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Abstract

We study the solution theory of singular linear switched systems with inputs
(also known as switched descriptor systems). These systems are highly relevant
in many applications; in particular, in economics the well known dynamic Leon-
tief model with changing coefficient matrices falls into this class. Theorem 5.1
in the paper by Anh et al. (2019) stated that if a singular linear switched sys-
tem is jointly index-1 then there exists an explicit surrogate switched system
having identical solution behavior for all switching signals. However, it was not
clear yet whether the jointly index-1 condition is a necessary and sufficient condi-
tion for the existence and uniqueness of a solution. Furthermore, it was also not
clear what conditions are actually required to guarantee existence and unique-
ness of solutions for particular switching signals only. In this article, we provide
necessary and sufficient conditions for existence and uniqueness of solutions for
singular linear switched systems with respect to fixed switching signals (both
mode sequences and switching times are fixed), fixed mode sequences (switching
times are arbitrary), and arbitrary switching signals (both mode sequences and



switching times are arbitrary). In all three cases we provide an explicit surrogate
system with the same solution set; our approach improves the results presented
in Anh et al. (2019) as the coefficient matrices describing the transition from
x(k) to (k + 1) only depend on original system matrices at time k and k + 1
and not on k — 1 as in Anh et al. (2019). We illustrate the theoreticals find-
ings with the dynamic Leontief model and investigate the solvability properties
of discretizations of continuous-time singular systems.

Keywords: descriptor systems, difference-algebraic systems, Leontief economic model,
switched systems

1 Introduction

The act of transitioning among diverse system structures is a fundamental element in
various systems, including power systems [1] and electronics [2]. Additionally, switched
systems naturally emerge in sampled-data systems [3-5]. In this study, we consider
inhomogeneous switched linear singular systems of the form

Eyyx(k +1) = Agyz(k) + Byryu(k) (1)

where k € N represents the time instant or time step, (k) € R™, n € N denotes the
vector of states, u(k) € R™,m € N stands for the vector of inputs, the map o : N — M
expresses the switching signal which determines which mode from the (finite or infinite)
index set M is active at a time instant k, and FE;, A; € R"*"™ and B; € R™*™ are
constant matrices for every i € M.

Applications of the systems of the form (1), which are also known as descriptor or
implicit systems, can be found in numerous fields such as electrical circuits [6], indus-
trial processes [7], power systems [8], economic systems [9], constrained mechanical
systems [10, 11], robotics [12-14], and neural networks [15], among others. Further-
more, the dynamic Leontief economic model, or input-output analysis, has the form
of system (1) (without switching), see e.g. [16, 17]; the switched case occurs when
the parameters change in time. This Leontief model is crucial for analyzing interde-
pendencies among economic parties and helps policymakers and businesses optimize
production, assess supply chain impacts, and predict economic shifts due to policy
changes or external shocks. In civil engineering, it can be used to evaluate the risk in
complex interconnected infrastructures [18]. In the economic analysis of a country, it
enables the estimation of the resource and value-added of inter-sectoral relations [19].

The matrices E; are in general singular, but we do allow that some of the matrices
E; in (1) are invertible; however, if all matrices E; are invertible, then (1) can easily be
rewritten as an explicit switched linear systems for which the solution theory is trivial.
In fact, if all E; are invertible, then for arbitrary initial value xg € R™, for arbitrary
switching signal, and for arbitrary input sequence (u(0),u(1),...), the system with
the initial condition x(0) = x¢ has a unique solution at any time instant k£ € N. In
this case, the solution for the state at any time instant can be calculated by simply
propagating the equation forward in time, see e.g. [20], and no particular solvability



notions are necessary to be defined for its well-posedness. Additionally, an explicit
switched system is strictly causal in the sense that the current state only depends on
the previous state, previous switching signal, and previous input. Those features may
not be possessed by a singular switched system of the form (1). For an example of a
singular switched system that is not well-posed (although each mode is well-posed),
see [21, Example 1.1], whereas for an example of a singular system which is not strictly
causal w.r.t. the input, consider the singular (non-switched) system

0=xz(k) + u(k). (2)

Furthermore, for switched singular systems, solvability in general depends on the
switching signal as well as on the input. To illustrate this, consider the switched sys-
tem (1) with (Ey, Ao, Bo) = (1,0, 1) and (E1, A1, B1) = (0,1, 1). Note that both modes
correspond to well-posed non-switched systems. For a switching signal of the form
o(k) =0 for k < k* and o(k) = 1 for k > k*, the switched system (1) takes the form
k<k®: | k=k%:
z(k+1) =u(k) | 0=x(k) + u(k).

We can easily see that a unique solution exists for any given initial value x(0) if, and
only if u(k®*—1) = —u(ks). On the other hand, if we reverse the order of modes, we see
that the value for zo(k®) is not restricted, i.e. we do not have uniqueness of solutions
for this reversed switching signal.

The fact that the well-posedness of the individual modes is in general not sufficient
for the well-posedness of the switched singular system has often been overlooked in the
literature on switched singular systems and only recently a complete solution theory
for the homogeneous case (i.e. u(k) = 0 for all k € N) has been presented [22]. In there,
the three different notions jointly indez-1, sequentiel index-1 and switched index-1
have been introduced for families {(F;, 4;)}:en of matrix pairs and these notions have
been shown to be equivalent to certain solvability concepts. However, the presence of
an input complicates the analysis significantly. For example, the existence of at least
one solution (namely z(k) = 0 for all k£ € N) for the homogeneous switched system is
always guaranteed, whereas this is not the case anymore for inhomogeneous systems.
Furthermore, the initial value can in general not be chosen independently from the
input.

To the best of our knowledge the only available rigorous solution theory for
(discrete time) inhomogeneous switched system is contained in the last part of the
conference contribution [21]. The well-posedness of the switched singular system is
shown for the jointly index-1 case, however, the solution formula for z(k + 1) does not
only depend on coefficient matrices at time k + 1 and k& (which one would intuitively
expect) but also on k — 1. Furthermore, necessary assumptions for solvability for given
switching signals and/or inputs have not been studied yet. The general case of time-
varying inhomogeneous descriptor systems in discrete time with By = I has however
been studied in [23] and is based on global transformations and the strangeness index;
the delicate interplay between the input space (given by Bj) and the switching signal
is however not discussed therein, neither is the important concept of causality with
respect to the switching signal considered.



Our goal with this contribution is to close this gap in the literature and provide a
comprehensive solution theory for switched singular systems (1). Therefore, we define
novel solvability notions that differ w.r.t. the role of the switching signal and the
inputs. In total this leads to nine different solvability notions which we are able to
fully characterize; these results are summarized in Figure 1.
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Fig. 1 Summary of the solvability characterizations; all implications and nonimplications are dis-
cussed in Section 6.

Furthermore, we propose surrogate systems (explicit systems that have identical
solution behaviors), which can be used to further analyze the system behavior (e.g.
reachability and stabilizability) in future work.

This article is structured as follows. In Section 2, we introduce the solvability
notions studied in this paper for system (1). These solvability notions are motivated by
the solvability issues discussed in Section 1. In Section 3, some concepts from algebra
are revisited. Some lemmas are also presented, which are used later in most parts of
the study. In Section 4, a key lemma presenting a necessary and sufficient condition
for a generic system of linear equations of system (1) is also presented here. This later
is used as the foundation to study the solvability of the switched system (1).

The main results for the solvability characterizations are presented in Section 5.
The next three sections present some (counter) examples, alternative approaches for
the solvability characterizations, and applications of the results for Leontief economic
models and discretized switched differential-algebraic equations.



Throughout the manuscript, we use the following standard notation. R and N
denote the real and natural numbers (including zero). For two subspaces V, W < R",
V @ W means the direct sum of V and W, in particular, ¥V n W = {0} is implicitly
required. For a (possible singular or rectangular) matrix A € R**" let im A be the
image (or range or column space) of A, ker A be the kernel (null space) of A, and
ATY(V) = {£eR™ | AE€V } be the preimage of A over a set V < R". For two
integers k1 < ko we define the “closed” (discrete-time) interval [k, ka] := {k1,k1 +
1,..., ks — 1,ko} and “half-open” interval [ki, ko) := {k1,k1 +1,... ks — 1}

2 Solvability notions

2.1 Classes of switching signals

In this study, we assume that the switching signal ¢ has the form
o(k)=o;ifke [k ki q),kjq >k, j=012... (3)

where k§ € N, j = 0,1,... are the switching times with the initial (switching)
time kj = 0 and o; € M. Note that the switching signal o is triggered only by the
time and not triggered by states or inputs, and furthermore, it can be seen as a
piecewise constant function (see Fig. 1 in [22] for an illustration). For every i € M, the
corresponding (nonswitched) system E;xz(k + 1) = A;xz(k) + B;u(k) is called the i-th
mode or subsystem.

Apart from unrestricted switching signals, there are two types of restricted switch-
ing signals: fixed mode sequences and fixed switching signals. Those three classes of
switching signals are described precisely as follows:

2.1.1 Arbitrary Switching Signals

The term “arbitrary switching signals” means only the set of modes M (and the cor-
responding family of coefficient matrices {F;, A;, B;}ien is known), and both mode
sequences and switching times are unknown. Thus, study results under arbitrary
switching signals are also valid for specific or constrained switching signals. How-
ever, the characterization of the solvability is in general not necessary when restricted
switching signals are being considered, and thus studies under restricted switching
signals are also crucial for switched systems.

2.1.2 Fixed Mode Sequences

A fixed mode sequence, denoted by (0¢,01,...) =: (05);=0.1,.. (for short just (c;)),
has the information of the initial mode which actives at the initial time k£ = 0 and
its subsequent modes in the future, however, the switching times are unknown. If a
finite time interval [0, K], K € N is under consideration, then a fixed (finite) mode
sequence on this time interval refers to (o9,01,...,05) =: (0j)j=0,1,....; (the short
notation (o;) can also be used together with the information of a finite time interval
being considered). Therefore, with respect to a fixed mode sequence, investigations are
done under a known mode sequence but with arbitrary mode durations. This implies



that results are valid for all switching signals with the same mode sequence. However,
in general, solvability for other switching signals with a different mode sequence cannot
be concluded.

2.1.3 Fixed Switching Signals

A fixed switching signal ¢ is uniquely determined by its mode sequence (og, 07, .. .)
and the sequence of mode durations (lfjJr1 — k;)j:0717,,_ defined as in (3). Mode oq is
referred to as the initial mode.

2.2 Causal solvability notions

In most practical applications and also from a theoretical standpoint causality is a
very important property. We therefore restrict our attention to descriptor systems
with certain causality properties. The key idea is that in order to determine the value
z(k) from the past, only information up to time k should be utilized (which includes
the actual equations but also the input). This viewpoint may seem a bit artificial for
the unswitched case (because the equations in the future are the same as in the past),
however, this viewpoint is quite natural when considering the switched case (in which
we are ultimately interested in), because there the future equations may be different
to the current or past ones. Furthermore, causality also means that a local solution
can always be extended into the future.

Definition 2.1 (Solvability notions w.r.t. fixed switching signal) (a) We call (1) with
given o locally uniquely causally solvable (short: solvable) w.r.t. a given input v : N —
R™ if for all ky < k; there exists a state trajectory z : [ko, k1] — R™ and some arbi-
trary z(k1 + 1) € R™ such that (1) is satisfied for k € [ko, k1]; furthermore, the solution
has to be causal in the sense that for every kj € [ko, k1] any solution on [kq, k}] can be
uniquely extended to a solution on [k, k1].

(b) We call (1) with given o (locally uniquely causally) solvable if it is solvable w.r.t. all
inputs.

(c) We call (1) with given o strongly locally uniquely causally solvable (short: strongly
solvable) if for all ko < ki, all xp € Sy(,) = A;(lko)(im[Ea(ko)7Bo(ko)]) and all
u : [ko, k1] — R™ there exists a unique z : [ko, k1] — R" with z(kg) = z¢ and some
z(k1 + 1) € R™ such that (1) is satisfied for k € [ko, k1].

Before further studying the necessary and sufficient conditions for solvability, we
would like to highlight some important aspects of the solvability notions.

Remarks 2.2 (Discussion of solvability notions) (i) The case kg = k; in the first solvabil-
ity definition is an important special case. In general, the system (1) with a given input
may not have a solution at all or may have a solution only for particular initial values. As
a trivial example consider the (non-switched) singular system Ex(k+1) = Az(k)+Bu(k)
with (E, A, B) = (0,0,1) which is not locally solvable on [k, ko] if u(kg) # 0. Exis-
tence of a solution on the interval [kg, k1] with k1 = ko simply requires that there is at
least one consistent initial value (which will in general depend on u(ko)). The required



unique extendibility then implies that the initial value problem for a given input has a
unique solution, provided the initial value is consistent with the initial input.

(ii) Causality is embedded in all three solvability definitions, which is deduced from requiring
existence of a unique solution on any interval [kg, k1] by only considering the equations
in (1) for k € [ko, k1] and without restricting the future value z(k; + 1) appearing in
(1) for k = k1. In particular, for k1 = ko + 1 this means that for a solvable system, the
value z(ko + 1) has to be uniquely determined by x(ko), u(ko) and u(kg + 1).

(iii) The solvability notions differ w.r.t. the relationship of the initial value to the input signal.
For solvable systems w.r.t. a specific input, it is only required that for this specifically
given u an initial value exists which is consistent with (1) (and for this initial value
there may be no solution for some other input signal); while for strong solvability it
is required that the initial value and the input can be chosen independently from each
others. Here the set S; := A;l(im[Ei, B;]) denotes the augmented consistency space of
mode i, i.e. it is the set of all possible zg for which some x; and some ug exists, such
that E;z1 = A;xo + Bjug-

(iv) It is also possible to define weak solvability by requiring that for all initial values in the
(augmented) consistency space there exists an input such that the system is solvable
w.r.t. that input and that initial condition. This solvability notion is highly relevant
when considering controllability and reachability, where usually the initial value is first
given and then one needs to find a suitable input. However, it turns out that in all situ-
ations (non-switched, switched with or without fixed switching signal) weak solvability
is equivalent to solvability. We therefore, do not further consider this solvability notion
here.

3 Preliminaries

3.1 Linear algebra preliminaries
Definition 3.1 (Projector) Let V, W < R" be two subspaces. Then
my:V+w -y

denotes any (not necessarily unique) projector such that H{?VV =YV and H\EVW =VnW.In
case V A W = {0} then T1}} is unique, furthermore, if V@ W = R" then I —I1}} = I1}},.

Definition 3.2 (Generalized inverse) For a matrix M € R™*", a generalized inverse of M

is defined as a matrix M+ € R™*™ that satisfies MMTM = M.

A generalized matrix inverse always exists but is not necessarily unique; one possi-
ble choice is the well-known Moore-Penrose pseudoinverse [24]. Furthermore, for two
generalized inverses M; and My of M, we have that (M; — Ms)y € ker M for all
y € im M. In particular, for calculations, the well-known Moore-Penrose inverse can
be used, for which efficient algorithms are available in the literature, e.g. by using a
singular value decomposition [25]. Furthermore, it is easily seen that M M ™ restricted
to im M is the identity map, in particular, we have

MM*m=m VYmeimM (4)



and, for any matrix M with im M C im M,

MM*M = M.

Lemma 3.3 (Preimage property) For any matriz M € R™ ™ let M T be some generalized
inverse of M; furthermore, let y € R™ and let V < R" be a subspace.

(a) If y € im M, then
My} = {M Ty} + ker M.

(b) If {y} +V) nim M # & then
M~ ({y} + V) = (M, + MY

Proof (a) This property is well known, for proof see e.g. [22, Lem. 2.2].

(b) First observe that ({y} + V) nim M # ¢ implies that y € V + im M and hence § :=
Hxn Yy € im M is indeed well defined. Now the following equivalences hold:

xeM*l({y}JrV) — JweV: Mr=y+v=9+y—9+v
— WeVnimM: Mx=9g+7
— JoeVnimM:ze M ' ({§+0})
@ (Mt + M5} + ker M
@ oty Mo
— :Jce{M+g7}+M_1(VmimM)
—= ze{Mtg+M V. O

The following lemma provides a property of an intersection of two affine sets and
the representation of the intersection via a projector.

Lemma 3.4 (Intersection of affine spaces) Consider sets Z,U € R™ and subspaces V, W <
R™. Then, for all pairs (z,u) € Z x U, ({z} + V) n ({u} + W) is a singleton if, and only if,

U-ZcVow,
where U—Z ={u—2z | z€eZ,ue U }. In that case,
({2} + V)~ ({u}+W) = {H%ﬁv(u—z)—i-z} = {H%(z—u)—i—u}. (5)

Furthermore, if V + W = R", then ({z} + V) n ({u} + W) is always non-empty and is a
singleton if, and only if, V n' W = {0}; in that case

({2} +V) A ({u} + W) = {Mu + 2} (6)



Proof Step 1: We show that the intersection ({z} +V) n ({u} + W) is nonempty for all pairs
(z,u) e Zx U if, and only if, U-Z SV + W.

Step 1a: Necessity.

Seeking a contradiction, assume U — Z & V + W, i.e. there exists (z,u) € Z x U with
u—z € U—Z which is not in V+W. By assumption there exists = € ({z}+V)n ({u}+W), hence
there are v € V and w € W with x = z + v = u + w. But this impliesu —z=v—-—weV+ W,
which contradicts the choice of u and z.

Step 1b: Sufficiency.

Pick an arbitrary pair (z,u) € Z x U, then by assumption v — z € U — Z < V + W. Choose
v € V and w € W such that u — 2z = v + w. Then z 4+ v = u — w € {u} + W. Hence,
z4+ve ({z} +V)n ({u} + W), ie., the latter intersection is not empty.

Step 2: We will prove that if ({z} + V) n ({u} + W) is non-empty for at least one pair
(z,u) € Z x U then ({z} + V) n ({u} + W) is at most a singleton for all pairs (z,u) € Z x U,
if, and only if, V n W = {0}.

Step 2a: Necessity.

Seeking a contradiction, assume that V n W # {0} and choose 0 # p € V n W. Choose
some z € Z and u € U for which ({z} + V) n ({u} + W) is non-empty and choose
z € ({z} + V) n ({u} + W). Then there are v € V and w € W with ¢ = z +v = u + w.
Since z+v+p = u+w+pand v+p € V as well as w+ p € W we arrive at
z+v+pe ({z} +V)n ({u} + W), and since z + v+ p # z + v, the set ({z} + V) n ({u} +W)
is not a singleton (and also not empty).

Step 2b: Sufficiency.

For some z € Z and u € U for which ({z} + V) n ({u} + W) is non-empty, let
z1,z2 € ({#} + V) n ({u} + W). Then, there exists vi,v2 € V and wij,wy € W
with 1 = 2z 4+ vy = uw + w; and z9 = 2z + vg = wu + wz. Consequently,
x1—x2 = 2+v1 —z2—v2 =u+w —u—wy = v —vy = wy — wz. Consequently
v] —vg = w; — w2 € VW = {0}, which implies z1 = zg, i.e., ({z} + V) n ({u} + W) is a
singleton.

Step 3: We show (5).

Let u—2€eU—-Z < V@®W and choose (unique) v € V and w € W such that u — z = v + w.
Then @ := v+ z = u — w € ({z} + V) n ({u} + W). Furthermore, from 11}y (u — z) = v and
I}, (2 —u) = —w we can conclude that H\‘ZV(U*Z)+Z =vtz=r=u—w= H}fv(zfu) +u
as desired. (]

Note that we will later on rewrite the right-hand sides of (5) as
MY (u—2)+2z=TYu+ (I-11)z,

which is only well defined if we extend the projector H{/,V uniquely defined on V @ W
to a projector defined on the whole space R™. This extension is in general non-unique,
and if V@ W is not the whole space it is not possible to preserve all of the following
properties of a projector

imIY =V, kerIlY =W, (I-1Y)=T1,,.

In particular, (6) does not hold for a general extension of the projector II}Y to R™.



We conclude this subsection by highlighting a property of projectors which we will
utilize later.

Lemma 3.5 Let Vi, Vo, W € R™ be subspaces such that V; ®W = R"™ fori = 1,2. Then for
all x € V1 we have for the corresponding projectors HE\: onto V; along W that

HE\iHE\;x = .

Proof From H%ﬁ\;x — x € W together with Hb‘fm = x we have

W W W W
HV1HV2$ —T= HV1 (HVZ‘I: - 1‘) =0.

3.2 Index-1 notions
3.2.1 Matrix pairs (E, A) and matrix triplets (E, A, B)

A matrix pair (E, A) € R"*™ x R"*™ is called regular, if the polynomial det(sE — A) €
R[s] is not identically zero. It is well known that this is equivalent to the existence of
two invertible matrices S,T € R™*™ such that

(SET,SAT) = ([é ](\),] : [‘g ?D , (7)

where J € R™7*™7 ig some matrix and N € R"¥ X"~ ig a nilpotent matrix (i.e. there
exists ¥ < ny with N¥ = 0). Following [26] we call (7) the quasi-Weierstrass form
(QWF) of the matrix pair (E, A). Furthermore, the indez of a regular matrix pair
(E,A) is defined as the nilpotency index of N in the corresponding QWF (7); in
particular, (E, A) is index-1 if, and only if', N = 0. In that case it can be easily seen
that T = [V,W] and S = [EV, AW ]!, where V and W are full column matrices such
that
imV =8:=A"(imE) and imW = kerE.

The property of index-1 will play a central role in the remainder of this work and we
therefore present several equivalent characterizations.

Lemma 3.6 (Index-1 characterizations) Consider a matriz pair (E, A) € R™*"™ x R™*"™ and
let S := AL (im E). Then the following statements are equivalent to (E, A) being regular and
indez-1.

(IC1) S nker E = {0}.
(I02) S @ker E = R™.
(IC3) degdet(sE — A) = rank E.

1This characterization is formally not correct, because if N is a 0 x 0 matrix (which is the case if E is
invertible), then NO = Ioxo = Ooxo- However, since all of our results concerning index-1 remain valid if E
is invertible, we choose to include the index-0 case in our index-1 definition.
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Az Ay
PEQ = [6 8] (with matching block sizes in PEQ and PAQ).

(IC4) Ay is invertible in [Al Aﬂ := PAQ where P,Q are invertible matrices such that

(1C5) [g;ﬁ] is invertible, where [g;] is invertible such that [g; ] E = [SBE] and S1E
has full rank (i.e. im Sy =ker E' or ker So = im E).

Proof The equivalent characterizations (IC1) and (IC2) are well known, see e.g. [27, Lem. 2.9].
The characterization (IC3) follows from the QWF and that det(sE — A) = cdet(sI — J);
consequently deg det(sE— A) is the size of the J-block in the QWF and rank E is equal to that
size if, and only if, N = 0. Utilizing the Schur-complement, it is easily seen that (F, A) has a
QWF with N = 0 if, and only if, A4 in (IC4) is invertible. For the last equivalence, we first

observe that by construction S1E has full row rank, hence [g;] imE = im [SBE] =im[{].

Consequently,

—1 -1
_ S S1 | _ | S14A . Il _
s=([2]a) ([&]mE)=[84] m[{] = kersas
Therefore, we have S n ker E = ker SoA N ker SE7, from which equivalence between (IC1)
and (IC5) can be concluded. O

For a matrix triplet (F, A, B), the index-1 notion remains the same, but we also
introduce the notion of strictly index-1 as follows.

Definition 3.7 A matrix triplet (E, A, B) is called
(i) index-1 if (E, A) is (regular and) index-1,
(ii) strictly index-1 if (E, A) is index-1 and im B € im E.

Remark 3.8 With S := Ail(im[E, B]) it is possible to equivalently express strictly index-1
for (E, A, B) as

ker E®S = R". (8)
Necessity is clear because im B € im E implies that S = S and sufficiency follows from first
observing that (8) together with S € S implies ker E n S = {0}, i.e. (8) implies regularity
and index-1 of the matrix pair (E, A). Now by utilizing S and T in the QWF (7) with

SB =: [ngr} we can see that (8) implies By = 0 which is equivalent to im B € im E.

3.2.2 Family of matrix triplets {(E;, A;, B;)}ien

In the solvability characterizations of system (1), we also utilize the so-called index-
1 notions for a family of matrix triplets {(F;, A;, B;)}ien (already indicated in
Fig. 1). Those index-1 notions are defined according to the switching signal under
consideration.

We first define index-1 notions for a fixed and given switching signal ¢ of the form
(3) as follows:

Definition 3.9 A family of matrix triplets {(E;, A;, B;) }ien is called

11



(i) switched index-1 w.r.t. o if
1) imB; < im[Ei, A7] VieM,
2) Ro(k) + So(k+1) S ker Ey(3) ® Sy(r41) VEEN,

where R R
Ri:= B (m[A;, Bi),  S; = A7 (im[E;, By])
(ii) switched strictly index-1 w.r.t. o if
1) im B; € im E; Vi e M,

2) ﬁa(k) < ker B, (1) @gg(;H_U Vk e N.

By imposing the switched index-1 conditions to all switching signals from a par-
ticular mode sequence, we define the index-1 notions for a mode sequence (o) as
follows:

Definition 3.10 A family of matrix triplets {(E;, A;, B;)}ien is called
(i) sequentially index-1 w.r.t. (o) if
1) (E;, A;) index-1 Vi e M,
2) Ro; + So,01 S ker B, ®Ss,,, VjeN.
(ii) sequentially strictly index-1 w.r.t. (o;) if
1) (E;, A;, B;) strictly index-1 Vi € M,
2) Ro, S ker Eo, ®8o,,, VjeN.

Finally, we define the index-1 notions for {(E;, A;, B;)}ien w.r.t. arbitrary switching
signals as follows:

Definition 3.11 A family of matrix triplets {(Ej;, A;, B;)}ien is called
(i) jointly index-1 if ker E; @ S; = R" Vi, jeN,
(ii) jointly strictly index-1 if ker F; @ §j =R" Vi,jeM

Remark 3.12 Note that in all three strict index-1 notions defined above, we have that
S; = S§; because im B; < im Ej; (for the jointly strictly index-1 case cf. the discussion after
(8)). Since the latter is explicitly required for the switched and sequential index-1 property, we
could also replace §j by §; in Definitions 3.9(ii) and 3.10(ii). Nevertheless, this replacement
is not possible for the jointly strictly index-1 definition, unless we explicitly add the condition
im B; € im E;. Furthermore, every non-strict index-1 notion becomes strict, if, and only if,
im B; € im Ej.

12



4 A key lemma

The causal solvability notions lead to the consideration of the following set of two
equations:

Eox1 = Aozo + Bouo, (9a)
Fixo = Ajxq1 + Biuq, (gb)

where Ey, Ag, E1, A1 € R"*™ By, By € R"*™. The key question now is whether for a
given xg, ug, u1 there exists x1 and x5 such that (9) is satisfied and that x; is uniquely
determined by xg, ug, u1.

Inspired by Definition 2.1, we call (9) solvable w.r.t. ug,u; € R™ if for all zg
consistent with (9a), i.e. for all 2o € SY° := Ay (im Ey — {Bouog}) (assumed to be non-
empty), there exists a unique x; € R”™ and some x5 € R™ such that (9) holds; we call
(9) solvable if it is solvable for all ug,u; € R™. Finally, we call (9) strongly solvable if
for all zg € 3‘0 = Agl(im[Eo, Byp]) and all ug,u; € R™ there exists a unique x; € R"
and some x5 € R™ such that (9) holds.

Lemma 4.1 The linear system of equations (9) is solvable w.r.t. ug,uy if, and only if
Boug € im[Ep, Ag], Biuj € im[Eq, 41], (10)
Ry — 81t Sker Eg @ S, (11)

where
RU0 = Ey ! (im Ag + {Bouo}),
S i= AT (im By — {Biut}),
S :=8) = A7 (im Ey).
In that case, for any wg € S)° := A(;l(im Ep — {Boug}) the unique solution is given by
z1 = ®1,0z0 + 1 guo + U1 0u1, (12)
where
@0 = ST PO EF TN 20 Ay,
WS o o= 1§ 70 B IR 10 By,
U= (TP — nAF IR 1 By

Proof Clearly, (10) is necessary for the existence of zg, x1, 2 such that (9) is satisfied. Under
this assumption, we have that the sets S)° and S;"* are both nonempty. Furthermore, for
any g € 56“’ we can conclude that Azg + Bug € im Ey and hence the set
s —1
Ry»" = Ey {Azo + Bug}

is also nonempty. Now, z satisfies (9a) if, and only if, z1 € Eo_l{Amo + Bug} = Rg"’uo and
x7 satisfies (9b) for some 9 if, and only if, z; € Al_l(im E1 —{Biu1}) = 81" Consequently,
solvability of (9) w.r.t. ug, u1 is now equivalent to

RGO A St (13)
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being nonempty and a singleton for all g € Sj°. Using Lemma 3.3 (part (a) for Rgo’u‘) and
part (b) for S{''), we can rewrite (13) as

(ker Eg + {Eg (Aowo + Bouo)}) n (AT (im Ey) — {ATTI™ 21 Buy }). (14)

im Ay
According to Lemma 3.4 with z = EJ(AOxO + Boug), Z = {2z}, V = kerEp, u =
—Afmm 2 Biui, U = {u} and W = A]*(im E1), the set (14) is nonempty and a singleton
if, and only if

{ET (Aomo + Bouo)} + {A] T EY Biug} < ker By @ Sy (15)

imA1

Adding ker Ey and S; = Afl(im E1) on the left side of (15) results in an equivalent set
relation ship and using Lemma 3.3 backwards (part (a) for the first and part (b) for the
second) we obtain

{EJ(A()I‘O + Boug)} + ker Ey = Eo_l{ono + Bouo},
(AT B By + AT (im By) = AT (im By + {Biui}) = =83,

im Ay
consequently, (15) is satisfied for all zg € Sy° if, and only if
Ey ' (AoSE° + {Boup}) — i < ker Eg @ A7 (im By), (16)

where we also used that Uxoesgo Eal {Aozo+ Boug} = Eal (AOSgo +{Bouo}). The condition
(16) is in fact identical to (11), because

Rgo = Eo_l(im Ao + {Bouo})
= Ey* ((im Ag + {Boug}) n im Ej)

(i)Eo_1 (im Ap n (im Eg — {Bouo}) + {Bouo})

= By (AoS5° + {Bouo}) .

where (x) follows from the general property M n N = ((M — {p}) n (N — {p})) + {p} for any
sets M, N € R"™ and any point p € R"™. If the intersection (14) is indeed nonempty and a
singleton, then Lemma 3.4 (with V, W, u, z as above) implies that the unique element z; in
that intersection is given by

w1 = 1§ (S (Aozo + Bouo) + AT T 5 Brua ) — AT TR 5 By,

im Aq

which is the claimed solution formula after taking into account that Agzg + Boug € im Fy

and hence Agzg + Boug = Hiﬁ gg (Apxo + Boug). O

Remark 4.2 From the proof of Lemma 4.1, it becomes clear that condition (11) is equivalent
to
im A im E
Ro + {Eg i 50 Bouo + AT T 3 Biup } € ker Eg @ S,
where Rg := Rg =E; 1(im Ap), which may be more practical because the involved subspaces
and matrices can be calculated independently of ug and w. In particular, we can immediately

conclude the condition Rg € ker Ey @ Sy for solvability of the homogeneous case of (9).

As a direct consequence of Lemma 4.1, we have the following characterization for
the solvability (for all ug and all u1) of (9):

14



Corollary 4.3 The linear system of equations (9) is solvable if, and only if
im By S im[E(), AQ], imB1 € im[El,Al], (17)

7:\5,0 + 31 c ker £y @ S1, (18)
where R R
Ro = Ey '(im[Ag, Bo]), &1 := Ay (im[Ey, B1]).

Utilizing the characterization for the solvability above, we can now derive the
characterization for the strong solvability as follows.

Lemma 4.4 The linear system of equations (9) is strongly solvable if, and only if
im By € im Eg, imB; € im[Fq, Aq], (19)

Ro+ 381 Cker Eg ® Sy (20)
Furthermore, if in addition to im By € im Eg also im By € im Eq, then (strong) solvability is
equivalent to R R
Ro € ker Eg @ S1
and the solution formula simplifies to

C
z1 = ®1,070 + P71 0uo

Proof For strong solvability of (9), the first equation (9a) must be solvable for zg = 0 € Sp and
all ug € R™, which immediately implies that im By < im Ej is necessary for solvability. With
this restriction, the characterization for strong solvability is equal to the characterization of
solvability. If additionally im By € im By then S; = A7 (im E1) = A7 (im[Eq, B1]) = S
from which the simplified characterization immediately follows. Finally, \If‘f}o = 0 follows
from ATH% ii im By € &1, because im By € FEp implies, by definition, Hﬁ ii imB; <
im 1 nim A; and because 81 = A;l(im EinimA;) = A{r(im E; nim Ap) + ker A;. |

0?00 011({ (1)
Bo= |B004]. o= [BR0Y]. mo-[4].
0001 0001 0
Lo e 8
El:[moo]v Al:[oom]v Bl—[1]
0110 0000 0
We first see that neither (Eg, Ag) nor (E1, A1) are regular (because each pair has a common

zero-column), but im[Ey, Ag] = R™ = im[FE1, A1], hence condition (10) is satisfied for any
choice of up,u; € R (and in fact, for any choice of By, B1). In order to check the solvability
condition (11) we first calculate

1 10 100
kerE0=im[8], 81=A1_1(imE1)=im[%8] and kerEo(-BS'l:im[g%g].
0 01 001

Furthermore, utilizing Lemma 3.3(b) we have

. 1
R4° = Ey ' (im Ag + {Bouo}) = Ey " im Ag + {Eq I 20 Bouo} = im [§ ] + {[ 80]},
1
1
0

S = AT (im By — {Biu1}) = A7 (im Ep) — AT 82 Biuy = im [

im Ay
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whzre we have chosen Ej = Hﬁ 28 = Ep and Af = Hﬁ Ei = Aj. The condition (11) now
reads as

TN 194

. u .

1m[010]+{[u2]}§1m[010],
001 0 001

which is satisfied if, and only if, ug = u;. Now assume ug = u; = 1 and we want to find a
specific solution for a given consistent xo. We first calculate the set of consistent initial values

% - {[H]}

] . Note that

—=Oo
[ =lele]

Syo = Ayt (im Eg — {Bouo}) = Ay ' (im Eo) — AJTI™ £° Byug = im

im Ag

=

—

0
3
3
0

where we have chosen Aa‘ = % [

| — O
8 8 8
~— OoOhrOWONOH

im Ag

[s=]ele]dV] o
=0

000 .
888] and AgAJ = mmho
222

8 /— ooo~
———_—0
==

86“] = Sp, hence any consistent initial value xg is given by zg = with a:% = —mg.

1
Consider now the consistent xg = [8], then the unique x satisfying (9) for up = u; = 1 is

1
given by (12), where

Ker E 0010 0001 . 0 o 1
o = [ B0 1E] andnence @10 | 8081 |, wio- [8]. wio-|{].
0001 0001 0 0
2
resulting in z1 = [%] . It can easily be verified that Foxr1 = Agxo + Boug and that Ajxq +
1
Biuj € im Eq, which shows that z; is indeed a solution of (9). Note that Ro + S; = R* ¢
ker Eg @ S1, which means that according to Corollary 4.3 (Lemma 4.4) the system (9) is not
(strongly) solvable.

5 Solvability characterizations

Recall the switched system (1) together with the solvability notions in Definition 2.1.
The proof of Lemma 4.1 provides the key argument for the solvability characterizations
of (1). By extending the arguments of this lemma to the switching signals under
consideration, the characterizations can then be derived straightforwardly.

5.1 Solvability characterizations for given switching signals

We first are interested in obtaining the weakest possible condition which guarantees
solvability for a given switching signal and given input. Surprisingly, for a fixed switch-
ing signal and fixed input, neither index-1 nor regularity for each individual mode is
necessary anymore. In fact, based on Lemma 4.1 and Remark 4.2 we arrive at the
following solvability characterization, where we use the following notation:

Si:=A7'(imE;) and R;:=E;'(im4;), forieM.

Proposition 5.1 (Solvability w.r.t. o and w.r.t. u) System (1) with given switching signal
o and with given input u is (locally uniquely causally) solvable if, and only if, for k =0,1,...

Bg(k)u(k) € im[Ea(k),Aa(k)] and (21)
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Rok) + {Bg(k)u(k) + B2 (oynyulk + 1)} < ker B, (1) @ S (hs1) (22)

where ]
BS = BT /B and  Bf = AT B,

In that case, © is a solution on [ko, k1] if, and only if, the corresponding initial value x (ko)

satisfies x(ko) € Sy(ky) — {B;(ko)u(ko)}, and x satisfies (the surrogate system)

a(k +1) =Py (14 1),0(k) (k) + V5 (i 1),0(6)4(R) + Vo (1), 0 (k) u(k + 1) (23)
where, fori,j €M,
ker E; imA;
@ =g JEjH;QE;Aj,
wE =1 B, ¢ =g DBy,

In particular, for all k, (k) € Sy () — {Bg(k)u(k)}.

Proof We first observe that (1) being solvable w.r.t. o and u implies that A;(lko) (im Eg(gy) —

{Bo(ko)ul(ko)}) = suko) i non-empty for all kg € N and that (ko) = xo is a solution of (1)

o (ko)
on [ko, ko] for all z¢ € S (ko)

o(ko)’
for all xg € SZ((::;)) there exists a unique x1 € R" such that x(kg) = z¢ and z(k1) = z1 is a

solution of (1). In other words, for all zg € S:((:S))
9 € R™ such that

Solvability, in particular unique extendability, implies that

there exist a unique x1 € R™ and some

Eo(ko)®1 = Ag(kg)T0 + Bo (ke) u(ko),
Eoko+1)®2 = Ag(ro+1)T1 + Ba‘(k0+1)u(k0 +1).

Now Lemma 4.1 together with Remark 4.2 implies that (21) and (22) are necessary for
solvability w.r.t. to ¢ and u.

Sufficiency is clear by simply recursively extending a solution found on [ko, k1] to
[ko, k1 + 1] by solving

Ey(k)T1 = Ag(ry (k1) + Bo(ryyu(kr),
Es(ky+1)%2 = Ag(ky+1)T1 + Bo (g, 1yulks +1).

for 21 and setting z(k; + 1) = z1; Lemma 4.1 together with Remark 4.2 ensures the unique
existence of such an x7. O

Remark 5.2 (Homogeneous case) When considering the homogeneous case, i.e. (1) with
u = 0 (or B; = 0), we immediately see that the inhomogeneous solvability characterization
from Theorem 5.1 reduces to

Reok) € ker Eg 1) @ So(k+1)
or equivalently (by Lemma 3.3(a))
E ) (im Egxy 0 im Ay 1)) S ker Eg () @ Sy (1 41):

which is the switched indez-1 condition for homogeneous systems already reported in [22].
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Corollary 5.3 (Augmented consistency space) Consider the switched system (1) with a fized
switching signal and assume it is solvable for all inputs. The space of all consistent initial
values z(ko) at ko is given by im Bg(ko) + So (ko) which is equal to

So(ko) = A;(lko)(im[Ea(ko)vBa(ko)]'

Proof We have that
Sotee) = U Ag () ({Bo(ko)t} +im Eg 1,))-
ueR™
From (21) it follows that ({ By (k,)u}+im Eg(g,)) nim A, (1) # & and hence by Lemma 3.3(b)
we have .
Sothe) = | UBS (o)} + Soho)) = im B 10y + Ser(o)- O
ueR™
Now, from Corollary 4.3 and the switched index-1 notion in Definition 3.9, it
becomes clear that switched index-1 is the necessary and sufficient condition for the
solvability of (1) for a given switching signal (and arbitrary inputs).

Corollary 5.4 (Solvability w.r.t. o) The switched system (1) with given switching signal o
is (locally uniquely causally) solvable for all inputs if, and only if, {(E;, A;, B;)}ien is switched
index-1 w.r.t. the given o. If solvable, the surrogate system (23) is also valid.

Proof This follows straightforwardly from Proposition 5.1 by observing that validity of the
conditions (10) and (11) for all ug, u; € R™ is equivalent to the condition for switched index-1
w.r.t. o. 0

Similarly, from Lemma 4.4, it also becomes clear that switched strictly index-1
is the necessary and sufficient condition for the strong solvability of (1) for a given
switching signal.

Corollary 5.5 (Strong solvability w.r.t. o) System (1) is strongly solvable w.r.t. a given
switching signal o if, and only if, {(E;, As, B;) }ien is switched strictly index-1 w.r.t. the given
o. If solvable, the surrogate system (23) is also valid with \Ilf] =0.

Proof Clearly, (1) is strongly solvable if, and only if, it is strongly solvable on each interval
[k, k + 1]. Using Lemma (4.4), we can therefore first conclude im By () S im E,yy for all
keN. Consequently, we can use again Lemma 4.4 to conclude that solvability is equivalent
to Ry(k) S ker By () @ So(r41), i-e. the familiy {(E;, A;, B;) }ien 1s switched strictly index-1
w.r.t. o. O

Remark 5.6 (Augmented consistency space) We have established in Corollary 5.3 that the
set of initial values at time ko for which a solution exists is given by S;(x,). However, for

solvable systems, it is not possible to choose zg € §U(ko) independently from the input u(kg).
This motivated the definition of strong solvability. However, as it turns out, strong solvability
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implies that im By (1) S Eg(g,) so that the augmented consistency space §a(k0) is equal
to the (homogeneous) consistency space Sa(ko)' Consequently, the possibility to choose an
initial value outside the homogeneous consistency space comes with the limitation that then
this initial value cannot be chosen independently from the input.

5.2 Solvability characterizations for given mode sequence

We now consider the case that only the mode sequence (¢;);en of the switching signal
is known (and given by (3)), but the mode durations are unknown. This situation is
quite common in practice when considering single faults, whose occurrence is known
(or predicted), but it is not known when the fault occurs.

We can now utilize the already obtained result for solvability for fixed switching
signals to conclude the solvability characterization for fixed mode sequences (with arbi-
trary switching times), however, in order to obtain a simple characterization we have
to consider the case of arbitrary inputs. The reason is, that for a specific input u the
solvability condition (22) relates the input value u(k) (and u(k+1)) at the current time
k with the switching signal o(k) (and o(k + 1)) which is not directly possible anymore
when the switching times are not known; however, see the forthcoming Remark 5.8(i).

Corollary 5.7 (Solvability w.r.t. (¢;)) The switched system (1) with a given (surjective)
mode sequence (o) is solvable (for all inputs u) if, and only if, {(E;, A;, B;)}ien is sequentially
index-1 w.r.t. the given mode sequence. In that case, x is a solution on [ko, k1] if, and only if,
the corresponding initial value x(ko) satisfies x(ko) € Sg(1,) — {Bg(ko)u(ko)}, and x satisfies
the surrogate system (23).

Proof 1t is clear, that property 2) of sequentially index-1 w.r.t. switching sequence (o)
implies property 2) of switched index-1 for all switching signals ¢ with switching sequence
(o). Furthermore, (regularity and) index-1 of each (E;, A;) implies that im[F;, A;] = R™
(this is a simple consequence of the QWF (7)) which shows the sufficiency part of the proof.

To show necessity, we first consider property 1) of sequentially index-1, i.e. the condition
that (E;, A;) is index-1. By assumption the mode sequence (o) is surjective, i.e. we can choose
a switching signal o with sequence (o;) such that there exists kg with o(ko) = 7 = o(ko + 1).
Since, the switched system is solvable for that specific switching signal, property 2) of the
switched index condition has to hold, in particular {0} = ker Eg(ko) " Sa(ko+1) = ker E;nS;.
Then Lemma 3.6 implies that indeed (E;, A;) has to be regular and index-1. Necessity of
property 2) of the sequential index-1 property follows by considering (the necessary) condition
2) of the switched index-1 property for kg such that o(ko) = 0; and o(ko + 1) = gj41. O

Remarks 5.8 (i) It is possible to formulate a characterization of solvability w.r.t. a fixed
mode sequence and a fized input by defining first

J(k)::{jeM

do with mode sequence
(o) s.t. 0 = (k)

This set describes which modes can be active at time k. For example, for a periodic mode
sequence (0,1,2,3,0,1,2,3,...) we have that J(0) = {0}, J(1) = {0,1}, J(2) = {0,1,2}
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and J(k) = {0,1,2,3} for all k£ > 3. Then (22) has to be replaced by
Ro; + {Bs,u(k) + By, ,u(k +1)} S ker By, ® So,,, Yk =0Vje J(k).

Tit+1
Additionally, regularity and index-1 for each mode need to be assumed, which then
implies that Bg u(k) € Ro;, so that the dependence on u(k) can be removed.

(ii) The characterization for solvability in Corollary 5.7 can be generalized to the situation
where the allowed mode sequences are given in a more complicated way, e.g. by a directed
graph with nodes {0, 1,...} and where the edges describe which mode transitions are
possible. The pairs (0, 0;41) then need to be replaced by all possible mode pairs (v, w)
which are edges in the graph. For a full graph, the jointly index-1 condition is then
recovered.

(iii) When considering the homogeneous case (i.e. B; = 0), the definition of sequential
index-1 from [22] is recovered.

Corollary 5.9 (Strong solvability w.r.t. (c;)) System (1) is strongly solvable for a given
mode sequence (0;) if, and only if, {(E;, A;, B;)}ien is sequentially strictly indez-1 w.r.t. (o;).
If solvable, the surrogate system (23) is also valid in this case.

Proof Strong solvability w.r.t. (¢;) implies solvability w.r.t. (c;) as well as strong solvability
w.r.t. any switching signal o with mode sequence (o;). Hence, combining Corollary 5.7 with
Corollary 5.5 shows that both sequential index-1 w.r.t. (5;) as well as switched strictly index-1
w.r.t. any o with mode sequence (o) are necessary. However, this implies that (E;, A;, B;)
needs to be strictly index-1 for all ¢ € M and that §Uj+1 = So;,1, 50 that condition 2)
of sequential index-1 becomes condition 2) of sequentially strictly index-1; concluding the
necessity part of the proof.

For sufficiency, we observe that sequentially strictly index-1 w.r.t. (o;) implies switched
strictly index-1 w.r.t. all ¢ with mode sequence (o), which in turn, using Corollary 5.5,
implies strong solvability w.r.t. all o with mode sequencence (o), i.e. strong solvability w.r.t.

(5)- 0

5.3 Solvability for arbitrary switching signals

From the previous characterizations, intuitively, the jointly (strictly) index-1 notion is
the necessary and sufficient condition for the (strong) solvability of (1) for arbitrary
switching signals, and this is indeed true.

Corollary 5.10 (Solvability for arbitrary switching signals) The switched system (1) is
solvable for all switching signals if, and only if, {(E;, A;, B;) }ien is jointly index-1.

Proof Sufficiency follows from the fact that jointly index-1 implies property 2) of switched
index-1 trivially for all switching signals. Furthermore, regularity of (E;, A;) (implied by
jointly index-1) implies that im[F;, A;] = R™ and hence property 1) of switched index-1 is
also trivially satisfied. Consequently, the switched system is solvable for arbitrary switching
signals.
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For necessity, we can conclude similar as in Corollary 5.7 that indeed (E;, A;) must be
(regular and) index-1, which implies that ker F; ® S; = R™. Furthermore, solvability implies
that ker E; n'S; = {0} for all ¢, j € M. Now, a simple dimensional argument (see [21, Lem.
3.3]) shows that indeed ker E; @ S; = R™ as required. O

Remark 5.11 (Solvability for arbitrary switching signals and w.r.t. u) It follows that (1) is
solvable for all switching signals and w.r.t. a given u if and only if {(E;, A;, B;)}ien is jointly
index-1. This is due to the regularity and index-1 requirement for each mode, i.e., ker F; ®S;
must be equal to R"™. This means that the solvability conditions (21)-(22) hold for a particular
input if and only if it holds for arbitrary inputs.

Corollary 5.12 (Strong solvability for arbitrary switching) System (1) is strongly solvable
for all switching signals if and only if {(E;, Ai, B;)}ien is jointly strictly indez-1. If solvable,
the surrogate system (23) is also valid with Vi ; = 0.

Proof By Remark 3.12 we see that jointly strictly index-1 implies that im B; € im E; for
all 4 € M and hence jointly strictly index-1 implies switched strictly index-1 for any o. By
Corollary 5.5, (1) is therefore strongly solvable for any o.

Conversely, strong solvability for arbitrary switching signals implies strong solvability for
any mode sequence, which, by Corollary 5.9 implies sequentially strictly index-1 for arbitrary
mode sequences. This implies im B; € im F; and hence §; = §;. Furthermore, as already
observed in the proof of Corollary 5.10, ker E; n S; = {0} for all 4,5 € M implies R" =

ker E; ®S; = ker E; ® §j7 which is jointly strictly index-1. (]

5.4 Explicit solution formula

From the establishment of the surrogate system (23) for solvable systems (with ¢, =
0 for strongly solvable systems), we can define the transition matrix of the switched
system as follows:

Qo (k1,k0) 1= Poy),o ks —1) Po(ler—1),0(k1—2) " * Po(ko+1),0(ko)

for k1 > ko and ®(ko, ko) := I. Clearly, for homogeneous systems, we have that the
solution is given by x(k) = ®,(k, ko)wo for every consistent xg € Sy (k)
Furthermore, for k > ¢ > 0 let

0,(0,0) := 0,

U, (k,0) := O, (K, 1)¥7 ,

\Ijo(kaé) = (ba(kag + 1)\112(2+1),0(Z) + (I)U(k’é)\pa(f) o(f—1)»
o (k, k) := VU7 1) o(r—1)
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Then the explicit solution formula of a general solvable system (1) is given by

E
2(k) = B (k, 0)zo + Y Wo(k, j)u()) (24)
j=0
where xg € S:((g)) for solvable systems or with xg € §g(0) = S, (o) for strongly solvable
systems.

6 (Counter) examples

All implications depicted in Fig. 1 are rather obvious and can be seen directly from the
solvability definitions, i.e., with respect to switching signals, solvability for all switching
signals implies solvability w.r.t. all mode sequences and the latter implies solvability
of a specific switching signal with a given switching sequence. Similar observations
also apply to solvability with respect to inputs.

Meanwhile, some of the nonimplications can be deduced directly from the homo-
geneous case (with u = 0 or with B; = 0, see Examples 3.6 and 3.7 in [22]). Now, we
provide counter-examples for the rest of the nonimplications.

Example 6.1 (Solvability w.r.t. o and u) Consider the switched system (1) with

(Eo, A0, Bo) = ([11].[86]-[8])>
(Br, A1, B1) = ([96].[19].[1])-

Note that after some simple row and column operations this example is a combination of
the second (scalar) example discussed in the introduction (showing that solvability depends
on the input) and the scalar singular system 0 = 0 (which if active only for one time step,
can still be part of a solvable switched system). Using Corollary 5.1 we will now show that
this switched system is solvable w.r.t. the switching signal ¢(0) = 0, o(k) = 1, k > 1 and
w.r.t. the input u(k) = (—1)k, k = 0, but is neither uniquely solvable for arbitrary switching
signals with mode sequence (0,1) (and the same fixed input), nor is it solvable for arbitrary
inputs (and the same fixed switching signal). First, observe that

ker Eg = im [_11] , So = ]1%27 Ro = im [_11] ,
ker By = R?, S; = {0}, Ri=R>
Clearly, the first solvability condition (10) of Corollary 5.1 is satisfied; in order to check the
second splvability condition (22), we first calculate Ef = $[11], A =[149], I ‘gg =
[13]. Hﬁgi =[{ 9] Then (22) for k = 0 reads as
. 0)/2+u(1 .
im [ 3]+ {[“OorsP ]} cim[ 1] @0}
Plugging in u(0) = 1 and u(1l) = —1, we see that this condition is indeed satisfied. Since
ker 1 @ S1 = R"”, condition (22) is also trivially satisfied for k > 1, hence we can conclude
that this switched singular system is solvable w.r.t. the given switching signal and given
input. However, if we choose another input signal, e.g. u(k) = 1, k > 0, then we see that
the solvability condition (22) for k = 0 is not satisfied. On the other hand, considering a

switching signal where the switching happens later, i.e. 0(0) = o(1) = 0, we see that (22) for
k = 0 is also not satisfied because, ker Eg n S # {0}.
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Example 6.2 (Solvability w.r.t. o) Consider the scalar switched system (1) with
(Eo, Ao, Bp) = (0,0,0) and (E7,A;,B1) = (0,1,1) and with switching signal o(0) = 0,
o(k) =1, k > 1 and arbitrary input u. For an arbitrary initial value z(0), the unique solu-
tion is given by x(k) = —u(k). It can also be verified easily that {(Eo, Ao, Bo), (E1, 41, B1)}
is switched index-1 w.r.t. the given o, hence Corollary 5.4 shows that the switched system
is solvable w.r.t. o. However, im B1 & im E7, hence the switched system cannot be (locally)
strongly solvable. Note however, that this example is actually globally strongly solvable,
because when only considered on the whole time interval [0, 00), there exists a unique solu-
tion for all initial values z¢ and all inputs u. Furthermore, (unique) solvability is lost, when
staying longer than one time step in the initial mode because ker Eg n Sy # {0}, i.e. this
example is not solvable w.r.t. the mode sequence (0, 1).

Example 6.3 (Solvability w.r.t. (o)) Consider the switched system (1) given by
(Eo, A0, Bo) = ([6 61 [6 8] [1]) . (Br, A1, By) = ([§9]. [60]-[6])-

We will show in the following that this switched system is solvable w.r.t. switching signals
with a mode sequence (0, 1), but it is not strongly solvable w.r.t. this mode sequence and it
is also not solvable for arbitrary switching signals. It is easily verified that (E;, A;) is regular
and index-1 for ¢ = 0,1 and that

ker Eg = im[?], Sp = im[%], ker B = im[(l)], S = im[_ll].
Furthermore, we have that
ker Eo @ So = ker Eg ® Sy = ker E1 @ 81 = R%

Consequently, {(Fo, Ao, Bo), (E1, A1, B1)} is sequentially index-1 w.r.t. the mode sequence
(0,1) and Corollary 5.7 yields that the switched system is solvable for all switching signals
with the mode sequence (0,1) (and all inputs). The above system is clearly not strongly
solvable (w.r.t. the mode sequence (0, 1)) because im B; & im E;, ¢ = 0, 1. Since ker E1 NSy #
{0}, the family {(Eo, 4o, Bo), (E1,A1,B1)} is not jointly index-1 and hence the switched
system cannot be solvable for arbitrary switching signals.

7 Alternative approaches for jointly index-1 systems

The simplicity of the jointly index-1 condition ker E; @ S; = R™ Vi,5 € M makes it
possible to establish some other approaches to check solvability (w.r.t. all switching
signals) of the switched system (1).

7.1 Decoupling approach

We recall the following definitions for a regular matrix pair (£, A) with QWF (7) from
the continuous time case (see e.g. [28]):

M:=T[i977 1,
Hdiff - T[(I) 8] 517 Adiff = HdiHA7 Bdiff - IIdiffB7
™ :=T[39]S,  E™:=II"PE, B™ :=II"PB.
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Note that although S and T for obtaining a QWF are not unique, the above matrices
are uniquely determined by the matrix pair (F, A) Furthermore, if (E, A) is index-1
then it is easy to see that

S = A_l(imE) =imIl = im T4 and ker E = ker Il = im(I —1I) = im [P,

Similar to the continuous time case (cf. [29, Lem. 1]) we have that = solves the
unswitched singular system

Ex(k+1) = Az(k) + Bu(k), x(0) =z
if, and only if, z = 2° @ x%, where

2°(k + 1) = A% 2 (k) + By (k),

2¢(0) = Mz,
EmPr(k +1)=2%(k + 1)+ B™Pu(k), x

“(0) = (I -1z

We now want to utilize this decoupling also for the switched case. Towards this
goal let us define for each regular matrix triplet (F;, A;, B;) the matrices II;, TT{f,
H ﬂ‘ H . .
[P A pdiff © pmP - BIMP as above.
By defining

x¢(k) := Uypa(k), (k) == (I —g)x(k),
Tk +1):=z(k+1), Tk+1):={I—U)z(k + 1),
we have z(k) = (k) +x (k:) z¢(k) + T%(k) for k > 1. Furthermore, by multiplying

(1) either with H (k) or IT ok ) from the left, it follows that every solution of (1) also
satisfies

°(k+1) = (k)x (k) + Bgl(fzf;) u(k), (25a)
x¢(0) = x5 := Iy wo,
E;r?p T k+1) = ( )+ B;r?,f) u(k), (25b)
z%(0) = = (I — Uy (k) wo-

However, the equations cannot be solved directly because there is no explicit relation-
ship between Z¢ and z¢ as well as between T and z“. Note however that the jointly
index-1 property implies that E;™" = 0 for all modes i, which leads to the immediate
solution of (25b):

2 (k) = =B hu(k), k=0
Furthermore, Z°(k + 1) (but not z°(k + 1)) is uniquely given by x¢(k) and Bgi(fg)u(k).
By construction, we know that x°(k 4+ 1) € imIl,(,11) = Spks1) and Z%(k + 1) €
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m(I — I, )) = ker E, ), consequently

zk+1)=ak+1)+2°(k+1)=2%k+1)+z%k+1)
€ ({z(k + 1)} + Sok41)) N ({Z°(k + 1)} + ker Eyy))

Jointly index-1 together with Lemma 3.4 implies that the above intersection is a
singleton and hence

ker E,
w(k+1) =T0g , 7 (Z°(%k + 1) — 2% (k + 1)) + 2" (k + 1).

We can now formulate the solvability characterization as well as the surrogate
system in terms of the decoupled states z¢ and z®.

Proposition 7.1 Consider the jointly index-1 switched system (1) with the corresponding
matrices I1;, H?iﬁ, H;mp, A?iff, E;mp, Bfiff and B;mp as above. Then x is a solution of (1)
on [ko, k1] for some given input u if, and only if, x(ko) € Sq(y) — {Blmp u(ko)} and x is a
solution of the surrogate system

ek +1) = P (hs1),0(k)Tk) + Vo r1),000)wE) + U i1),0mulk +1), (26)
where )
By =T, A,

ker E;

TC ker E; diff =a im
lI/i,j = HSi, ]B] 5 \I’%] = (Hsl — I)B p.

K2

Proof “=” If z is a solution of (1) then by the above arguments we have

wlk+1) = g P70 (3 (k4 1) — 2% (k + 1)) + 2%(k + 1),

So (k1)

and together with Z°(k + 1) = Agﬁc)mc(k) + Bgi(g)u(k) and z%(k + 1) = —BH?]S) u(k + 1),
we arrive at the claimed surrogate system. Furthermore, we can conclude that z(kg) =
z%(ko) + 2%(ko) € im Il {B;(k ) u(ko)} which shows the claim concerning the initial
value because imIl, o) = SU(O)

“<” We first observe that I¢F 4 Himp = T;S; and hence is invertible. Therefore z is a

solution of (1) if, and only if, x solves

( ll’n

(k) + Ha(k)) U(k)x(k + 1)
= (Mg (h + 17 o (i) Ao (k) (K) + (TG + Ha(k)) o(kyu(k).

Since im H?iﬂ @ im Himp = R" the latter equation holds, if and only if, the following two
equations hold

Hgi(ffc)Ecr(k)"”(k +1) = Aii(fzfc)x(k) + Bii(flg)u(k) and (27a)
Byt +1) = 00 Agya(k) + Bduth). (27b)

We will now show that z given by the surrogate system satisfies these two equations for all k €
N. Towards this goal we first observe that TN £; = 11, IT; ASH — AGE 5nq 11, BT — pdift
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which means that (27a) can equivalently be written as (28a) below. Furthermore, Hi.mpAl- =
(I—1I;) and (jointly) index-1 implies that £, = 0, hence (27b) takes the form (28b) below.

Iy gy (x(k + 1) — Ag(hyx(k) — By (yu(k)) = 0 (28a)
0= (I —T,q))z(k) + B;“(‘,f)u(k) (28b)

Step 1: We show that (28a) holds.

Using the proposed surrogate system, we can replace z(k + 1) in (28a) by the right hand
side of (26); by .observing that i'm \Iffj g ker E; = kerII; for all mode pairs 4, j and recalling
that A}hff = H?IHAJ- and HjH?ﬂ = H?IH we see that (28a) is satisfied if

ker Ej (diff _ 1diff
g g = it

ker E;

The latter is a simple consequence from Lemma 3.5 and utilizing that II; = IT S,
Step 2: We show that (28b) holds.

For k = 0, (28b) clearly holds because z(0) = ¢ € Sy () — {B;n(l(%u(())}, Sy(0)  ker(I —

I, ) and B;n(l(%u(O) c imHi:(lg) = im(I — II,(p)). For k > 1, we can replace (k) in (28b)
by the (time-shifted) right-hand side of (26); by observing that both im <I)i’j and im \Tlf’j are

subsets of imII; = ker(/ — II;) for all mode pairs i, j, it remains to be shown that

(I =) (g — NI = 1™,
But this follows again from Lemma 3.5 by observing that I —II; = Hfér B and (Hl;jr E;j -1 =
Si '
_err Ej U

Remark 7.2 In general the matrices in the surrogate systems (23) and (26) are different
(but result in the same solution trajectories). While (23) doesn’t rely on the regularity and
index-1 assumption for each mode, there is some freedom in choosing the matrices (because
the pseudo-inverse is not unique and the projector HEV : YV + W — V is non-unique if
YV AW # {0}). On the other hand, (26) is only valid if each mode is regular and index-1, but
then all involved matrices are uniquely defined.

7.2 Row reduced approach

Corollary 5.1 and Proposition 7.1 present a nice geometric and coordinate-free solution
formula for switched descriptor systems (because all involved matrices can be seen
as linear maps defined in the originally considered vector spaces). However, in real
applications a specific coordinate system needs to be chosen and all calculations are
done with specific matrix representations of the underlying linear maps. In that case,
Corollary 5.1 and Proposition 7.1 involve quite many matrix operations and may not
always be very efficient; therefore we present another, more practicable, solvability
characterization and solution formula as follows (inspired by [23]): Choose a family of
invertible matrices S; (in fact, each S; can be chosen as a product of simple Gauss
eliminations and row permutations) such that, for j € M,

S;E; = [%1] , E]1 is full row rank. (29)
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Furthermore, let
Al B!
[Aé] = S, A;, [sz_] .= S,B;, (30)

where A} and le» have the same number of rows as Ej1

Proposition 7.3 (Numerical solvability characterization) The switched system (1) is (locally
1
uniquely causally) solvable for all input w and all switching signals o if, and only if, i; 18

square and invertible for all i, j € M, where the notation of (29) and (30) is used. In that case,
z is a solution of (1) if, and only if, the initial value xo = (0) satisfies Ay g)z0+ By (o)u(0) €
im E, gy and

2k +1) = D4 (11),0(0)2(R) + TGk 1),0(0) 1(F) + To s 1) o (yulk + 1), (31)

s[4 4

(2

where

1

o N N

(2

Proof With the same arguments as in the proof of Lemma 3.6, it follows that S; =
A;l(im E;) = ker A? and ker E; = ker EJ1 Consequently, we have that S; n ker E; = {0}

1
if, and only if, ker [ig] = {0}. Taking into account that jointly index-1 implies that

rank F; = rank E; (see [21, Lem. 3.3]), we can immediatly conclude that jointly index-1 is
1
equivalent to ig being square and invertible for all pairs 4, 7. Now multiplying the switched

system (1) from the left with S ;) we obtain

B, A, B,
[ “®) :c(k+1)=[ 2<k>]m(k)+[32<k> u(k),
(k) o (k)
1 Al 1
[E"(k+1)}x(k+2)=[ g(k+1)]x(k+1)+ g(k+1)]u(k+l).
0 o(k+1) Bo(k+1)

Hence, we have

1
[ E‘U(k) } z(k+1) = [A}T()(k)] z(k) + [B‘lfo(k)] u(k) — [ 2 0 ] u(k + 1),

Aa(k+1) o(k+1)
El
which results in (31), by left-multiplying with the inverse of [ A ] O
o(k+1)

7.3 Unification of E-matrix approach

Since we have already established that solvability for all switching signals and all
inputs requires jointly index-1, we know that rank E; = r for some r € N independent
from the mode. Hence, it is possible to find invertible matrices P;, @); such that

PEQ;=[}73]. (32)
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For an arbitrary o : N — M we consider the time-dependent coordinate transformation
~ (K
#(k) = (50)) = Qoue—nyz(k)

with arbitrarily chosen o(—1) € M. Then the switched system (1) is equivalent to

Pty Eo(t) Qo) (k + 1) = Py(iy Ac (k) Qo(k—1)Z(k) + Po(iy Bo(ryu(k).

With . 1
PAQ; = [js A; ] and  P,B; = [g] (33)

we therefore have the equivalent switched system

(k+1) = Aa(k) T (k) + A2 k),o(k—1)T (k) + B;(k)u(@
0= A2 1) ooy (k) + A5 1) ooy T (k) + B2 gy u(k).

or, after applying a time shift to the second equation,

AQ

I 0 o'(k),é)'(k)—l):| z(k)

4
Ao(k:-‘rl)?a'(k)

1
] Fk+1)= [Ao(m,ér(k—l)

[l oo

It is easily seen, that the switched system (1) is jointly index-1 if, and only if, rank E;
is constant and the matrices Af, ; are all invertible. Hence the following solvability
characterization holds:

3
Ao’(k-‘rl)p’(k)

Proposition 7.4 (cf. 21, Thm. 5.1]) The switched system (1) is (locally uniquely causally)
solvable for all inputs u and all switching signals o if, and only if, rank E; = r; =1 (i.e. E;
have a constant rank) and Azj in (33) is invertible. In that case, x is a solution of (1) if,
and only if, the initial value xo = z(0) satisfies Ay (0)To + By (0)u(0) € im E; ¢y and

.’L’(k + 1) = &;U(k-i-l),rr(k),o(k—l) (k)
+US r1) 0 (k)0 (b1 (k) + Ty 1) ok +1),  (34)

where
P 0= Q; 4A;1’€3 1 4 ?Zs 2 Q!
Pis T Al )T AT (AT ) ThAT AT | T
B1 $ 0
oo oluon)
BT (A ) 1A§]B]1] Wi =@ —(A} )71 B}

Remark 7.5 Apparently, the surrogate system (34) does not only depend on the modes
active at k41 and k but also on the mode at k—1. This is somewhat unintuitive, in particular,
when considering the system only on [k, ko + 1] because the solution formula should be
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independent of the mode in the past. This was also highlighted in [21, Rem. 5.2] and with
our result, we can now confirm that indeed the dependence on o(k — 1) is an artifact of the
specific method and not a fundamental property of the system.

8 Applications

8.1 Dynamic Leontief model example

Consider the switched case of the discrete dynamic Leontief model of a multisector
economy given by (cf. [17])

Cotyr(k+1) = (I — Loy + Cory)w(k) — d(k) (35)

where z(k) is the vector of output levels at the time period k = 0,1,..., d(k) is
the vector of final demands, L; is the Leontief input—output matrix, and C; is the
capital coefficient matrix, i € M. When the market and technology do not change over
time, the matrices L; and C; are known and time-invariant [17]. Otherwise, those
matrices change. We assume here that the changes on those matrices are due to some
disturbances, and a switching signal ¢ : N — M rules the changing of L; and C;. The
following data are taken from [17] where the mode-0 corresponds to the original (or
nominal) data and the other modes correspond to its variations:

0.30 0.30 0.30 0.30 0.30 0.30
Lo = [0.40 0.10 0.50] , Ly = [0.40 0.10 0.50] , Lo = Ly,

0.30 0.50 0.20 0 0 0

0.30 0.40 0.45 0.30 0.40 0.5
C’oz[o 0 0], Ch = Cy, 22[0 0 0].

0.60 0.80 0.90 0.60 0.80 0.90

For the following discussion, all computations are exact and are done via MAT-
LAB’s symbolic toolbox, however, for simplicity, we show the results with only two
decimals. Those matrices give us the system (1) with M = {0,1,2}, E; = C;, B; =1,

1.00 0.10 0.15 1.00 0.10 0.15 1.00 0.10 0.20
Ag = | -0.40 0.90 —0.50 [ , Ay = | —0.40 0.90 —0.50 |, Ay = | —0.40 0.90 —0.50 | ,
0.30 0.30 1.70 0.60 0.80 1.90 0.30 0.30 1.70
and
. 1.00 1.13 . 1.00 1.13 . 1.00
ker Ey =im [ —0.75 0.00 |, kerE; =im| -0.75 0.00 |  ker Fp =im | —0.75 |,
0.00 —0.75 0.00 —0.75 0.00
. [1.00 . [1.00 . 1.00 0.00
8021111[1.08], S1 :1m[0.77], nglm[ 0.00 1.00].
1.14 0.59 —0.80 1.80

First, note that each mode is index-1 since ker E; @ S; = R3 for each i = 0,1, 2, i.e.,
each mode as an individual system is solvable.
8.1.1 Solvability for arbitrary switching signals

Geometric checking shows that the family of matrix triplets {(E;, A;, B;)}iem, with
M; = {0,1} is jointly index-1 since ker E; ® S; = R® for all i, j € M;. Therefore, all
switched systems composed of only mode-0 and mode-1 are solvable for all switching
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signals. However, adding mode-2 into the family of the matrix triplets gives us a
non-jointly index-1 system because ker Ey n Sy # {0} also ker B n Sy # {0}.

8.1.2 Solvability for given mode sequences

From the observation above, in order to have a solvable system, having mode transi-
tions inside M; is always possible. On the other hand, the mode transitions 0 — 2 and
1 — 2 do not lead to a (uniquely) solvable switched system. Furthermore, it can be
verified that R R R R
Ro+ Sy 2ker Es @Sy and Ry + S 2 ker Es ® Sy,

hence the mode transitions 2 — 0 and 2 — 1 are also not allowed (i.e. it is not
sequentially index-1 also not switched index-1 for the corresponding switching signals
containing those mode transitions). The system is then not solvable for arbitrary inputs
and furthermore, also not solvable for a given input because R; = R3 for all i € M and

dim(ker B2 @ Sp) = dim(ker E; @ 1) = 2 < dim R,

i.e., the solvability condition w.r.t. a given input (22) can never be satisfied with any
input sequence.

8.1.3 One-step maps

—0.12 0.00 0.21
For this part, consider only the mode transition 0 — 1. With Ef = [ 0.13 0.00 00085] ,

we get the one-step maps for the four approaches

J

[0.17 0.17 0.97 ~ 0.17 0.17 0.97
®;9=10130130.75 |, ®,0=10130130.75 |,
’ [ 010 0.10 0.57 ’ 1 0:10 0.10 0.57 ]
- [0.35 0.47 0.53 ] ~ [0.35 0.47 0.53 ]
Py 9=1027036041|, Py 9=1[027036041|,
’ [ 021 0.28 0.31 | ’ L 0.21 0.28 0.31 |
c [0.00 0.00 0.57 ] ~ [0.00 0.00 0.57 ]
1o = 000000044 |, 1o = 000000044 |,
’ L 0:00 0.00 0.34 ’ L 0:00 0.00 0.34 ]
= [0.38 0.35 0.38 = [0.38 0.35 0.38 ]
W00 =1029027029 |, To=1029027029 |,
' L 0.22 0.21 0.22 | ’ L 0.22 0.21 0.22 |
r—0.80 0.24 0.40 ~. r—0.80 0.24 0.40
To=1-004-073 002 ], Too0=1-0.04-073 0.02 ]
' L 0.57 0.49 —0.28 L 0.57 0.49 —0.28
r—0.80 0.24 0.40 ~ [—0.80 0.24 0.40
To=1-004-073 0.02 ] , $o=1-004-073 002 ]
’ L 0.57 0.49 —0.28 ’ L 0.57 0.49 —0.28

Not all corresponding one-step maps from the four approaches are the same, how-
ever, they give us the same solution trajectories for the same initial value and input. For
the case with u = 0, this can be seen from the fact that for any initial value zy, € R™
and leko =S, o (ko) we have that ‘I)Z ijoxko = q)z ij0$k0 = (I),L JYkoxko = (I),L ijOxkO

8.2 Discretization of continuous-time switched singular systems

Consider a switched differential-algebraic equation (swDAE) [28] of the form

Eyya(t) = Agyz(t) + Boyul(t), (36)
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where o : R — M is the switching signal, z : R — R" is the state and u : R — R™ is
the input. We call (z,u) an (impulse-free) solution of the swDAE if Ex is absolutely
continuous, v is locally integrable, and (36) holds for almost all £ € R (or on the interval
of interest). It is well known (see e.g. [28]), that for the case of regular and index-1
matrix pairs (E;, 4;), i € M, there is for every xg, every input u and every switching
signal a unique solution (on (tg,c0)) of the corresponding (inconsistent) initial value
problem. We now want to investigate under which assumptions different numerical
discretization methods lead to solvable switched singular systems in discrete time.

8.2.1 (Semi-)Explicit Euler method

We start with the most canonical numerical discretization method, the explicit Euler
method, which is based on the following approximation:

Eg(tk)w(tﬁh});w(tk) ~ Aa(tk)x(tk) + Ba(tk)u(tk),

where t := ty + kh and h > 0 is the step-size. To avoid notational technicalities, we
assume here that h is chosen such that ¢, does not coincide with the switching times
and discontinuities in u. The corresponding discrete-time switched system then takes
the form (where with some abuse of notation we identify o(t), x(tx), u(ty) with o(k),
x(k), u(k)):

Eyya(k +1) = ALz (k) + hBoyu(k),

where A" := E; + hA;, i € M. Since rank E; in general is mode-dependent, it imme-
diately follows that an explicit Euler approximation does not result in a jointly
index-1 discretization (because then rank E; must be mode-independent). Further-
more, exploiting the row-reduction approach from Section 7.2 for jointly index-1, we
immediately see that {(FE;, A")};en is jointly index-1 if, and only if, {(E;, A;)}ien is
jointly index-1. In that case, we can also see via the row-reduced approach that the
consistency condition
0= AZ(H)z(t) + B3 pyult)

also remains valid in the discretized version, where this condition is simply multiplied
by h (which however may lead to numerical issues for small h).

Furthermore, by applying a row reducing left multiplication S, ;) of the swDAE
(36) (which doesn’t change the solution properties at all), we see that we can easily
avoid the unnecessary multiplication of the algebraic constraint by h; this results in
fact in the well known semi-explicit Euler (where it is usually assumed that E; = [] 9],
however this is not necessary here).

8.2.2 (Semi-)Implicit Euler

It is well known that in general, the explicit Euler method exhibits some stability issues
and therefore the implicit Euler method has been proposed, which for the swDAE (36)
is based on the following approximation:

Eo(t,@ﬂ)w ~ Ao(ter)Z(tks1) + Bogy, u(ter1).
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This results in the discretization
Elnyz(k +1) = Egepnyz(k) + hBogepnyulk + 1), (37)

where El' := E; + hA; which is invertible for all sufficiently small h > 0 by regularity
of the matric pairs (E;, A;) (and hence E is invertible for all but finitely many h > 0).
Consequently, there are no issues concerning the solvability of the discretized system.
Furthermore, by applying mode-wise row operations to obtain a row-reduced form, we
immediately see, that the consistency conditions for z(k + 1) are preserved. However,
one major disadvantage is the non-strict causality w.r.t. the input, which is in general
not the expected solution behavior.

It is also possible to consider a semi-implicit method [30], where an approximation
of the half point x(t; + h/2) either forward from x(¢x) or backwards from x(t; + h)
leads to the following discretization

Y u(k
Bl ok +1) = AL (k) + Bl i) o) (u(k+>1)> ’ (38)

where El := E; + %Ai, A;? =FE; + gAj and Bﬁj = %[Bj, —B;]. Here EI' is always
invertible for sufficiently small h > 0 because (E;, 4;) is assumed to be regular. Conse-
quently, the switched system (38) is always solvable. However, it is not clear whether
the algebraic constraints are (exactly or approximately) satisfied, which is a big dis-
advantage of this method. Furthermore, similarly to the fully implicit method, the
dependence on the input is non-strictly causal, which is not necessarily the expected
solution behavior.

Finally, Backward Differentiation Formulae (BDF) are an established numerical
method to approximate solutions of singular systems in continuous time [31] and can
be seen as multi-step generalizations of the implicit Euler method. As such, they will
result in higher order switched singular systems, of which the solution theory is not
fully established; this is a topic of future research.

9 Conclusion and Outlooks

Two solvability notions have been introduced for inhomogeneous singular linear
switched systems: solvability (initial values are dependent on the input) and strong
solvability (initial values and inputs are independent of each other).

The characterizations have been fully established. With respect to switching sig-
nals, the characterizations have been formulated for fixed switching signals, fixed mode
sequences with arbitrary switching times, and arbitrary switching signals whereas with
respect to input sequences, the characterizations have been formulated for a given
input sequence and arbitrary inputs.

Six (strict) index-1 notions of switched, sequentially, and jointly index-1 have been
introduced, and they are necessary and sufficient conditions for the (strong) solvability
w.r.t. fixed switching signals, fixed mode sequences, and arbitrary switching signals,
respectively.
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For every solvable system, a surrogate system has been established, and the explicit
solution formula of the original singular system can then be written in its original
state. Furthermore, in terms of inputs, the solutions of solvable systems are causal (the
current input can affect the current state) whereas the solutions of strongly solvable
systems are strictly causal (the current input cannot affect the current state).

In future works, we will exploit the surrogate systems to further study their origi-
nal solvable singular switched systems. These future studies include model reduction,
controllability analysis, stability characterizations, and control designs, among others.
Another important future research topic is the consideration of numerical aspects and
the robust implementation of analysis and simulation tools, in particular for large-scale
systems.
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