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Introduction Solution theory Balanced truncation

System class and motivation
Eσ(k)x(k + 1) = Aσ(k)x(k) + Bσ(k)u(k)

y(k) = Cσ(k)x(k) + Dσ(k)u(k)

› x : N → Rn state, u : N → Rm input, y ∈ N → Rp output
› σ : N → {1, 2, . . . , n} switching signal
› E1, E2, . . . , En, A1, A2, . . . , An ∈ Rn×n with E-matrices possibly singular
› B1, B2, . . . , Bn ∈ Rn×m, C1, C2, . . . , Cn ∈ Rp×n

Motivation
› Leontief economic model (Luenberger 1977)
› discretization of continuous-time switched DAEs (e.g. switched electrical circuits)

Goal
Find reduced model with approximately the same input-output behavior
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Key challenges

Challenge 1
Surprisingly complex solution theory

Challenge 2
How to incorporate the switching signal in model reduction method?

Stephan Trenn (Jan C. Willems Center, U Groningen) Model reduction of singular switched systemsin discrete time (2 / 12)



Solution theory



Introduction Solution theory Balanced truncation

Simple homogeneous example

Eσ(k)x(k + 1) = Aσ(k)x(k) (hSSS)

Example
Consider (hSSS) with

E1 =
[
1 0
0 0

]
, A1 =

[
1 0
0 1

]
and E2 =

[
0 0
0 1

]
, A2 =

[
1 0
0 1

]
Nonswitched solution behavior

σ ≡ 1 :
x1(k + 1) = x1(k)

0 = x2(k)

}
⇝ x(k) =

(
c1
0

)
∀k ∈ N

σ ≡ 2 :
0 = x1(k)

x2(k + 1) = x2(k)

}
⇝ x(k) =

(
0
c2

)
∀k ∈ N
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Switched solution behavior σ(k) =

{
1, k < ks

2, k ≥ ks

For k < ks we have x(k) = ( c1
0 ) and for k = ks − 1 also x1(ks) = x1(ks − 1) = c1

BUT: For k = ks also 0 = x1(ks), hence c1 = 0 necessary!
Furthermore x2(ks) not constraint by mode 1 ⇝ x2(k) = c2 for all k ≥ ks

⇝ x(k) =
(

0
0

)
for k < ks and x(k) =

(
0
c2

)
for k ≥ ks
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No existence and uniqueness of solutions!
› Non-existence: Not all solutions from the past can be extended to a global solution
› Non-uniqueness: Single initial value leads to multiple solutions in the future
› Non-causality: Loss of causality w.r.t. to switching signal
› Above problems occur despite the individual modes being regular and index-1
› Considering input complicates situation further
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Solvability concepts: overview

Solv. w.r.t. (σ, u)

Solv. w.r.t. σ

Strong Solv.
w.r.t. σ

Solv. w.r.t.
((σj), u)

Solv. w.r.t. (σj)

Strong Solv.
w.r.t. (σj)

Solv. ∀σ w.r.t. u

Solv. ∀σ

Strongly Solv. ∀σ

\
\

/

/

/

\
\

/

/

/

\

Sutrisno et al.: “Discrete-time switched descriptor systems: How to solve them?”, Math. Control Signals
Syst. (2025). https://doi.org/10.1007/s00498-025-00419-7 (open access)
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Solvability characterization
Notation for (Ei, Ai, Bi):

Si := A−1
i (im Ei), Ŝi := A−1

i (im[Ei, Bi]), R̂i := E−1
i (im[Ai, Bi])

Definition
The family {(Ei, Ai, Bi)}i∈{1,...,n} is called switched index-1 w.r.t. σ :⇐⇒
› im Bi ⊆ im[Ei, Ai] ∀i and
› R̂σ(k) + Ŝσ(k+1) ⊆ ker Eσ(k) ⊕ Sσ(k+1) ∀k

Theorem (Solvability characterization)
(SSS) with given σ is solvable ⇐⇒ {(Ei, Ai, Bi)}i is switched index-1 w.r.t. σ

Relationship to index 1
Fact: (E, A) is regular and index 1 ⇐⇒ ker E ⊕ S = Rn

BUT: regularity and index-1 is neither necessary nor sufficient for switched index-1!

Stephan Trenn (Jan C. Willems Center, U Groningen) Model reduction of singular switched systemsin discrete time (5 / 12)



Introduction Solution theory Balanced truncation

Explicite solution formula
Notation:
› ΠW

V : V + W → V denotes any (not necessarily unique) projector such that
ΠW
V V = V and ΠW

V W = V ∩ W
› M+ denotes any (not necessarily unique) generalized inverse of M , i.e. MM+M = M

Theorem
(SSS) is solvable w.r.t. σ, then x is a solution on [k0, k1] if x(k0) ∈ Sσ(k0) − {Ba

σ(k0)u(k0)} and

x(k + 1) = Φσ(k+1),σ(k)x(k) + Ψc
σ(k+1),σ(k)u(k) + Ψa

σ(k+1),σ(k)u(k + 1)

where

Φi,j := Πker Ej

Si
E+

j Πim Aj

im Ej
Aj , Ψc

i,j := Πker Ej

Si
Bc

j , Ψa
i,j := (Πker Ej

Si
− I)Ba

i ,

Bc
j := E+

j Πim Aj

im Ej
Bj , Ba

i := −A+
i Πim Ei

im Ai
Bi
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Surrogate system and reduced model
With ũ(k) :=

(
u(k)

u(k + 1)

)
and Ãk := Φσ(k+1),σ(k), B̃k := [Ψc

σ(k+1),σ(k), Ψa
σ(k+1),σ(k)],

C̃k := Cσ(k), D̃k := [Dσ, 0] we then have:

Sovable
Eσx+ = Aσx + Bσu

y = Cσx + Dσu

Surrogate system
x+ = Ãkx + B̃kũ

y = C̃kx + D̃kũ

Reduced system
x̂+ = Âkx̂ + B̂kũ

ŷ = Ĉkx̂ + D̃kũ

discrete-time-varying
balanced truncation
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Time-varying Gramians

x(k + 1) = Ãkx(k) + B̃kũ(k)
y(k) = C̃kx(k) + D̃kũ(k)

(Surr)

Definition (Controllability and observability Gramians)
Pk0 := 0, Pk+1 := ÃkPkÃ⊤

k + B̃kB̃⊤
k , k = k0, k0 + 1, . . . , kf − 1

Qkf
:= C̃⊤

kf
C̃kf

, Qk−1 := Ã⊤
k−1QkÃk−1 + C̃⊤

k−1C̃k−1, k = kf , kf − 1, . . . , k0 + 1

Theorem (Input and output energy)

∀xk ∈ im Pk: x⊤
k P +

k xk = min
{∑k−1

ℓ=k0
u(ℓ)⊤u(ℓ)

∣∣∣∣ u is s.t. solution x of (Surr)
satisfies x(k0) = 0 and x(k) = xk

}
∀ solutions x of (Surr) on [k, kf ]: x(k)⊤Qkx(k) =

∑kf

ℓ=k y(ℓ)⊤y(ℓ)
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Time-varying balancing
x(k + 1) = Ãkx(k) + B̃kũ(k)

y(k) = C̃kx(k) + D̃kũ(k)
(Surr)

Definition (Balanced system)
(Surr) is called balanced :⇐⇒ ∃ positive definite diagonal matrix Σk, Σr

k, Σo
k:

Pk = diag(Σk, Σr
k, 0, 0) and Qk = diag(Σk, 0, Σo

k, 0)

Theorem (cf. Thm. 7.5 in Zhou & Doyle 1999)
There always exists a (time-varying) coordinate transformation resulting in a balanced system.

Note: For x(k) = Tkz(k) the transformed system is
z(k + 1) = Akz(k) + Bkũ(k)

y(k) = Ckz(k) + D̃kũ(k)
with

Ak := T −1
k+1ÃkTk, Bk := T −1

k+1Bk, Ck := CkTk, and P k = T −1
k PkT −⊤

k , Qk = T ⊤
k QkTk
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Time-varying balanced truncation

For each k choose reduction size rk (e.g. by defining threshold for diagonal entries in Σk) and let

Πl
k := [Irk

0]T −1
k and Πr

k := Tk

[
Irk
0

]
The reduced model is then

x̂(k + 1) = Âkx̂(k) + B̂k

[
u(k)

u(k+1)

]
y(k) = Ĉkx̂(k) + Dku(k)

with
Âk := Πl

k+1ÃkΠr
k, B̂k := Πl

k+1B̃k, Ĉk := C̃kΠr
k
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Example
Eσ(k)x(k + 1) = Aσ(k)x(k) + Bσ(k)u(k)

y(k) = Cσ(k)x(k) + Dσ(k)u(k)
› n = 100, m = p = 1, rank Ei = 50, otherwise random matrices
› [k0, kf ] = [1, 2, . . . , 26], switching sequence (1, 2, 1, 2, 1) with switching times (6, 11, 16, 21)
› With reduction threshold 0.1 the reduced model sizes are

k 1 2 3 4 5 6 7 · · · 19 20 21 22 23 24 25 26
rk 0 2 4 6 6 6 7 · · · 7 6 6 5 4 3 2 1
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Summary

Sovable
Eσx+ = Aσx + Bσu

y = Cσx + Dσu

Surrogate system
x+ = Ãkx + B̃kũ

y = C̃kx + D̃kũ

Reduced system
x̂+ = Âkx̂ + B̂kũ

ŷ = Ĉkx̂ + D̃kũ

discrete-time-varying
balanced truncation

Remaining challenges
› Error bounds
› Robust and efficient numerical implementations
› Uncertain switching signal
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