\mathbb{R}^p$ output
- $\label{eq:signal} \quad \boldsymbol{\sigma}: \mathbb{N} \to \{1,2,\ldots,\mathbf{n}\} \text{ switching signal}$
- $\mapsto E_1, E_2, \dots, E_n, A_1, A_2, \dots, A_n \in \mathbb{R}^{n \times n}$ with *E*-matrices possibly singular
- $B_1, B_2, \dots, B_n \in \mathbb{R}^{n \times m}$, $C_1, C_2, \dots, C_n \in \mathbb{R}^{p \times n}$

Motivation

- > Leontief economic model (LUENBERGER 1977)
- > discretization of continuous-time switched DAEs (e.g. switched electrical circuits)

Goal

Find reduced model with approximately the same input-output behavior

Key challenges

Challenge 1

Surprisingly complex solution theory

Challenge 2

How to incorporate the switching signal in model reduction method?

Balanced truncation

Simple homogeneous example

$$E_{\sigma(k)}x(k+1) = A_{\sigma(k)}x(k)$$
 (hSSS)

Example

Consider (hSSS) with

$$E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \ A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ and } E_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \ A_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Nonswitched solution behavior

Stephan Trenn (Jan C. Willems Center, U Groningen)

Model reduction of singular switched systemsin discrete time (3 / 12)

Balanced truncation

Simple homogeneous example

$$E_{\sigma(k)}x(k+1) = A_{\sigma(k)}x(k)$$
 (hSSS)

Example

Consider (hSSS) with

$$E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \ A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ and } E_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \ A_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Switched solution behavior $\sigma(k) = \begin{cases} 1, & k < k_s \\ 2, & k \ge k_s \end{cases}$
For $k < k_s$ we have $x(k) = \begin{pmatrix} c_1 \\ 0 \end{pmatrix}$ and for $k = k_s - 1$ also $x_1(k_s) = x_1(k_s - 1) = c_1$
BUT: For $k = k_s$ also $0 = x_1(k_s)$, hence $c_1 = 0$ necessary!
Furthermore $x_2(k_s)$ not constraint by mode $1 \dashrightarrow x_2(k) = c_2$ for all $k \ge k_s$
 $\dashrightarrow x(k) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ for $k < k_s$ and $x(k) = \begin{pmatrix} 0 \\ c_2 \end{pmatrix}$ for $k \ge k_s$

Simple homogeneous example

$$E_{\sigma(k)}x(k+1) = A_{\sigma(k)}x(k)$$
 (hSSS)

Example

Consider (hSSS) with

$$E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \ A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{ and } \quad E_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \ A_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

No existence and uniqueness of solutions!

- Non-existence: Not all solutions from the past can be extended to a global solution)
- Non-uniqueness: Single initial value leads to multiple solutions in the future)
- Non-causality: Loss of causality w.r.t. to switching signal)
- Above problems occur despite the individual modes being regular and index-1)
- Considering input complicates situation further)

Solvability concepts: overview

Sutrisno et al.: "Discrete-time switched descriptor systems: How to solve them?", Math. Control Signals Syst. (2025). https://doi.org/10.1007/s00498-025-00419-7 (open access)

Solvability characterization

Notation for (E_i, A_i, B_i) :

$$\mathcal{S}_i := A_i^{-1}(\operatorname{im} E_i), \quad \widehat{\mathcal{S}}_i := A_i^{-1}(\operatorname{im}[E_i, B_i]), \quad \widehat{\mathcal{R}}_i := E_i^{-1}(\operatorname{im}[A_i, B_i])$$

Definition

The family $\{(E_i, A_i, B_i)\}_{i \in \{1, \dots, n\}}$ is called switched index-1 w.r.t. $\sigma :\iff$

$$\begin{array}{ll} & \operatorname{im} B_i \subseteq \operatorname{im}[E_i, A_i] \quad \forall i \quad \text{and} \\ & & \widehat{\mathcal{R}}_{\sigma(k)} + \widehat{\mathcal{S}}_{\sigma(k+1)} \subseteq \ker E_{\sigma(k)} \oplus \mathcal{S}_{\sigma(k+1)} \quad \forall k \end{array}$$

Theorem (Solvability characterization)

(SSS) with given σ is solvable $\iff \{(E_i, A_i, B_i)\}_i$ is switched index-1 w.r.t. σ

Relationship to index 1

Fact: (E, A) is regular and index 1 $\iff \ker E \oplus S = \mathbb{R}^n$ BUT: regularity and index-1 is neither necessary nor sufficient for switched index-1!

Explicite solution formula

Notation:

) $\Pi^{\mathcal{W}}_{\mathcal{V}}: \mathcal{V} + \mathcal{W} \to \mathcal{V}$ denotes any (not necessarily unique) projector such that

$$\Pi^{\mathcal{W}}_{\mathcal{V}}\mathcal{V}=\mathcal{V} \quad \text{and} \quad \Pi^{\mathcal{W}}_{\mathcal{V}}\mathcal{W}=\mathcal{V}\cap\mathcal{W}$$

> M^+ denotes any (not necessarily unique) generalized inverse of M, i.e. $MM^+M=M$

Theorem

(SSS) is solvable w.r.t. σ , then x is a solution on $[k_0, k_1]$ if $x(k_0) \in S_{\sigma(k_0)} - \{B^a_{\sigma(k_0)}u(k_0)\}$ and

$$x(k+1) = \Phi_{\sigma(k+1),\sigma(k)}x(k) + \Psi_{\sigma(k+1),\sigma(k)}^{c}u(k) + \Psi_{\sigma(k+1),\sigma(k)}^{a}u(k+1)$$

where

$$\begin{split} \Phi_{i,j} &:= \Pi_{\mathcal{S}_i}^{\ker E_j} E_j^+ \Pi_{\operatorname{im} E_j}^{\operatorname{im} A_j} A_j, \qquad \Psi_{i,j}^c := \Pi_{\mathcal{S}_i}^{\ker E_j} B_j^c, \qquad \Psi_{i,j}^a := (\Pi_{\mathcal{S}_i}^{\ker E_j} - I) B_i^a, \\ B_j^c &:= E_j^+ \Pi_{\operatorname{im} E_j}^{\operatorname{im} A_j} B_j, \qquad B_i^a := -A_i^+ \Pi_{\operatorname{im} A_i}^{\operatorname{im} E_i} B_i \end{split}$$

Surrogate system and reduced model

With $\tilde{u}(k) := \begin{pmatrix} u(k) \\ u(k+1) \end{pmatrix}$ and $\tilde{A}_k := \Phi_{\sigma(k+1),\sigma(k)}, \ \tilde{B}_k := [\Psi^c_{\sigma(k+1),\sigma(k)}, \Psi^a_{\sigma(k+1),\sigma(k)}], \tilde{C}_k := C_{\sigma(k)}, \ \tilde{D}_k := [D_{\sigma}, 0]$ we then have:

Discrete-time-varying balanced truncation

Balanced truncation

Time-varying Gramians

$$\begin{aligned} x(k+1) &= \tilde{A}_k x(k) + \tilde{B}_k \tilde{u}(k) \\ y(k) &= \tilde{C}_k x(k) + \tilde{D}_k \tilde{u}(k) \end{aligned} \tag{Surr}$$

Definition (Controllability and observability Gramians)

$$P_{k_0} := 0, \qquad P_{k+1} := \tilde{A}_k P_k \tilde{A}_k^\top + \tilde{B}_k \tilde{B}_k^\top, \qquad k = k_0, k_0 + 1, \dots, k_f - 1$$
$$Q_{k_f} := \tilde{C}_{k_f}^\top \tilde{C}_{k_f}, \qquad Q_{k-1} := \tilde{A}_{k-1}^\top Q_k \tilde{A}_{k-1} + \tilde{C}_{k-1}^\top \tilde{C}_{k-1}, \qquad k = k_f, k_f - 1, \dots, k_0 + 1$$

Theorem (Input and output energy) $\forall x_k \in \text{im } P_k: \quad x_k^\top P_k^+ x_k = \min \left\{ \sum_{\ell=k_0}^{k-1} u(\ell)^\top u(\ell) \middle| \begin{array}{c} u \text{ is s.t. solution } x \text{ of } (\text{Surr}) \\ \text{ satisfies } x(k_0) = 0 \text{ and } x(k) = x_k \end{array} \right\}$ $\forall \text{ solutions } x \text{ of } (\text{Surr}) \text{ on } [k, k_f]: \quad x(k)^\top Q_k x(k) = \sum_{\ell=k}^{k_f} y(\ell)^\top y(\ell)$

Balanced truncation

Time-varying balancing

$$\begin{aligned} x(k+1) &= \tilde{A}_k x(k) + \tilde{B}_k \tilde{u}(k) \\ y(k) &= \tilde{C}_k x(k) + \tilde{D}_k \tilde{u}(k) \end{aligned}$$

(Surr)

Definition (Balanced system)

(Surr) is called balanced : $\iff \exists$ positive definite diagonal matrix Σ_k , Σ_k^r , Σ_k^o .

$$P_k = \operatorname{diag}(\Sigma_k, \Sigma_k^r, 0, 0)$$
 and $Q_k = \operatorname{diag}(\Sigma_k, 0, \Sigma_k^o, 0)$

Theorem (cf. Thm. 7.5 in ZHOU & DOYLE 1999)

There always exists a (time-varying) coordinate transformation resulting in a balanced system.

Note: For $x(k) = T_k z(k)$ the transformed system is

$$\begin{split} z(k+1) &= \overline{A}_k z(k) + \overline{B}_k \tilde{u}(k) \\ y(k) &= \overline{C}_k z(k) + \tilde{D}_k \tilde{u}(k) \end{split} \qquad \text{with} \end{split}$$

 $\overline{A}_k := T_{k+1}^{-1} \tilde{A}_k T_k, \quad \overline{B}_k := T_{k+1}^{-1} B_k, \quad \overline{C}_k := C_k T_k, \quad \text{ and } \quad \overline{P}_k = T_k^{-1} P_k T_k^{-\top}, \quad \overline{Q}_k = T_k^{\top} Q_k T_k$

Time-varying balanced truncation

For each k choose reduction size r_k (e.g. by defining threshold for diagonal entries in Σ_k) and let

$$\Pi_k^l := [I_{r_k} \ 0]T_k^{-1} \quad \text{ and } \quad \Pi_k^r := T_k \left[\begin{smallmatrix} I_{r_k} \\ 0 \end{smallmatrix}\right]$$

The reduced model is then

$$\hat{x}(k+1) = \hat{A}_k \hat{x}(k) + \hat{B}_k \begin{bmatrix} u(k) \\ u(k+1) \end{bmatrix}$$
$$y(k) = \hat{C}_k \hat{x}(k) + D_k u(k)$$

with

$$\widehat{A}_k := \Pi_{k+1}^l \widetilde{A}_k \Pi_k^r, \quad \widehat{B}_k := \Pi_{k+1}^l \widetilde{B}_k, \quad \widehat{C}_k := \widetilde{C}_k \Pi_k^r$$

Example

$$E_{\sigma(k)}x(k+1) = A_{\sigma(k)}x(k) + B_{\sigma(k)}u(k)$$
$$y(k) = C_{\sigma(k)}x(k) + D_{\sigma(k)}u(k)$$

-) n = 100, m = p = 1, rank $E_i = 50$, otherwise random matrices
- > $[k_0, k_f] = [1, 2, \dots, 26]$, switching sequence (1, 2, 1, 2, 1) with switching times (6, 11, 16, 21)
- $\,\,$ With reduction threshold 0.1 the reduced model sizes are

yuniversity of groningen Introduction

Solution theory

Summary

- > Robust and efficient numerical implementations
- > Uncertain switching signal