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Abstract

We study the solution theory of singular linear switched systems with inputs
(also known as switched descriptor systems). These systems are highly relevant
in many applications; in particular, in economics the well known dynamic Leon-
tief model with changing coefficient matrices falls into this class. Theorem 5.1
in the paper by Anh et al. (2019) stated that if a singular linear switched sys-
tem is jointly index-1 then there exists an explicit surrogate switched system
having identical solution behavior for all switching signals. However, it was not
clear yet whether the jointly index-1 condition is a necessary and sufficient condi-
tion for the existence and uniqueness of a solution. Furthermore, it was also not
clear what conditions are actually required to guarantee existence and unique-
ness of solutions for particular switching signals only. In this article, we provide
necessary and sufficient conditions for existence and uniqueness of solutions for
singular linear switched systems with respect to fixed switching signals (both
mode sequences and switching times are fixed), fixed mode sequences (switching
times are arbitrary), and arbitrary switching signals (both mode sequences and
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switching times are arbitrary). In all three cases we provide an explicit surrogate
system with the same solution set; our approach improves the results presented
in Anh et al. (2019) as the coefficient matrices describing the transition from
xpkq to xpk ` 1q only depend on original system matrices at time k and k ` 1
and not on k ´ 1 as in Anh et al. (2019). We illustrate the theoreticals find-
ings with the dynamic Leontief model and investigate the solvability properties
of discretizations of continuous-time singular systems.

Keywords: descriptor systems, difference-algebraic systems, Leontief economic model,
switched systems

1 Introduction

The act of transitioning among diverse system structures is a fundamental element in
various systems, including power systems [1] and electronics [2]. Additionally, switched
systems naturally emerge in sampled-data systems [3–5]. In this study, we consider
inhomogeneous switched linear singular systems of the form

Eσpkqxpk ` 1q “ Aσpkqxpkq ` Bσpkqupkq (1)

where k P N represents the time instant or time step, xpkq P Rn, n P N denotes the
vector of states, upkq P Rm,m P N stands for the vector of inputs, the map σ : N Ñ M

expresses the switching signal which determines which mode from the (finite or infinite)
index set M is active at a time instant k, and Ei, Ai P Rnˆn, and Bi P Rnˆm are
constant matrices for every i P M.

Applications of the systems of the form (1), which are also known as descriptor or
implicit systems, can be found in numerous fields such as electrical circuits [6], indus-
trial processes [7], power systems [8], economic systems [9], constrained mechanical
systems [10, 11], robotics [12–14], and neural networks [15], among others. Further-
more, the dynamic Leontief economic model, or input-output analysis, has the form
of system (1) (without switching), see e.g. [16, 17]; the switched case occurs when
the parameters change in time. This Leontief model is crucial for analyzing interde-
pendencies among economic parties and helps policymakers and businesses optimize
production, assess supply chain impacts, and predict economic shifts due to policy
changes or external shocks. In civil engineering, it can be used to evaluate the risk in
complex interconnected infrastructures [18]. In the economic analysis of a country, it
enables the estimation of the resource and value-added of inter-sectoral relations [19].

The matrices Ei are in general singular, but we do allow that some of the matrices
Ei in (1) are invertible; however, if all matrices Ei are invertible, then (1) can easily be
rewritten as an explicit switched linear systems for which the solution theory is trivial.
In fact, if all Ei are invertible, then for arbitrary initial value x0 P Rn, for arbitrary
switching signal, and for arbitrary input sequence pup0q, up1q, . . .q, the system with
the initial condition xp0q “ x0 has a unique solution at any time instant k P N. In
this case, the solution for the state at any time instant can be calculated by simply
propagating the equation forward in time, see e.g. [20], and no particular solvability
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notions are necessary to be defined for its well-posedness. Additionally, an explicit
switched system is strictly causal in the sense that the current state only depends on
the previous state, previous switching signal, and previous input. Those features may
not be possessed by a singular switched system of the form (1). For an example of a
singular switched system that is not well-posed (although each mode is well-posed),
see [21, Example 1.1], whereas for an example of a singular system which is not strictly
causal w.r.t. the input, consider the singular (non-switched) system

0 “ xpkq ` upkq. (2)

Furthermore, for switched singular systems, solvability in general depends on the
switching signal as well as on the input. To illustrate this, consider the switched sys-
tem (1) with pE0, A0, B0q “ p1, 0, 1q and pE1, A1, B1q “ p0, 1, 1q. Note that both modes
correspond to well-posed non-switched systems. For a switching signal of the form
σpkq “ 0 for k ă ks and σpkq “ 1 for k ě ks, the switched system (1) takes the form

k ă ks :

xpk ` 1q “ upkq

k ě ks :

0 “ xpkq ` upkq.
We can easily see that a unique solution exists for any given initial value xp0q if, and
only if upks ´1q “ ´upksq. On the other hand, if we reverse the order of modes, we see
that the value for x2pksq is not restricted, i.e. we do not have uniqueness of solutions
for this reversed switching signal.

The fact that the well-posedness of the individual modes is in general not sufficient
for the well-posedness of the switched singular system has often been overlooked in the
literature on switched singular systems and only recently a complete solution theory
for the homogeneous case (i.e. upkq “ 0 for all k P N) has been presented [22]. In there,
the three different notions jointly index-1, sequentiel index-1 and switched index-1
have been introduced for families tpEi, AiquiPM of matrix pairs and these notions have
been shown to be equivalent to certain solvability concepts. However, the presence of
an input complicates the analysis significantly. For example, the existence of at least
one solution (namely xpkq “ 0 for all k P N) for the homogeneous switched system is
always guaranteed, whereas this is not the case anymore for inhomogeneous systems.
Furthermore, the initial value can in general not be chosen independently from the
input.

To the best of our knowledge the only available rigorous solution theory for
(discrete time) inhomogeneous switched system is contained in the last part of the
conference contribution [21]. The well-posedness of the switched singular system is
shown for the jointly index-1 case, however, the solution formula for xpk`1q does not
only depend on coefficient matrices at time k ` 1 and k (which one would intuitively
expect) but also on k´1. Furthermore, necessary assumptions for solvability for given
switching signals and/or inputs have not been studied yet. The general case of time-
varying inhomogeneous descriptor systems in discrete time with Bk “ I has however
been studied in [23] and is based on global transformations and the strangeness index;
the delicate interplay between the input space (given by Bk) and the switching signal
is however not discussed therein, neither is the important concept of causality with
respect to the switching signal considered.

3



Our goal with this contribution is to close this gap in the literature and provide a
comprehensive solution theory for switched singular systems (1). Therefore, we define
novel solvability notions that differ w.r.t. the role of the switching signal and the
inputs. In total this leads to nine different solvability notions which we are able to
fully characterize; these results are summarized in Figure 1.

Solv. w.r.t. pσ, uq
ð

ñ Prop. 5.1

Conditions
(21)-(22)

Solv. w.r.t. σ

ð
ñ Cor. 5.4

tpEi, Ai, BiquiPM

is sw. index-1
w.r.t. σ

Strong Solv.
w.r.t. σ

ð
ñ Cor. 5.5

tpEi, Ai, BiquiPM

is sw. str.
index-1 w.r.t. σ

Solv. w.r.t.
ppσjq, uq

See Remark 5.8(i)

Solv. w.r.t. pσjq

ð
ñ Cor. 5.7

tpEi, Ai, BiquiPM

is seq. index-1
w.r.t. pσjq

Strong Solv.
w.r.t. pσjq

ð
ñ Cor. 5.9

tpEi, Ai, BiquiPM is
seq. str. index-1

w.r.t. pσjq

Solv. @σ w.r.t. u
See Remark 5.11

Solv. @σ

ð
ñ Cor. 5.10

tpEi, Ai, BiquiPM

is jointly index-1

Strongly Solv. @σ

ð
ñ Cor. 5.12

tpEi, Ai, BiquiPM

is jointly
str. index-1

z

Ex. 6.1

z

Ex. 6.2

{
Ex. 3.7
in [22]

{
Ex. 6.2

{
Ex. 6.1

z

Ex. 6.3

z

{
Ex. 3.6
in [22]

{
Ex. 6.3

{
Ex. 3.6
in [22]

Re. 5.11

z

Re. 3.12

Fig. 1 Summary of the solvability characterizations; all implications and nonimplications are dis-
cussed in Section 6.

Furthermore, we propose surrogate systems (explicit systems that have identical
solution behaviors), which can be used to further analyze the system behavior (e.g.
reachability and stabilizability) in future work.

This article is structured as follows. In Section 2, we introduce the solvability
notions studied in this paper for system (1). These solvability notions are motivated by
the solvability issues discussed in Section 1. In Section 3, some concepts from algebra
are revisited. Some lemmas are also presented, which are used later in most parts of
the study. In Section 4, a key lemma presenting a necessary and sufficient condition
for a generic system of linear equations of system (1) is also presented here. This later
is used as the foundation to study the solvability of the switched system (1).

The main results for the solvability characterizations are presented in Section 5.
The next three sections present some (counter) examples, alternative approaches for
the solvability characterizations, and applications of the results for Leontief economic
models and discretized switched differential-algebraic equations.
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Throughout the manuscript, we use the following standard notation. R and N
denote the real and natural numbers (including zero). For two subspaces V,W Ď Rn,
V ‘ W means the direct sum of V and W, in particular, V X W “ t0u is implicitly
required. For a (possible singular or rectangular) matrix A P Rℓˆn, let imA be the
image (or range or column space) of A, kerA be the kernel (null space) of A, and
A´1pVq “ t ξ P Rn | Aξ P V u be the preimage of A over a set V Ď Rn. For two
integers k1 ă k2 we define the “closed” (discrete-time) interval rk1, k2s :“ tk1, k1 `

1, . . . , k2 ´ 1, k2u and “half-open” interval rk1, k2q :“ tk1, k1 ` 1, . . . , k2 ´ 1u.

2 Solvability notions

2.1 Classes of switching signals

In this study, we assume that the switching signal σ has the form

σpkq “ σj if k P rksj , k
s
j`1q, ksj`1 ą ksj , j “ 0, 1, 2, . . . (3)

where ksj P N, j “ 0, 1, . . . are the switching times with the initial (switching)
time ks0 “ 0 and σj P M. Note that the switching signal σ is triggered only by the
time and not triggered by states or inputs, and furthermore, it can be seen as a
piecewise constant function (see Fig. 1 in [22] for an illustration). For every i P M, the
corresponding (nonswitched) system Eixpk ` 1q “ Aixpkq ` Biupkq is called the i-th
mode or subsystem.

Apart from unrestricted switching signals, there are two types of restricted switch-
ing signals: fixed mode sequences and fixed switching signals. Those three classes of
switching signals are described precisely as follows:

2.1.1 Arbitrary Switching Signals

The term “arbitrary switching signals” means only the set of modes M (and the cor-
responding family of coefficient matrices tEi, Ai, BiuiPM is known), and both mode
sequences and switching times are unknown. Thus, study results under arbitrary
switching signals are also valid for specific or constrained switching signals. How-
ever, the characterization of the solvability is in general not necessary when restricted
switching signals are being considered, and thus studies under restricted switching
signals are also crucial for switched systems.

2.1.2 Fixed Mode Sequences

A fixed mode sequence, denoted by pσ0, σ1, . . .q “: pσjqj“0,1,... (for short just pσjq),
has the information of the initial mode which actives at the initial time k “ 0 and
its subsequent modes in the future, however, the switching times are unknown. If a
finite time interval r0,Ks, K P N is under consideration, then a fixed (finite) mode
sequence on this time interval refers to pσ0, σ1, ..., σJq “: pσjqj“0,1,...,J (the short
notation pσjq can also be used together with the information of a finite time interval
being considered). Therefore, with respect to a fixed mode sequence, investigations are
done under a known mode sequence but with arbitrary mode durations. This implies
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that results are valid for all switching signals with the same mode sequence. However,
in general, solvability for other switching signals with a different mode sequence cannot
be concluded.

2.1.3 Fixed Switching Signals

A fixed switching signal σ is uniquely determined by its mode sequence pσ0, σ1, . . .q
and the sequence of mode durations pksj`1 ´ ksj qj“0,1,... defined as in (3). Mode σ0 is
referred to as the initial mode.

2.2 Causal solvability notions

In most practical applications and also from a theoretical standpoint causality is a
very important property. We therefore restrict our attention to descriptor systems
with certain causality properties. The key idea is that in order to determine the value
xpkq from the past, only information up to time k should be utilized (which includes
the actual equations but also the input). This viewpoint may seem a bit artificial for
the unswitched case (because the equations in the future are the same as in the past),
however, this viewpoint is quite natural when considering the switched case (in which
we are ultimately interested in), because there the future equations may be different
to the current or past ones. Furthermore, causality also means that a local solution
can always be extended into the future.

Definition 2.1 (Solvability notions w.r.t. fixed switching signal) (a) We call (1) with
given σ locally uniquely causally solvable (short: solvable) w.r.t. a given input u : N Ñ

Rm if for all k0 ď k1 there exists a state trajectory x : rk0, k1s Ñ Rn and some arbi-
trary xpk1 ` 1q P Rn such that (1) is satisfied for k P rk0, k1s; furthermore, the solution
has to be causal in the sense that for every k1

1 P rk0, k1s any solution on rk0, k
1
1s can be

uniquely extended to a solution on rk0, k1s.

(b) We call (1) with given σ (locally uniquely causally) solvable if it is solvable w.r.t. all
inputs.

(c) We call (1) with given σ strongly locally uniquely causally solvable (short: strongly

solvable) if for all k0 ă k1, all x0 P pSσpk0q :“ A´1
σpk0q

pimrEσpk0q, Bσpk0qsq and all

u : rk0, k1s Ñ Rm there exists a unique x : rk0, k1s Ñ Rn with xpk0q “ x0 and some
xpk1 ` 1q P Rn such that (1) is satisfied for k P rk0, k1s.

Before further studying the necessary and sufficient conditions for solvability, we
would like to highlight some important aspects of the solvability notions.

Remarks 2.2 (Discussion of solvability notions) (i) The case k0 “ k1 in the first solvabil-
ity definition is an important special case. In general, the system (1) with a given input
may not have a solution at all or may have a solution only for particular initial values. As
a trivial example consider the (non-switched) singular system Expk`1q “ Axpkq`Bupkq

with pE,A,Bq “ p0, 0, 1q which is not locally solvable on rk0, k0s if upk0q ‰ 0. Exis-
tence of a solution on the interval rk0, k1s with k1 “ k0 simply requires that there is at
least one consistent initial value (which will in general depend on upk0q). The required
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unique extendibility then implies that the initial value problem for a given input has a
unique solution, provided the initial value is consistent with the initial input.

(ii) Causality is embedded in all three solvability definitions, which is deduced from requiring
existence of a unique solution on any interval rk0, k1s by only considering the equations
in (1) for k P rk0, k1s and without restricting the future value xpk1 ` 1q appearing in
(1) for k “ k1. In particular, for k1 “ k0 ` 1 this means that for a solvable system, the
value xpk0 ` 1q has to be uniquely determined by xpk0q, upk0q and upk0 ` 1q.

(iii) The solvability notions differ w.r.t. the relationship of the initial value to the input signal.
For solvable systems w.r.t. a specific input, it is only required that for this specifically
given u an initial value exists which is consistent with (1) (and for this initial value
there may be no solution for some other input signal); while for strong solvability it
is required that the initial value and the input can be chosen independently from each
others. Here the set pSi :“ A´1

i pimrEi, Bisq denotes the augmented consistency space of
mode i, i.e. it is the set of all possible x0 for which some x1 and some u0 exists, such
that Eix1 “ Aix0 ` Biu0.

(iv) It is also possible to define weak solvability by requiring that for all initial values in the
(augmented) consistency space there exists an input such that the system is solvable
w.r.t. that input and that initial condition. This solvability notion is highly relevant
when considering controllability and reachability, where usually the initial value is first
given and then one needs to find a suitable input. However, it turns out that in all situ-
ations (non-switched, switched with or without fixed switching signal) weak solvability
is equivalent to solvability. We therefore, do not further consider this solvability notion
here.

3 Preliminaries

3.1 Linear algebra preliminaries

Definition 3.1 (Projector) Let V,W Ď Rn be two subspaces. Then

ΠW
V : V ` W Ñ V

denotes any (not necessarily unique) projector such that ΠW
V V “ V and ΠW

V W “ V X W. In

case V X W “ t0u then ΠW
V is unique, furthermore, if V ‘ W “ Rn then I ´ ΠW

V “ ΠV
W .

Definition 3.2 (Generalized inverse) For a matrix M P Rmˆn, a generalized inverse of M
is defined as a matrix M`

P Rnˆm that satisfies MM`M “ M .

A generalized matrix inverse always exists but is not necessarily unique; one possi-
ble choice is the well-known Moore-Penrose pseudoinverse [24]. Furthermore, for two
generalized inverses M1 and M2 of M , we have that pM1 ´ M2qy P kerM for all
y P imM . In particular, for calculations, the well-known Moore-Penrose inverse can
be used, for which efficient algorithms are available in the literature, e.g. by using a
singular value decomposition [25]. Furthermore, it is easily seen that MM` restricted
to imM is the identity map, in particular, we have

MM`m “ m @m P imM (4)
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and, for any matrix xM with im xM Ď imM ,

MM`
xM “ xM.

Lemma 3.3 (Preimage property) For any matrix M P Rnˆn let M` be some generalized
inverse of M ; furthermore, let y P Rn and let V Ď Rn be a subspace.

(a) If y P imM , then

M´1
tyu “ tM`yu ` kerM.

(b) If ptyu ` Vq X imM ‰ H then

M´1
ptyu ` Vq “ tM`ΠV

imMyu ` M´1V.

Proof (a) This property is well known, for proof see e.g. [22, Lem. 2.2].

(b) First observe that ptyu ` Vq X imM ‰ H implies that y P V ` imM and hence ŷ :“
ΠV
imMy P imM is indeed well defined. Now the following equivalences hold:

x P M´1
ptyu ` Vq ðñ Dv P V : Mx “ y ` v “ ŷ ` y ´ ŷ ` v

ðñ Dv̂ P V X imM : Mx “ ŷ ` v̂

ðñ Dv̂ P V X imM : x P M´1
ptŷ ` v̂uq

paq
“ tM`ŷ ` M`v̂u ` kerM

paq
“ M`ŷ ` M´1

tv̂u

ðñ x P tM`ŷu ` M´1
pV X imMq

ðñ x P tM`ŷu ` M´1V. □

The following lemma provides a property of an intersection of two affine sets and
the representation of the intersection via a projector.

Lemma 3.4 (Intersection of affine spaces) Consider sets Z,U Ď Rn and subspaces V,W Ď

Rn. Then, for all pairs pz, uq P Z ˆ U, ptzu ` Vq X ptuu ` Wq is a singleton if, and only if,

U ´ Z Ď V ‘ W,

where U ´ Z “ t u ´ z | z P Z, u P U u. In that case,

ptzu ` Vq X ptuu ` Wq “

!

ΠW
V pu ´ zq ` z

)

“

!

ΠV
W pz ´ uq ` u

)

. (5)

Furthermore, if V ` W “ Rn, then ptzu ` Vq X ptuu ` Wq is always non-empty and is a
singleton if, and only if, V X W “ t0u; in that case

ptzu ` Vq X ptuu ` Wq “

!

ΠW
V u ` ΠV

Wz
)

. (6)
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Proof Step 1: We show that the intersection ptzu ` Vq X ptuu ` Wq is nonempty for all pairs
pz, uq P Z ˆ U if, and only if, U ´ Z Ď V ` W.
Step 1a: Necessity.
Seeking a contradiction, assume U ´ Z Ę V ` W, i.e. there exists pz, uq P Z ˆ U with
u´z P U´Z which is not in V`W. By assumption there exists x P ptzu`VqXptuu`Wq, hence
there are v P V and w P W with x “ z ` v “ u ` w. But this implies u ´ z “ v ´ w P V ` W,
which contradicts the choice of u and z.
Step 1b: Sufficiency.
Pick an arbitrary pair pz, uq P Z ˆ U, then by assumption u ´ z P U ´ Z Ď V ` W. Choose
v P V and w P W such that u ´ z “ v ` w. Then z ` v “ u ´ w P tuu ` W. Hence,
z ` v P ptzu ` Vq X ptuu ` Wq, i.e., the latter intersection is not empty.

Step 2: We will prove that if ptzu ` Vq X ptuu ` Wq is non-empty for at least one pair
pz, uq P Z ˆ U then ptzu ` Vq X ptuu ` Wq is at most a singleton for all pairs pz, uq P Z ˆ U,
if, and only if, V X W “ t0u.
Step 2a: Necessity.
Seeking a contradiction, assume that V X W ‰ t0u and choose 0 ‰ p P V X W. Choose
some z P Z and u P U for which ptzu ` Vq X ptuu ` Wq is non-empty and choose
x P ptzu ` Vq X ptuu ` Wq. Then there are v P V and w P W with x “ z ` v “ u ` w.
Since z ` v ` p “ u ` w ` p and v ` p P V as well as w ` p P W we arrive at
z ` v ` p P ptzu `Vq X ptuu `Wq, and since z ` v ` p ‰ z ` v, the set ptzu `Vq X ptuu `Wq

is not a singleton (and also not empty).
Step 2b: Sufficiency.
For some z P Z and u P U for which ptzu ` Vq X ptuu ` Wq is non-empty, let
x1, x2 P ptzu ` Vq X ptuu ` Wq. Then, there exists v1, v2 P V and w1, w2 P W
with x1 “ z ` v1 “ u ` w1 and x2 “ z ` v2 “ u ` w2. Consequently,
x1 ´ x2 “ z ` v1 ´ z ´ v2 “ u ` w1 ´ u ´ w2 “ v1 ´ v2 “ w1 ´ w2. Consequently
v1 ´ v2 “ w1 ´ w2 P V X W “ t0u, which implies x1 “ x2, i.e., ptzu ` Vq X ptuu ` Wq is a
singleton.

Step 3: We show (5).
Let u ´ z P U ´ Z Ď V ‘ W and choose (unique) v P V and w P W such that u ´ z “ v ` w.
Then x :“ v ` z “ u ´ w P ptzu ` Vq X ptuu ` Wq. Furthermore, from ΠW

V pu ´ zq “ v and

ΠV
W pz ´uq “ ´w we can conclude that ΠW

V pu´ zq ` z “ v ` z “ x “ u´w “ ΠV
W pz ´uq `u

as desired. □

Note that we will later on rewrite the right-hand sides of (5) as

ΠW
V pu ´ zq ` z “ ΠW

V u ` pI ´ ΠW
V qz,

which is only well defined if we extend the projector ΠW
V uniquely defined on V ‘ W

to a projector defined on the whole space Rn. This extension is in general non-unique,
and if V ‘ W is not the whole space it is not possible to preserve all of the following
properties of a projector

imΠW
V “ V, kerΠW

V “ W, pI ´ ΠW
V q “ ΠV

W .

In particular, (6) does not hold for a general extension of the projector ΠW
V to Rn.
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We conclude this subsection by highlighting a property of projectors which we will
utilize later.

Lemma 3.5 Let V1,V2,W Ď Rn be subspaces such that Vi ‘ W “ Rn for i “ 1, 2. Then for
all x P V1 we have for the corresponding projectors ΠW

Vi
onto Vi along W that

ΠW
V1

ΠW
V2

x “ x.

Proof From ΠW
V2

x ´ x P W together with ΠW
V1

x “ x we have

ΠW
V1

ΠW
V2

x ´ x “ ΠW
V1

pΠW
V2

x ´ xq “ 0.

□

3.2 Index-1 notions

3.2.1 Matrix pairs pE,Aq and matrix triplets pE,A,Bq

A matrix pair pE,Aq P Rnˆn ˆRnˆn is called regular, if the polynomial detpsE ´Aq P

Rrss is not identically zero. It is well known that this is equivalent to the existence of
two invertible matrices S, T P Rnˆn such that

pSET, SAT q “

ˆ„

I 0
0 N

ȷ

,

„

J 0
0 I

ȷ˙

, (7)

where J P RnJˆnJ is some matrix and N P RnNˆnN is a nilpotent matrix (i.e. there
exists ν ď nN with Nν “ 0). Following [26] we call (7) the quasi-Weierstrass form
(QWF) of the matrix pair pE,Aq. Furthermore, the index of a regular matrix pair
pE,Aq is defined as the nilpotency index of N in the corresponding QWF (7); in
particular, pE,Aq is index-1 if, and only if1, N “ 0. In that case it can be easily seen
that T “ rV,W s and S “ rEV,AW s´1, where V and W are full column matrices such
that

imV “ S :“ A´1pimEq and imW “ kerE.

The property of index-1 will play a central role in the remainder of this work and we
therefore present several equivalent characterizations.

Lemma 3.6 (Index-1 characterizations) Consider a matrix pair pE,Aq P Rnˆn
ˆRnˆn and

let S :“ A´1
pimEq. Then the following statements are equivalent to pE,Aq being regular and

index-1.

(IC1) S X kerE “ t0u.

(IC2) S ‘ kerE “ Rn.

(IC3) deg detpsE ´ Aq “ rankE.

1This characterization is formally not correct, because if N is a 0 ˆ 0 matrix (which is the case if E is
invertible), then N0

“ I0ˆ0 “ 00ˆ0. However, since all of our results concerning index-1 remain valid if E
is invertible, we choose to include the index-0 case in our index-1 definition.
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(IC4) A4 is invertible in
”

A1 A2
A3 A4

ı

:“ PAQ where P,Q are invertible matrices such that

PEQ “
“

I 0
0 0

‰

(with matching block sizes in PEQ and PAQ).

(IC5)
”

S1E
S2A

ı

is invertible, where
”

S1
S2

ı

is invertible such that
”

S1
S2

ı

E “
“

S1E
0

‰

and S1E

has full rank (i.e. imSJ
2 “ kerEJ or kerS2 “ imE).

Proof The equivalent characterizations (IC1) and (IC2) are well known, see e.g. [27, Lem. 2.9].
The characterization (IC3) follows from the QWF and that detpsE ´ Aq “ cdetpsI ´ Jq;
consequently deg detpsE´Aq is the size of the J-block in the QWF and rankE is equal to that
size if, and only if, N “ 0. Utilizing the Schur-complement, it is easily seen that pE,Aq has a
QWF with N “ 0 if, and only if, A4 in (IC4) is invertible. For the last equivalence, we first

observe that by construction S1E has full row rank, hence
”

S1
S2

ı

imE “ im
“

S1E
0

‰

“ im
“

I
0

‰

.

Consequently,

S “

´”

S1
S2

ı

A
¯´1 ´”

S1
S2

ı

imE
¯

“

”

S1A
S2A

ı´1
im

“

I
0

‰

“ kerSA2.

Therefore, we have S X kerE “ kerS2A X kerSE1, from which equivalence between (IC1)
and (IC5) can be concluded. □

For a matrix triplet pE,A,Bq, the index-1 notion remains the same, but we also
introduce the notion of strictly index-1 as follows.

Definition 3.7 A matrix triplet pE,A,Bq is called

(i) index-1 if pE,Aq is (regular and) index-1,

(ii) strictly index-1 if pE,Aq is index-1 and imB Ď imE.

Remark 3.8 With pS :“ A´1
pimrE,Bsq it is possible to equivalently express strictly index-1

for pE,A,Bq as
kerE ‘ pS “ Rn. (8)

Necessity is clear because imB Ď imE implies that S “ pS and sufficiency follows from first
observing that (8) together with S Ď pS implies kerE X S “ t0u, i.e. (8) implies regularity
and index-1 of the matrix pair pE,Aq. Now by utilizing S and T in the QWF (7) with

SB “:
”

BJ
BN

ı

we can see that (8) implies BN “ 0 which is equivalent to imB Ď imE.

3.2.2 Family of matrix triplets tpEi, Ai, BiquiPM

In the solvability characterizations of system (1), we also utilize the so-called index-
1 notions for a family of matrix triplets tpEi, Ai, BiquiPM (already indicated in
Fig. 1). Those index-1 notions are defined according to the switching signal under
consideration.

We first define index-1 notions for a fixed and given switching signal σ of the form
(3) as follows:

Definition 3.9 A family of matrix triplets tpEi, Ai, BiquiPM is called

11



(i) switched index-1 w.r.t. σ if

1) imBi Ď imrEi, Ais @i P M,

2) pRσpkq ` pSσpk`1q Ď kerEσpkq ‘ Sσpk`1q @k P N,

where
pRi :“ E´1

i pimrAi, Bisq, pSi :“ A´1
i pimrEi, Bisq

(ii) switched strictly index-1 w.r.t. σ if

1) imBi Ď imEi @i P M,

2) pRσpkq Ď kerEσpkq ‘ pSσpk`1q @k P N.

By imposing the switched index-1 conditions to all switching signals from a par-
ticular mode sequence, we define the index-1 notions for a mode sequence pσjq as
follows:

Definition 3.10 A family of matrix triplets tpEi, Ai, BiquiPM is called

(i) sequentially index-1 w.r.t. pσjq if

1) pEi, Aiq index-1 @i P M,

2) pRσj ` pSσj`1 Ď kerEσj ‘ Sσj`1 @j P N.

(ii) sequentially strictly index-1 w.r.t. pσjq if

1) pEi, Ai, Biq strictly index-1 @i P M,

2) pRσj Ď kerEσj ‘ pSσj`1 @j P N.

Finally, we define the index-1 notions for tpEi, Ai, BiquiPM w.r.t. arbitrary switching
signals as follows:

Definition 3.11 A family of matrix triplets tpEi, Ai, BiquiPM is called

(i) jointly index-1 if kerEi ‘ Sj “ Rn
@i, j P M,

(ii) jointly strictly index-1 if kerEi ‘ pSj “ Rn
@i, j P M.

Remark 3.12 Note that in all three strict index-1 notions defined above, we have that
pSj “ Sj because imBj Ď imEj (for the jointly strictly index-1 case cf. the discussion after
(8)). Since the latter is explicitly required for the switched and sequential index-1 property, we

could also replace pSj by Sj in Definitions 3.9(ii) and 3.10(ii). Nevertheless, this replacement
is not possible for the jointly strictly index-1 definition, unless we explicitly add the condition
imBj Ď imEj . Furthermore, every non-strict index-1 notion becomes strict, if, and only if,
imBj Ď imEj .
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4 A key lemma

The causal solvability notions lead to the consideration of the following set of two
equations:

E0x1 “ A0x0 ` B0u0, (9a)

E1x2 “ A1x1 ` B1u1, (9b)

where E0, A0, E1, A1 P Rnˆn, B0, B1 P Rnˆm. The key question now is whether for a
given x0, u0, u1 there exists x1 and x2 such that (9) is satisfied and that x1 is uniquely
determined by x0, u0, u1.

Inspired by Definition 2.1, we call (9) solvable w.r.t. u0, u1 P Rm if for all x0

consistent with (9a), i.e. for all x0 P Su0
0 :“ A´1

0 pimE0 ´ tB0u0uq (assumed to be non-
empty), there exists a unique x1 P Rn and some x2 P Rm such that (9) holds; we call
(9) solvable if it is solvable for all u0, u1 P Rm. Finally, we call (9) strongly solvable if

for all x0 P pS0 “ A´1
0 pimrE0, B0sq and all u0, u1 P Rm there exists a unique x1 P Rn

and some x2 P Rn such that (9) holds.

Lemma 4.1 The linear system of equations (9) is solvable w.r.t. u0, u1 if, and only if

B0u0 P imrE0, A0s, B1u1 P imrE1, A1s, (10)

Ru0
0 ´ Su1

1 Ď kerE0 ‘ S1, (11)

where
Ru0

0 :“ E´1
0 pimA0 ` tB0u0uq,

Su1
1 :“ A´1

1 pimE1 ´ tB1u1uq,

S1 :“ S0
1 “ A´1

1 pimE1q.

In that case, for any x0 P Su0
0 :“ A´1

0 pimE0 ´ tB0u0uq the unique solution is given by

x1 “ Φ1,0x0 ` Ψc
1,0u0 ` Ψa

1,0u1, (12)

where
Φ1,0 :“ ΠkerE0

S1
E`
0 ΠimA0

imE0
A0,

Ψc
1,0 :“ ΠkerE0

S1
E`
0 ΠimA0

imE0
B0,

Ψa
1,0 :“ pΠkerE0

S1
´ IqA`

1 ΠimE1

imA1
B1.

Proof Clearly, (10) is necessary for the existence of x0, x1, x2 such that (9) is satisfied. Under
this assumption, we have that the sets Su0

0 and Su1
1 are both nonempty. Furthermore, for

any x0 P Su0
0 we can conclude that Ax0 ` Bu0 P imE0 and hence the set

Rx0,u0

0 :“ E´1
0 tAx0 ` Bu0u

is also nonempty. Now, x1 satisfies (9a) if, and only if, x1 P E´1
0 tAx0 ` Bu0u “ Rx0,u0

0 and

x1 satisfies (9b) for some x2 if, and only if, x1 P A´1
1 pimE1 ´ tB1u1uq “ Su1

1 . Consequently,
solvability of (9) w.r.t. u0, u1 is now equivalent to

Rx0,u0

0 X Su1
1 (13)
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being nonempty and a singleton for all x0 P Su0
0 . Using Lemma 3.3 (part (a) for Rx0,u0

0 and
part (b) for Su1

1 ), we can rewrite (13) as

pkerE0 ` tE`
0 pA0x0 ` B0u0quq X pA´1

1 pimE1q ´ tA`
1 ΠimE1

imA1
B1u1uq. (14)

According to Lemma 3.4 with z “ E`
0 pA0x0 ` B0u0q, Z “ tzu, V “ kerE0, u “

´A`
1 ΠimE1

imA1
B1u1, U “ tuu and W “ A´1

1 pimE1q, the set (14) is nonempty and a singleton
if, and only if

tE`
0 pA0x0 ` B0u0qu ` tA`

1 ΠimE1

imA1
B1u1u Ď kerE0 ‘ S1. (15)

Adding kerE0 and S1 “ A´1
1 pimE1q on the left side of (15) results in an equivalent set

relation ship and using Lemma 3.3 backwards (part (a) for the first and part (b) for the
second) we obtain

tE`
0 pA0x0 ` B0u0qu ` kerE0 “ E´1

0 tA0x0 ` B0u0u,

tA`
1 ΠimE1

imA1
B1u1u ` A´1

1 pimE1q “ A´1
1 pimE1 ` tB1u1uq “ ´Su1

1 ,

consequently, (15) is satisfied for all x0 P Su0
0 if, and only if

E´1
0 pA0Su0

0 ` tB0u0uq ´ Su1
1 Ď kerE0 ‘ A´1

1 pimE1q, (16)

where we also used that
Ť

x0PSu0
0

E´1
0 tA0x0`B0u0u “ E´1

0 pA0Su0
0 `tB0u0uq. The condition

(16) is in fact identical to (11), because

Ru0
0 “ E´1

0 pimA0 ` tB0u0uq

“ E´1
0 ppimA0 ` tB0u0uq X imE0q

p˚q
“ E´1

0 pimA0 X pimE0 ´ tB0u0uq ` tB0u0uq

“ E´1
0

`

A0Su0
0 ` tB0u0u

˘

,

where p˚q follows from the general property M X N “ ppM ´ tpuq X pN ´ tpuqq ` tpu for any
sets M,N Ď Rn and any point p P Rn. If the intersection (14) is indeed nonempty and a
singleton, then Lemma 3.4 (with V, W, u, z as above) implies that the unique element x1 in
that intersection is given by

x1 “ ΠkerE0

S1

´

E`
0 pA0x0 ` B0u0q ` A`

1 ΠimE1

imA1
B1u1

¯

´ A`
1 ΠimE1

imA1
B1u1,

which is the claimed solution formula after taking into account that A0x0 ` B0u0 P imE0

and hence A0x0 ` B0u0 “ ΠimA0

imE0
pA0x0 ` B0u0q. □

Remark 4.2 From the proof of Lemma 4.1, it becomes clear that condition (11) is equivalent
to

R0 ` tE`
0 ΠimA0

imE0
B0u0 ` A`

1 ΠimE1

imA1
B1u1u Ď kerE0 ‘ S1,

where R0 :“ R0
0 “ E´1

0 pimA0q, which may be more practical because the involved subspaces
and matrices can be calculated independently of u0 and u1. In particular, we can immediately
conclude the condition R0 Ď kerE0 ‘ S1 for solvability of the homogeneous case of (9).

As a direct consequence of Lemma 4.1, we have the following characterization for
the solvability (for all u0 and all u1) of (9):
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Corollary 4.3 The linear system of equations (9) is solvable if, and only if

imB0 Ď imrE0, A0s, imB1 Ď imrE1, A1s, (17)

pR0 ` pS1 Ď kerE0 ‘ S1, (18)

where
pR0 :“ E´1

0 pimrA0, B0sq, pS1 :“ A´1
1 pimrE1, B1sq.

Utilizing the characterization for the solvability above, we can now derive the
characterization for the strong solvability as follows.

Lemma 4.4 The linear system of equations (9) is strongly solvable if, and only if

imB0 Ď imE0, imB1 Ď imrE1, A1s, (19)

pR0 ` pS1 Ď kerE0 ‘ S1 (20)

Furthermore, if in addition to imB0 Ď imE0 also imB1 Ď imE1, then (strong) solvability is
equivalent to

pR0 Ď kerE0 ‘ pS1

and the solution formula simplifies to

x1 “ Φ1,0x0 ` Ψc
1,0u0

Proof For strong solvability of (9), the first equation (9a) must be solvable for x0 “ 0 P pS0 and
all u0 P Rm, which immediately implies that imB0 Ď imE0 is necessary for solvability. With
this restriction, the characterization for strong solvability is equal to the characterization of
solvability. If additionally imB1 Ď imE1 then S1 “ A´1

1 pimE1q “ A´1
1 pimrE1, B1sq “ pS1

from which the simplified characterization immediately follows. Finally, Ψa
1,0 “ 0 follows

from A`
1 ΠimE1

imA1
imB1 Ď S1, because imB1 Ď E1 implies, by definition, ΠimE1

imA1
imB1 Ď

imE1 X imA1 and because S1 “ A´1
1 pimE1 X imA1q “ A`

1 pimE1 X imA1q ` kerA1. □

Example 4.5 Consider (9) with

E0 “

„

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

ȷ

, A0 “

„

0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 1

ȷ

, B0 “

„

0
1
0
0

ȷ

,

E1 “

„

1 0 0 0
1 0 0 0
1 0 0 0
0 1 1 0

ȷ

, A1 “

„

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

ȷ

, B1 “

„

0
0
1
0

ȷ

.

We first see that neither pE0, A0q nor pE1, A1q are regular (because each pair has a common
zero-column), but imrE0, A0s “ Rn

“ imrE1, A1s, hence condition (10) is satisfied for any
choice of u0, u1 P R (and in fact, for any choice of B0, B1). In order to check the solvability
condition (11) we first calculate

kerE0 “ im

„

1
0
0
0

ȷ

, S1 “ A´1
1 pimE1q “ im

„

1 0
1 0
1 0
0 1

ȷ

and kerE0 ‘ S1 “ im

„

1 0 0
0 1 0
0 1 0
0 0 1

ȷ

.

Furthermore, utilizing Lemma 3.3(b) we have

Ru0
0 “ E´1

0 pimA0 ` tB0u0uq “ E´1
0 imA0 ` tE`

0 ΠimA0

imE0
B0u0u “ im

„

1 0
0 1
0 1
0 1

ȷ

`

"„

0
u0
0
0

ȷ*

,

Su1
1 “ A´1

1 pimE1 ´ tB1u1uq “ A´1
1 pimE1q ´ A`

1 ΠimE1

imA1
B1u1 “ im

„

1 0
1 0
1 0
0 1

ȷ

´

"„

0
0
u1
0

ȷ*

,
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where we have chosen E`
0 “ ΠimA0

imE0
“ E0 and A`

1 “ ΠimE1

imA1
“ A1. The condition (11) now

reads as

im

„

1 0 0
0 1 0
0 1 0
0 0 1

ȷ

`

"„

0
u0
u1
0

ȷ*

Ď im

„

1 0 0
0 1 0
0 1 0
0 0 1

ȷ

,

which is satisfied if, and only if, u0 “ u1. Now assume u0 “ u1 “ 1 and we want to find a
specific solution for a given consistent x0. We first calculate the set of consistent initial values
as

Su0
0 “ A´1

0 pimE0 ´ tB0u0uq “ A´1
0 pimE0q ´ A`

0 ΠimE0

imA0
B0u0 “ im

„

1 0 0
0 1 0
0 -1 0
0 0 1

ȷ

´

#«

0
0
0
1
3

ff+

,

where we have chosen A`
0 “ 1

6

„

0 0 0 0
3 0 0 0
3 0 0 0
0 2 2 2

ȷ

and A0A
`
0 “ ΠimE0

imA0
“ 1

3

„

3 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1

ȷ

. Note that

Su0
0 “ S0, hence any consistent initial value x0 is given by x0 “

»

—

–

x1
0

x2
0

x3
0

x4
0

fi

ffi

fl

with x30 “ -x20.

Consider now the consistent x0 “

„

1
0
0
1

ȷ

, then the unique x1 satisfying (9) for u0 “ u1 “ 1 is

given by (12), where

ΠkerE0

S1
“

„

0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1

ȷ

and hence Φ1,0 “

„

0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

ȷ

, Ψc
1,0 “

„

0
0
0
0

ȷ

, Ψa
1,0 “

„

1
1
0
0

ȷ

,

resulting in x1 “

„

2
2
1
1

ȷ

. It can easily be verified that E0x1 “ A0x0 ` B0u0 and that A1x1 `

B1u1 P imE1, which shows that x1 is indeed a solution of (9). Note that pR0 ` pS1 “ R4
Ę

kerE0 ‘ S1, which means that according to Corollary 4.3 (Lemma 4.4) the system (9) is not
(strongly) solvable.

5 Solvability characterizations

Recall the switched system (1) together with the solvability notions in Definition 2.1.
The proof of Lemma 4.1 provides the key argument for the solvability characterizations
of (1). By extending the arguments of this lemma to the switching signals under
consideration, the characterizations can then be derived straightforwardly.

5.1 Solvability characterizations for given switching signals

We first are interested in obtaining the weakest possible condition which guarantees
solvability for a given switching signal and given input. Surprisingly, for a fixed switch-
ing signal and fixed input, neither index-1 nor regularity for each individual mode is
necessary anymore. In fact, based on Lemma 4.1 and Remark 4.2 we arrive at the
following solvability characterization, where we use the following notation:

Si :“ A´1
i pimEiq and Ri :“ E´1

i pimAiq, for i P M.

Proposition 5.1 (Solvability w.r.t. σ and w.r.t. u) System (1) with given switching signal
σ and with given input u is (locally uniquely causally) solvable if, and only if, for k “ 0, 1, . . .

Bσpkqupkq P imrEσpkq, Aσpkqs and (21)
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Rσpkq `

!

Bc
σpkqupkq ` Ba

σpk`1qupk ` 1q

)

Ď kerEσpkq ‘ Sσpk`1q (22)

where
Bc
j :“ E`

j Π
imAj

imEj
Bj and Ba

i :“ A`
i ΠimEi

imAi
Bi.

In that case, x is a solution on rk0, k1s if, and only if, the corresponding initial value xpk0q

satisfies xpk0q P Sσpk0q ´

!

Ba
σpk0qupk0q

)

, and x satisfies (the surrogate system)

xpk ` 1q “Φσpk`1q,σpkqxpkq ` Ψc
σpk`1q,σpkqupkq ` Ψa

σpk`1q,σpkqupk ` 1q (23)

where, for i, j P M,

Φi,j :“ Π
kerEj

Si
E`
j Π

imAj

imEj
Aj ,

Ψc
i,j :“ Π

kerEj

Si
Bc
j , Ψa

i,j :“ pΠ
kerEj

Si
´ IqBa

i .

In particular, for all k, xpkq P Sσpkq ´

!

Ba
σpkqupkq

)

.

Proof We first observe that (1) being solvable w.r.t. σ and u implies that A´1
σpk0q

pimEσpk0q ´

tBσpk0qupk0quq “ Supk0q

σpk0q
is non-empty for all k0 P N and that xpk0q “ x0 is a solution of (1)

on rk0, k0s for all x0 P Supk0q

σpk0q
. Solvability, in particular unique extendability, implies that

for all x0 P Supk0q

σpk0q
there exists a unique x1 P Rn such that xpk0q “ x0 and xpk1q “ x1 is a

solution of (1). In other words, for all x0 P Supk0q

σpk0q
there exist a unique x1 P Rn and some

x2 P Rn such that

Eσpk0qx1 “ Aσpk0qx0 ` Bσpk0qupk0q,

Eσpk0`1qx2 “ Aσpk0`1qx1 ` Bσpk0`1qupk0 ` 1q.

Now Lemma 4.1 together with Remark 4.2 implies that (21) and (22) are necessary for
solvability w.r.t. to σ and u.

Sufficiency is clear by simply recursively extending a solution found on rk0, k1s to
rk0, k1 ` 1s by solving

Eσpk1qx1 “ Aσpk1qxpk1q ` Bσpk1qupk1q,

Eσpk1`1qx2 “ Aσpk1`1qx1 ` Bσpk1`1qupk1 ` 1q.

for x1 and setting xpk1 ` 1q “ x1; Lemma 4.1 together with Remark 4.2 ensures the unique
existence of such an x1. □

Remark 5.2 (Homogeneous case) When considering the homogeneous case, i.e. (1) with
u “ 0 (or Bi “ 0), we immediately see that the inhomogeneous solvability characterization
from Theorem 5.1 reduces to

Rσpkq Ď kerEσpkq ‘ Sσpk`1q,

or equivalently (by Lemma 3.3(a))

E`

σpkq
pimEσpkq X imAσpkqq Ď kerEσpkq ‘ Sσpk`1q,

which is the switched index-1 condition for homogeneous systems already reported in [22].
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Corollary 5.3 (Augmented consistency space) Consider the switched system (1) with a fixed
switching signal and assume it is solvable for all inputs. The space of all consistent initial
values xpk0q at k0 is given by imBa

σpk0q ` Sσpk0q which is equal to

pSσpk0q :“ A´1
σpk0q

pimrEσpk0q, Bσpk0qs.

Proof We have that

pSσpk0q “
ď

uPRm

A´1
σpk0q

ptBσpk0quu ` imEσpk0qq.

From (21) it follows that ptBσpk0quu`imEσpk0qqXimAσpk0q ‰ H and hence by Lemma 3.3(b)
we have

pSσpk0q “
ď

uPRm

ptBa
σpk0quu ` Sσpk0qq “ imBa

σpk0q ` Sσpk0q. □

Now, from Corollary 4.3 and the switched index-1 notion in Definition 3.9, it
becomes clear that switched index-1 is the necessary and sufficient condition for the
solvability of (1) for a given switching signal (and arbitrary inputs).

Corollary 5.4 (Solvability w.r.t. σ) The switched system (1) with given switching signal σ
is (locally uniquely causally) solvable for all inputs if, and only if, tpEi, Ai, BiquiPM is switched
index-1 w.r.t. the given σ. If solvable, the surrogate system (23) is also valid.

Proof This follows straightforwardly from Proposition 5.1 by observing that validity of the
conditions (10) and (11) for all u0, u1 P Rm is equivalent to the condition for switched index-1
w.r.t. σ. □

Similarly, from Lemma 4.4, it also becomes clear that switched strictly index-1
is the necessary and sufficient condition for the strong solvability of (1) for a given
switching signal.

Corollary 5.5 (Strong solvability w.r.t. σ) System (1) is strongly solvable w.r.t. a given
switching signal σ if, and only if, tpEi, Ai, BiquiPM is switched strictly index-1 w.r.t. the given
σ. If solvable, the surrogate system (23) is also valid with Ψa

i,j “ 0.

Proof Clearly, (1) is strongly solvable if, and only if, it is strongly solvable on each interval
rk, k ` 1s. Using Lemma (4.4), we can therefore first conclude imBσpkq Ď imEσpkq for all
k P N. Consequently, we can use again Lemma 4.4 to conclude that solvability is equivalent
to pRσpkq Ď kerEσpkq ‘ Sσpk`1q, i.e. the familiy tpEi, Ai, BiquiPM is switched strictly index-1
w.r.t. σ. □

Remark 5.6 (Augmented consistency space) We have established in Corollary 5.3 that the

set of initial values at time k0 for which a solution exists is given by pSσpk0q. However, for

solvable systems, it is not possible to choose x0 P pSσpk0q independently from the input upk0q.
This motivated the definition of strong solvability. However, as it turns out, strong solvability
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implies that imBσpk0q Ď Eσpk0q so that the augmented consistency space pSσpk0q is equal
to the (homogeneous) consistency space Sσpk0q. Consequently, the possibility to choose an
initial value outside the homogeneous consistency space comes with the limitation that then
this initial value cannot be chosen independently from the input.

5.2 Solvability characterizations for given mode sequence

We now consider the case that only the mode sequence pσjqjPN of the switching signal
is known (and given by (3)), but the mode durations are unknown. This situation is
quite common in practice when considering single faults, whose occurrence is known
(or predicted), but it is not known when the fault occurs.

We can now utilize the already obtained result for solvability for fixed switching
signals to conclude the solvability characterization for fixed mode sequences (with arbi-
trary switching times), however, in order to obtain a simple characterization we have
to consider the case of arbitrary inputs. The reason is, that for a specific input u the
solvability condition (22) relates the input value upkq (and upk`1q) at the current time
k with the switching signal σpkq (and σpk`1q) which is not directly possible anymore
when the switching times are not known; however, see the forthcoming Remark 5.8(i).

Corollary 5.7 (Solvability w.r.t. pσjq) The switched system (1) with a given (surjective)
mode sequence pσjq is solvable (for all inputs u) if, and only if, tpEi, Ai, BiquiPM is sequentially
index-1 w.r.t. the given mode sequence. In that case, x is a solution on rk0, k1s if, and only if,

the corresponding initial value xpk0q satisfies xpk0q P Sσpk0q ´

!

Ba
σpk0qupk0q

)

, and x satisfies

the surrogate system (23).

Proof It is clear, that property 2) of sequentially index-1 w.r.t. switching sequence pσjq

implies property 2) of switched index-1 for all switching signals σ with switching sequence
pσjq. Furthermore, (regularity and) index-1 of each pEi, Aiq implies that imrEi, Ais “ Rn

(this is a simple consequence of the QWF (7)) which shows the sufficiency part of the proof.
To show necessity, we first consider property 1) of sequentially index-1, i.e. the condition

that pEi, Aiq is index-1. By assumption the mode sequence pσjq is surjective, i.e. we can choose
a switching signal σ with sequence pσjq such that there exists k0 with σpk0q “ i “ σpk0 ` 1q.
Since, the switched system is solvable for that specific switching signal, property 2) of the
switched index condition has to hold, in particular t0u “ kerEσpk0q XSσpk0`1q “ kerEi XSi.
Then Lemma 3.6 implies that indeed pEi, Aiq has to be regular and index-1. Necessity of
property 2) of the sequential index-1 property follows by considering (the necessary) condition
2) of the switched index-1 property for k0 such that σpk0q “ σj and σpk0 ` 1q “ σj`1. □

Remarks 5.8 (i) It is possible to formulate a characterization of solvability w.r.t. a fixed
mode sequence and a fixed input by defining first

Jpkq :“

#

j P M

ˇ

ˇ

ˇ

ˇ

ˇ

Dσ with mode sequence

pσjq s.t. σj “ σpkq

+

.

This set describes which modes can be active at time k. For example, for a periodic mode
sequence p0, 1, 2, 3, 0, 1, 2, 3, ...q we have that Jp0q “ t0u, Jp1q “ t0, 1u, Jp2q “ t0, 1, 2u
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and Jpkq “ t0, 1, 2, 3u for all k ě 3. Then (22) has to be replaced by

Rσj `
␣

Bc
σj
upkq ` Ba

σj`1
upk ` 1q

(

Ď kerEσj ‘ Sσj`1 @k ě 0 @j P Jpkq.

Additionally, regularity and index-1 for each mode need to be assumed, which then
implies that Bc

σj
upkq P Rσj , so that the dependence on upkq can be removed.

(ii) The characterization for solvability in Corollary 5.7 can be generalized to the situation
where the allowed mode sequences are given in a more complicated way, e.g. by a directed
graph with nodes t0, 1, . . .u and where the edges describe which mode transitions are
possible. The pairs pσj , σj`1q then need to be replaced by all possible mode pairs pv, wq

which are edges in the graph. For a full graph, the jointly index-1 condition is then
recovered.

(iii) When considering the homogeneous case (i.e. Bi “ 0), the definition of sequential
index-1 from [22] is recovered.

Corollary 5.9 (Strong solvability w.r.t. pσjq) System (1) is strongly solvable for a given
mode sequence pσjq if, and only if, tpEi, Ai, BiquiPM is sequentially strictly index-1 w.r.t. pσjq.
If solvable, the surrogate system (23) is also valid in this case.

Proof Strong solvability w.r.t. pσjq implies solvability w.r.t. pσjq as well as strong solvability
w.r.t. any switching signal σ with mode sequence pσjq. Hence, combining Corollary 5.7 with
Corollary 5.5 shows that both sequential index-1 w.r.t. pσjq as well as switched strictly index-1
w.r.t. any σ with mode sequence pσjq are necessary. However, this implies that pEi, Ai, Biq

needs to be strictly index-1 for all i P M and that pSσj`1 “ Sσj`1 , so that condition 2)
of sequential index-1 becomes condition 2) of sequentially strictly index-1; concluding the
necessity part of the proof.

For sufficiency, we observe that sequentially strictly index-1 w.r.t. pσjq implies switched
strictly index-1 w.r.t. all σ with mode sequence pσjq, which in turn, using Corollary 5.5,
implies strong solvability w.r.t. all σ with mode sequencence pσjq, i.e. strong solvability w.r.t.
pσjq. □

5.3 Solvability for arbitrary switching signals

From the previous characterizations, intuitively, the jointly (strictly) index-1 notion is
the necessary and sufficient condition for the (strong) solvability of (1) for arbitrary
switching signals, and this is indeed true.

Corollary 5.10 (Solvability for arbitrary switching signals) The switched system (1) is
solvable for all switching signals if, and only if, tpEi, Ai, BiquiPM is jointly index-1.

Proof Sufficiency follows from the fact that jointly index-1 implies property 2) of switched
index-1 trivially for all switching signals. Furthermore, regularity of pEi, Aiq (implied by
jointly index-1) implies that imrEi, Ais “ Rn and hence property 1) of switched index-1 is
also trivially satisfied. Consequently, the switched system is solvable for arbitrary switching
signals.
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For necessity, we can conclude similar as in Corollary 5.7 that indeed pEi, Aiq must be
(regular and) index-1, which implies that kerEi ‘ Si “ Rn. Furthermore, solvability implies
that kerEi X Sj “ t0u for all i, j P M. Now, a simple dimensional argument (see [21, Lem.
3.3]) shows that indeed kerEi ‘ Sj “ Rn as required. □

Remark 5.11 (Solvability for arbitrary switching signals and w.r.t. u) It follows that (1) is
solvable for all switching signals and w.r.t. a given u if and only if tpEi, Ai, BiquiPM is jointly
index-1. This is due to the regularity and index-1 requirement for each mode, i.e., kerEi ‘Si

must be equal to Rn. This means that the solvability conditions (21)-(22) hold for a particular
input if and only if it holds for arbitrary inputs.

Corollary 5.12 (Strong solvability for arbitrary switching) System (1) is strongly solvable
for all switching signals if and only if tpEi, Ai, BiquiPM is jointly strictly index-1. If solvable,
the surrogate system (23) is also valid with rΨa

i,j “ 0.

Proof By Remark 3.12 we see that jointly strictly index-1 implies that imBi Ď imEi for
all i P M and hence jointly strictly index-1 implies switched strictly index-1 for any σ. By
Corollary 5.5, (1) is therefore strongly solvable for any σ.

Conversely, strong solvability for arbitrary switching signals implies strong solvability for
any mode sequence, which, by Corollary 5.9 implies sequentially strictly index-1 for arbitrary
mode sequences. This implies imBi Ď imEi and hence Si “ pSi. Furthermore, as already
observed in the proof of Corollary 5.10, kerEi X Sj “ t0u for all i, j P M implies Rn

“

kerEi ‘ Sj “ kerEi ‘ pSj , which is jointly strictly index-1. □

5.4 Explicit solution formula

From the establishment of the surrogate system (23) for solvable systems (with Ψa
i,j “

0 for strongly solvable systems), we can define the transition matrix of the switched
system as follows:

Φσpk1, k0q :“ Φσpk1q,σpk1´1qΦσpk1´1q,σpk1´2q ¨ ¨ ¨Φσpk0`1q,σpk0q

for k1 ą k0 and Φpk0, k0q :“ I. Clearly, for homogeneous systems, we have that the
solution is given by xpkq “ Φσpk, k0qx0 for every consistent x0 P Sσpk0q.

Furthermore, for k ą ℓ ą 0 let

Ψσp0, 0q :“ 0,

Ψσpk, 0q :“ Φσpk, 1qΨc
1,0,

Ψσpk, ℓq :“ Φσpk, ℓ ` 1qΨc
σpℓ`1q,σpℓq ` Φσpk, ℓqΨa

σpℓq,σpℓ´1q,

Ψσpk, kq :“ Ψa
σpkq,σpk´1q.
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Then the explicit solution formula of a general solvable system (1) is given by

xpkq “ Φσpk, 0qx0 `

k
ÿ

j“0

Ψσpk, jqupjq (24)

where x0 P Sup0q

σp0q
for solvable systems or with x0 P pSσp0q “ Sσp0q for strongly solvable

systems.

6 (Counter) examples

All implications depicted in Fig. 1 are rather obvious and can be seen directly from the
solvability definitions, i.e., with respect to switching signals, solvability for all switching
signals implies solvability w.r.t. all mode sequences and the latter implies solvability
of a specific switching signal with a given switching sequence. Similar observations
also apply to solvability with respect to inputs.

Meanwhile, some of the nonimplications can be deduced directly from the homo-
geneous case (with u “ 0 or with Bi “ 0, see Examples 3.6 and 3.7 in [22]). Now, we
provide counter-examples for the rest of the nonimplications.

Example 6.1 (Solvability w.r.t. σ and u) Consider the switched system (1) with

pE0, A0, B0q “
`“

1 1
1 1

‰

,
“

0 0
0 0

‰

,
“

0
0

‰˘

,

pE1, A1, B1q “
`“

0 0
0 0

‰

,
“

1 0
1 1

‰

,
“

1
1

‰˘

.

Note that after some simple row and column operations this example is a combination of
the second (scalar) example discussed in the introduction (showing that solvability depends
on the input) and the scalar singular system 0 “ 0 (which if active only for one time step,
can still be part of a solvable switched system). Using Corollary 5.1 we will now show that
this switched system is solvable w.r.t. the switching signal σp0q “ 0, σpkq “ 1, k ě 1 and
w.r.t. the input upkq “ p´1q

k, k ě 0, but is neither uniquely solvable for arbitrary switching
signals with mode sequence p0, 1q (and the same fixed input), nor is it solvable for arbitrary
inputs (and the same fixed switching signal). First, observe that

kerE0 “ im
“

1
-1

‰

, S0 “ R2, R0 “ im
“

1
-1

‰

,

kerE1 “ R2, S1 “ t0u, R1 “ R2.

Clearly, the first solvability condition (10) of Corollary 5.1 is satisfied; in order to check the

second solvability condition (22), we first calculate E`
0 “ 1

4

“

1 1
1 1

‰

, A`
1 “

“

1 0
-1 1

‰

, ΠimA0

imE0
“

“

1 0
1 0

‰

, ΠimE1

imA1
“

“

1 0
0 1

‰

. Then (22) for k “ 0 reads as

im
“

1
-1

‰

`

!”

up0q{2`up1q

up0q{2

ı)

Ď im
“

1
-1

‰

‘ t0u

Plugging in up0q “ 1 and up1q “ ´1, we see that this condition is indeed satisfied. Since
kerE1 ‘ S1 “ Rn, condition (22) is also trivially satisfied for k ě 1, hence we can conclude
that this switched singular system is solvable w.r.t. the given switching signal and given
input. However, if we choose another input signal, e.g. upkq “ 1, k ě 0, then we see that
the solvability condition (22) for k “ 0 is not satisfied. On the other hand, considering a
switching signal where the switching happens later, i.e. σp0q “ σp1q “ 0, we see that (22) for
k “ 0 is also not satisfied because, kerE0 X S0 ‰ t0u.
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Example 6.2 (Solvability w.r.t. σ) Consider the scalar switched system (1) with
pE0, A0, B0q “ p0, 0, 0q and pE1, A1, B1q “ p0, 1, 1q and with switching signal σp0q “ 0,
σpkq “ 1, k ě 1 and arbitrary input u. For an arbitrary initial value xp0q, the unique solu-
tion is given by xpkq “ ´upkq. It can also be verified easily that tpE0, A0, B0q, pE1, A1, B1qu

is switched index-1 w.r.t. the given σ, hence Corollary 5.4 shows that the switched system
is solvable w.r.t. σ. However, imB1 Ę imE1, hence the switched system cannot be (locally)
strongly solvable. Note however, that this example is actually globally strongly solvable,
because when only considered on the whole time interval r0,8q, there exists a unique solu-
tion for all initial values x0 and all inputs u. Furthermore, (unique) solvability is lost, when
staying longer than one time step in the initial mode because kerE0 X S0 ‰ t0u, i.e. this
example is not solvable w.r.t. the mode sequence p0, 1q.

Example 6.3 (Solvability w.r.t. pσjq) Consider the switched system (1) given by

pE0, A0, B0q “
`“

1 0
0 0

‰

,
“

0 0
0 1

‰

,
“

0
1

‰˘

, pE1, A1, B1q “
`“

0 0
0 1

‰

,
“

1 1
0 0

‰

,
“

1
0

‰˘

.

We will show in the following that this switched system is solvable w.r.t. switching signals
with a mode sequence p0, 1q, but it is not strongly solvable w.r.t. this mode sequence and it
is also not solvable for arbitrary switching signals. It is easily verified that pEi, Aiq is regular
and index-1 for i “ 0, 1 and that

kerE0 “ im
“

0
1

‰

, S0 “ im
“

1
0

‰

, kerE1 “ im
“

1
0

‰

, S1 “ im
“

1
´1

‰

.

Furthermore, we have that

kerE0 ‘ S0 “ kerE0 ‘ S1 “ kerE1 ‘ S1 “ R2.

Consequently, tpE0, A0, B0q, pE1, A1, B1qu is sequentially index-1 w.r.t. the mode sequence
p0, 1q and Corollary 5.7 yields that the switched system is solvable for all switching signals
with the mode sequence p0, 1q (and all inputs). The above system is clearly not strongly
solvable (w.r.t. the mode sequence p0, 1q) because imBi Ę imEi, i “ 0, 1. Since kerE1XS0 ‰

t0u, the family tpE0, A0, B0q, pE1, A1, B1qu is not jointly index-1 and hence the switched
system cannot be solvable for arbitrary switching signals.

7 Alternative approaches for jointly index-1 systems

The simplicity of the jointly index-1 condition kerEi ‘ Sj “ Rn @i, j P M makes it
possible to establish some other approaches to check solvability (w.r.t. all switching
signals) of the switched system (1).

7.1 Decoupling approach

We recall the following definitions for a regular matrix pair pE,Aq with QWF (7) from
the continuous time case (see e.g. [28]):

Π :“ T r I 0
0 0 sT´1,

Πdiff :“ T r I 0
0 0 sS, Adiff :“ ΠdiffA, Bdiff :“ ΠdiffB,

Πimp :“ T r 0 0
0 I sS, Eimp :“ ΠimpE, Bimp :“ ΠimpB.
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Note that although S and T for obtaining a QWF are not unique, the above matrices
are uniquely determined by the matrix pair pE,Aq Furthermore, if pE,Aq is index-1
then it is easy to see that

S “ A´1pimEq “ imΠ “ imΠdiff and kerE “ kerΠ “ impI ´ Πq “ imΠimp.

Similar to the continuous time case (cf. [29, Lem. 1]) we have that x solves the
unswitched singular system

Expk ` 1q “ Axpkq ` Bupkq, xp0q “ x0

if, and only if, x “ xc ‘ xa, where

xcpk ` 1q“Adiffxcpkq`Bdiffupkq, xcp0q “ Πx0,

Eimpxapk ` 1q“xapk ` 1q`Bimpupkq, xap0q “ pI´Πqx0.

We now want to utilize this decoupling also for the switched case. Towards this
goal let us define for each regular matrix triplet pEi, Ai, Biq the matrices Πi, Π

diff
i ,

Πimp
i , Adiff

i , Bdiff
i , Eimp

i , Bimp
i as above.

By defining

xcpkq :“ Πkxpkq, xapkq :“ pI ´ Πkqxpkq,

xcpk ` 1q :“ Πkxpk ` 1q, xapk ` 1q :“ pI ´ Πkqxpk ` 1q,

we have xpkq “ xcpkq ` xapkq “ xcpkq ` xapkq for k ě 1. Furthermore, by multiplying
(1) either with Πdiff

σpkq
or Πimp

σpkq
from the left, it follows that every solution of (1) also

satisfies

xcpk ` 1q “ Adiff
σpkqx

cpkq ` Bdiff
σpkqupkq, (25a)

xcp0q “ xc
0 :“ Πσpkqx0,

Eimp
σpkq

xapk ` 1q “ xapkq ` Bimp
σpkq

upkq, (25b)

xap0q “ xa
0 :“ pI ´ Πσpkqqx0.

However, the equations cannot be solved directly because there is no explicit relation-
ship between xc and xc as well as between xa and xa. Note however that the jointly
index-1 property implies that Eimp

i “ 0 for all modes i, which leads to the immediate
solution of (25b):

xapkq “ ´Bimp
σpkq

upkq, k ě 0.

Furthermore, xcpk ` 1q (but not xcpk ` 1q) is uniquely given by xcpkq and Bdiff
σpkq

upkq.

By construction, we know that xcpk ` 1q P imΠσpk`1q “ Sσpk`1q and xapk ` 1q P
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impI ´ Πσpkqq “ kerEσpkq, consequently

xpk ` 1q “ xapk ` 1q ` xcpk ` 1q “ xcpk ` 1q ` xapk ` 1q

P
`

txapk ` 1qu ` Sσpk`1q

˘

X
`

txcpk ` 1qu ` kerEσpkq

˘

Jointly index-1 together with Lemma 3.4 implies that the above intersection is a
singleton and hence

xpk ` 1q “ Π
kerEσpkq

Sσpk`1q

`

xcpk ` 1q ´ xapk ` 1q
˘

` xapk ` 1q.

We can now formulate the solvability characterization as well as the surrogate
system in terms of the decoupled states xc and xa.

Proposition 7.1 Consider the jointly index-1 switched system (1) with the corresponding

matrices Πi, Π
diff
i , Πimp

i , Adiff
i , Eimp

i , Bdiff
i and Bimp

i as above. Then x is a solution of (1)

on rk0, k1s for some given input u if, and only if, xpk0q P Sσpk0q ´ tBimp
σpk0q

upk0qu and x is a

solution of the surrogate system

xpk ` 1q “ Φσpk`1q,σpkqxpkq ` Ψc
σpk`1q,σpkqupkq ` Ψa

σpk`1q,σpkqupk ` 1q, (26)

where
Φi,j :“ Π

kerEj

Si
Adiff
j ,

Ψc
i,j :“ Π

kerEj

Si
Bdiff
j , Ψa

i,j :“ pΠ
kerEj

Si
´ IqBimp

i .

Proof “ñ” If x is a solution of (1) then by the above arguments we have

xpk ` 1q “ Π
kerEσpkq

Sσpk`1q
pxcpk ` 1q ´ xapk ` 1qq ` xapk ` 1q,

and together with xcpk ` 1q “ Adiff
σpkqx

c
pkq ` Bdiff

σpkqupkq and xapk ` 1q “ ´Bimp
σpkq

upk ` 1q,

we arrive at the claimed surrogate system. Furthermore, we can conclude that xpk0q “

xcpk0q ` xapk0q P imΠσpk0q ´ tBimp
σpk0q

upk0qu which shows the claim concerning the initial

value because imΠσp0q “ Sσp0q

“ð” We first observe that Πdiff
i ` Πimp

i “ TiSi and hence is invertible. Therefore x is a
solution of (1) if, and only if, x solves

pΠdiff
σpkq ` Πimp

σpkq
qEσpkqxpk ` 1q

“ pΠdiff
σpkq ` Πimp

σpkq
qAσpkqxpkq ` pΠdiff

σpkq ` Πimp
σpkq

qBσpkqupkq.

Since imΠdiff
i ‘ imΠimp

i “ Rn the latter equation holds, if and only if, the following two
equations hold

Πdiff
σpkqEσpkqxpk ` 1q “ Adiff

σpkqxpkq ` Bdiff
σpkqupkq and (27a)

Eimp
σpkq

xpk ` 1q “ Πimp
σpkq

Aσpkqxpkq ` Bimp
σpkq

upkq. (27b)

We will now show that x given by the surrogate system satisfies these two equations for all k P

N. Towards this goal we first observe that Πdiff
i Ei “ Πi, ΠiA

diff
i “ Adiff

i and ΠiB
diff
i “ Bdiff

i
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which means that (27a) can equivalently be written as (28a) below. Furthermore, Πimp
i Ai “

pI´Πiq and (jointly) index-1 implies that Eimp
i “ 0, hence (27b) takes the form (28b) below.

Πσpkqpxpk ` 1q ´ Adiff
σpkqxpkq ´ Bdiff

σpkqupkqq “ 0 (28a)

0 “ pI ´ Πσpkqqxpkq ` Bimp
σpkq

upkq (28b)

Step 1: We show that (28a) holds.
Using the proposed surrogate system, we can replace xpk ` 1q in (28a) by the right hand

side of (26); by observing that imΨa
i,j Ď kerEj “ kerΠj for all mode pairs i, j and recalling

that Adiff
j “ Πdiff

j Aj and ΠjΠ
diff
j “ Πdiff

j we see that (28a) is satisfied if

ΠjΠ
kerEj

Si
Πdiff
j “ Πdiff

j .

The latter is a simple consequence from Lemma 3.5 and utilizing that Πj “ Π
kerEj

Sj
.

Step 2: We show that (28b) holds.

For k “ 0, (28b) clearly holds because xp0q “ x0 P Sσp0q ´ tBimp
σp0q

up0qu, Sσp0q Ď kerpI ´

Πσpkqq and Bimp
σp0q

up0q Ď imΠimp
σp0q

“ impI ´ Πσp0qq. For k ě 1, we can replace xpkq in (28b)

by the (time-shifted) right-hand side of (26); by observing that both imΦi,j and imΨc
i,j are

subsets of imΠj “ kerpI ´ Πiq for all mode pairs i, j, it remains to be shown that

pI ´ ΠiqpΠ
kerEj

Si
´ IqΠimp

i “ ´Πimp
i .

But this follows again from Lemma 3.5 by observing that I´Πi “ ΠSi

kerEi
and pΠ

kerEj

Si
´Iq “

´ΠSi

kerEj
. □

Remark 7.2 In general the matrices in the surrogate systems (23) and (26) are different
(but result in the same solution trajectories). While (23) doesn’t rely on the regularity and
index-1 assumption for each mode, there is some freedom in choosing the matrices (because
the pseudo-inverse is not unique and the projector ΠW

V : V ` W Ñ V is non-unique if
V XW ‰ t0u). On the other hand, (26) is only valid if each mode is regular and index-1, but
then all involved matrices are uniquely defined.

7.2 Row reduced approach

Corollary 5.1 and Proposition 7.1 present a nice geometric and coordinate-free solution
formula for switched descriptor systems (because all involved matrices can be seen
as linear maps defined in the originally considered vector spaces). However, in real
applications a specific coordinate system needs to be chosen and all calculations are
done with specific matrix representations of the underlying linear maps. In that case,
Corollary 5.1 and Proposition 7.1 involve quite many matrix operations and may not
always be very efficient; therefore we present another, more practicable, solvability
characterization and solution formula as follows (inspired by [23]): Choose a family of
invertible matrices Sj (in fact, each Sj can be chosen as a product of simple Gauss
eliminations and row permutations) such that, for j P M,

SjEj “

”

E1
j

0

ı

, E1
j is full row rank. (29)
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Furthermore, let
”

A1
j

A2
j

ı

:“ SjAj ,
”

B1
j

B2
j

ı

:“ SjBj , (30)

where A1
j and B1

j have the same number of rows as E1
j .

Proposition 7.3 (Numerical solvability characterization) The switched system (1) is (locally

uniquely causally) solvable for all input u and all switching signals σ if, and only if,

„

E1
j

A2
i

ȷ

is

square and invertible for all i, j P M, where the notation of (29) and (30) is used. In that case,
x is a solution of (1) if, and only if, the initial value x0 “ xp0q satisfies Aσp0qx0`Bσp0qup0q P

imEσp0q and

xpk ` 1q “ rΦσpk`1q,σpkqxpkq ` rΨc
σpk`1q,σpkqupkq ` rΨa

σpk`1q,σpkqupk ` 1q, (31)

where

rΦi,j :“

„

E1
j

A2
i

ȷ´1 „
A1
j

0

ȷ

,

rΨc
i,j :“

„

E1
j

A2
i

ȷ´1 „
B1
j

0

ȷ

, rΨa
i,j :“

„

E1
j

A2
i

ȷ´1 „
0

´B2
i

ȷ

.

Proof With the same arguments as in the proof of Lemma 3.6, it follows that Si “

A´1
i pimEiq “ kerA2

i and kerEj “ kerE1
j . Consequently, we have that Si X kerEj “ t0u

if, and only if, ker

„

E1
j

A2
i

ȷ

“ t0u. Taking into account that jointly index-1 implies that

rankEi “ rankEj (see [21, Lem. 3.3]), we can immediatly conclude that jointly index-1 is

equivalent to

„

E1
j

A2
i

ȷ

being square and invertible for all pairs i, j. Now multiplying the switched

system (1) from the left with Sσpkq we obtain
«

E1
σpkq

0

ff

xpk ` 1q “

«

A1
σpkq

A2
σpkq

ff

xpkq `

«

B1
σpkq

B2
σpkq

ff

upkq,

«

E1
σpk`1q

0

ff

xpk ` 2q “

«

A1
σpk`1q

A2
σpk`1q

ff

xpk ` 1q `

«

B1
σpk`1q

B2
σpk`1q

ff

upk ` 1q.

Hence, we have
«

E1
σpkq

A2
σpk`1q

ff

xpk ` 1q “

«

A1
σpkq

0

ff

xpkq `

«

B1
σpkq

0

ff

upkq ´

«

0

B2
σpk`1q

ff

upk ` 1q,

which results in (31), by left-multiplying with the inverse of

„

E1
σpkq

A2
σpk`1q

ȷ

. □

7.3 Unification of E-matrix approach

Since we have already established that solvability for all switching signals and all
inputs requires jointly index-1, we know that rankEi “ r for some r P N independent
from the mode. Hence, it is possible to find invertible matrices Pi, Qi such that

PiEiQi “ r I 0
0 0 s . (32)
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For an arbitrary σ : N Ñ M we consider the time-dependent coordinate transformation

pxpkq :“
´

px1
pkq

px1
pkq

¯

:“ Qσpk´1qxpkq

with arbitrarily chosen σp´1q P M. Then the switched system (1) is equivalent to

PσpkqEσpkqQσpkqpxpk ` 1q “ PσpkqAσpkqQσpk´1qpxpkq ` PσpkqBσpkqupkq.

With

PiAiQj :“
”

A1
i,j A2

i,j

A3
i,j A4

i,j

ı

and PiBi “

”

B1
i

B2
i

ı

(33)

we therefore have the equivalent switched system

pxpk ` 1q “ A1
σpkq,σpk´1qpx

1pkq ` A2
σpkq,σpk´1qpx

2pkq ` B1
σpkqupkq

0 “ A3
σpkq,σpk´1qpx

1pkq ` A4
σpkq,σpk´1qpx

2pkq ` B2
σpkqupkq.

or, after applying a time shift to the second equation,

„

I 0
A3

σpk`1q,σpkq
A4

σpk`1q,σpkq

ȷ

px1pk ` 1q “

„

A1
σpkq,σpk´1q

A2
σpkq,σpk´1q

0 0

ȷ

pxpkq

`

„

B1
σpkq

0

ȷ

upkq ´

„

0
B2

σpk`1q

ȷ

upk ` 1q

It is easily seen, that the switched system (1) is jointly index-1 if, and only if, rankEi

is constant and the matrices A4
i,j are all invertible. Hence the following solvability

characterization holds:

Proposition 7.4 (cf. [21, Thm. 5.1]) The switched system (1) is (locally uniquely causally)
solvable for all inputs u and all switching signals σ if, and only if, rankEi “ ri “ r (i.e. Ei

have a constant rank) and A4
i,j in (33) is invertible. In that case, x is a solution of (1) if,

and only if, the initial value x0 “ xp0q satisfies Aσp0qx0 ` Bσp0qup0q P imEσp0q and

xpk ` 1q “ pΦσpk`1q,σpkq,σpk´1qxpkq

` pΨc
σpk`1q,σpkq,σpk´1qupkq ` pΨa

σpk`1q,σpkqupk ` 1q, (34)

where

pΦi,j,ℓ :“ Qj

«

A1
j,ℓ A2

j,ℓ

´pA4
i,jq

´1A3
i,jA

1
j,ℓ ´pA4

i,jq
´1A3

i,jA
2
j,ℓ

ff

Q´1
ℓ ,

pΨc
i,j :“ Qj

«

B1
j

´pA4
i,jq

´1A3
i,jB

1
j

ff

, pΨa
i,j,ℓ :“ Qj

„

0

´pA4
i,jq

´1B2
i

ȷ

.

Remark 7.5 Apparently, the surrogate system (34) does not only depend on the modes
active at k`1 and k but also on the mode at k´1. This is somewhat unintuitive, in particular,
when considering the system only on rk0, k0 ` 1s because the solution formula should be
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independent of the mode in the past. This was also highlighted in [21, Rem. 5.2] and with
our result, we can now confirm that indeed the dependence on σpk ´ 1q is an artifact of the
specific method and not a fundamental property of the system.

8 Applications

8.1 Dynamic Leontief model example

Consider the switched case of the discrete dynamic Leontief model of a multisector
economy given by (cf. [17])

Cσpkqxpk ` 1q “ pI ´ Lσpkq ` Cσpkqqxpkq ´ dpkq (35)

where xpkq is the vector of output levels at the time period k “ 0, 1, . . ., dpkq is
the vector of final demands, Li is the Leontief input–output matrix, and Ci is the
capital coefficient matrix, i P M. When the market and technology do not change over
time, the matrices Li and Ci are known and time-invariant [17]. Otherwise, those
matrices change. We assume here that the changes on those matrices are due to some
disturbances, and a switching signal σ : N Ñ M rules the changing of Li and Ci. The
following data are taken from [17] where the mode-0 corresponds to the original (or
nominal) data and the other modes correspond to its variations:

L0 “

”

0.30 0.30 0.30
0.40 0.10 0.50
0.30 0.50 0.20

ı

, L1 “

”

0.30 0.30 0.30
0.40 0.10 0.50
0 0 0

ı

, L2 “ L0,

C0 “

”

0.30 0.40 0.45
0 0 0

0.60 0.80 0.90

ı

, C1 “ C0, C2 “

”

0.30 0.40 0.5
0 0 0

0.60 0.80 0.90

ı

.

For the following discussion, all computations are exact and are done via MAT-
LAB’s symbolic toolbox, however, for simplicity, we show the results with only two
decimals. Those matrices give us the system (1) with M “ t0, 1, 2u, Ei “ Ci, Bi “ I,

A0 “

”

1.00 0.10 0.15
´0.40 0.90 ´0.50
0.30 0.30 1.70

ı

, A1 “

”

1.00 0.10 0.15
´0.40 0.90 ´0.50
0.60 0.80 1.90

ı

, A2 “

”

1.00 0.10 0.20
´0.40 0.90 ´0.50
0.30 0.30 1.70

ı

,

and

kerE0 “ im
”

1.00 1.13
´0.75 0.00
0.00 ´0.75

ı

, kerE1 “ im
”

1.00 1.13
´0.75 0.00
0.00 ´0.75

ı

, kerE2 “ im
”

1.00
´0.75
0.00

ı

,

S0 “ im
”

1.00
1.08
1.14

ı

, S1 “ im
”

1.00
0.77
0.59

ı

, S2 “ im
”

1.00 0.00
0.00 1.00

´0.80 1.80

ı

.

First, note that each mode is index-1 since kerEi ‘ Si “ R3 for each i “ 0, 1, 2, i.e.,
each mode as an individual system is solvable.

8.1.1 Solvability for arbitrary switching signals

Geometric checking shows that the family of matrix triplets tpEi, Ai, BiquiPM1 with
M1 “ t0, 1u is jointly index-1 since kerEi ‘ Sj “ R3 for all i, j P M1. Therefore, all
switched systems composed of only mode-0 and mode-1 are solvable for all switching
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signals. However, adding mode-2 into the family of the matrix triplets gives us a
non-jointly index-1 system because kerE0 X S2 ‰ t0u also kerE1 X S2 ‰ t0u.

8.1.2 Solvability for given mode sequences

From the observation above, in order to have a solvable system, having mode transi-
tions inside M1 is always possible. On the other hand, the mode transitions 0 Ñ 2 and
1 Ñ 2 do not lead to a (uniquely) solvable switched system. Furthermore, it can be
verified that

pR2 ` pS0 Ľ kerE2 ‘ S0 and pR2 ` pS1 Ľ kerE2 ‘ S1,

hence the mode transitions 2 Ñ 0 and 2 Ñ 1 are also not allowed (i.e. it is not
sequentially index-1 also not switched index-1 for the corresponding switching signals
containing those mode transitions). The system is then not solvable for arbitrary inputs
and furthermore, also not solvable for a given input because Ri “ R3 for all i P M and

dimpkerE2 ‘ S0q “ dimpkerE2 ‘ S1q “ 2 ă dimRi,

i.e., the solvability condition w.r.t. a given input (22) can never be satisfied with any
input sequence.

8.1.3 One-step maps

For this part, consider only the mode transition 0 Ñ 1. With E`
0 “

”

´0.12 0.00 0.21
0.13 0.00 0.00
0.10 0.00 ´0.05

ı

,

we get the one-step maps for the four approaches

Φ1,0 “

”

0.17 0.17 0.97
0.13 0.13 0.75
0.10 0.10 0.57

ı

, rΦ1,0 “

”

0.17 0.17 0.97
0.13 0.13 0.75
0.10 0.10 0.57

ı

,

Φ1,0 “

”

0.35 0.47 0.53
0.27 0.36 0.41
0.21 0.28 0.31

ı

, pΦ1,0 “

”

0.35 0.47 0.53
0.27 0.36 0.41
0.21 0.28 0.31

ı

,

Ψc
1,0 “

”

0.00 0.00 0.57
0.00 0.00 0.44
0.00 0.00 0.34

ı

, rΨc
1,0 “

”

0.00 0.00 0.57
0.00 0.00 0.44
0.00 0.00 0.34

ı

,

Ψc
1,0,0 “

”

0.38 0.35 0.38
0.29 0.27 0.29
0.22 0.21 0.22

ı

, pΨc
1,0 “

”

0.38 0.35 0.38
0.29 0.27 0.29
0.22 0.21 0.22

ı

,

Ψa
1,0 “

”

´0.80 0.24 0.40
´0.04 ´0.73 0.02
0.57 0.49 ´0.28

ı

, rΨa
1,0,0 “

”

´0.80 0.24 0.40
´0.04 ´0.73 0.02
0.57 0.49 ´0.28

ı

,

Ψa
1,0 “

”

´0.80 0.24 0.40
´0.04 ´0.73 0.02
0.57 0.49 ´0.28

ı

, pΨa
1,0 “

”

´0.80 0.24 0.40
´0.04 ´0.73 0.02
0.57 0.49 ´0.28

ı

.

Not all corresponding one-step maps from the four approaches are the same, how-
ever, they give us the same solution trajectories for the same initial value and input. For
the case with u “ 0, this can be seen from the fact that for any initial value xk0 P Rn

and imYk0
“ Sσpk0q we have that Φi,jYk0

xk0
“ Φi,jYk0

xk0
“ rΦi,jYk0

xk0
“ pΦi,jYk0

xk0
.

8.2 Discretization of continuous-time switched singular systems

Consider a switched differential-algebraic equation (swDAE) [28] of the form

Eσptq 9xptq “ Aσptqxptq ` Bσptquptq, (36)
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where σ : R Ñ M is the switching signal, x : R Ñ Rn is the state and u : R Ñ Rm is
the input. We call px, uq an (impulse-free) solution of the swDAE if Ex is absolutely
continuous, u is locally integrable, and (36) holds for almost all t P R (or on the interval
of interest). It is well known (see e.g. [28]), that for the case of regular and index-1
matrix pairs pEi, Aiq, i P M, there is for every x0, every input u and every switching
signal a unique solution (on pt0,8q) of the corresponding (inconsistent) initial value
problem. We now want to investigate under which assumptions different numerical
discretization methods lead to solvable switched singular systems in discrete time.

8.2.1 (Semi-)Explicit Euler method

We start with the most canonical numerical discretization method, the explicit Euler
method, which is based on the following approximation:

Eσptkq
xptk`hq´xptkq

h « Aσptkqxptkq ` Bσptkquptkq,

where tk :“ t0 ` kh and h ą 0 is the step-size. To avoid notational technicalities, we
assume here that h is chosen such that tk does not coincide with the switching times
and discontinuities in u. The corresponding discrete-time switched system then takes
the form (where with some abuse of notation we identify σptkq, xptkq, uptkq with σpkq,
xpkq, upkq):

Eσpkqxpk ` 1q “ Ah
σpkqxpkq ` hBσpkqupkq,

where Ah
i :“ Ei ` hAi, i P M. Since rankEi in general is mode-dependent, it imme-

diately follows that an explicit Euler approximation does not result in a jointly
index-1 discretization (because then rankEi must be mode-independent). Further-
more, exploiting the row-reduction approach from Section 7.2 for jointly index-1, we
immediately see that tpEi, A

h
i quiPM is jointly index-1 if, and only if, tpEi, AiquiPM is

jointly index-1. In that case, we can also see via the row-reduced approach that the
consistency condition

0 “ A2
σptqxptq ` B2

σptquptq

also remains valid in the discretized version, where this condition is simply multiplied
by h (which however may lead to numerical issues for small h).

Furthermore, by applying a row reducing left multiplication Sσptq of the swDAE
(36) (which doesn’t change the solution properties at all), we see that we can easily
avoid the unnecessary multiplication of the algebraic constraint by h; this results in
fact in the well known semi-explicit Euler (where it is usually assumed that Ei “ r I 0

0 0 s,
however this is not necessary here).

8.2.2 (Semi-)Implicit Euler

It is well known that in general, the explicit Euler method exhibits some stability issues
and therefore the implicit Euler method has been proposed, which for the swDAE (36)
is based on the following approximation:

Eσptk`1q
xptk`1q´xptkq

h « Aσptk`1qxptk`1q ` Bσptk`1quptk`1q.
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This results in the discretization

Eh
σpk`1qxpk ` 1q “ Eσpk`1qxpkq ` hBσpk`1qupk ` 1q, (37)

where Eh
i :“ Ei ` hAi which is invertible for all sufficiently small h ą 0 by regularity

of the matric pairs pEi, Aiq (and hence Eh
i is invertible for all but finitely many h ą 0).

Consequently, there are no issues concerning the solvability of the discretized system.
Furthermore, by applying mode-wise row operations to obtain a row-reduced form, we
immediately see, that the consistency conditions for xpk ` 1q are preserved. However,
one major disadvantage is the non-strict causality w.r.t. the input, which is in general
not the expected solution behavior.

It is also possible to consider a semi-implicit method [30], where an approximation
of the half point xptk ` h{2q either forward from xptkq or backwards from xptk ` hq

leads to the following discretization

Eh
σpk`1qxpk ` 1q “ Ah

σpkqxpkq ` Bh
σpk`1q,σpkq

´

upkq

upk`1q

¯

, (38)

where Eh
i :“ Ei ` h

2Ai, A
h
j :“ Ej ` h

2Aj and Bh
i,j :“ h

2 rBj ,´Bis. Here Eh
i is always

invertible for sufficiently small h ą 0 because pEi, Aiq is assumed to be regular. Conse-
quently, the switched system (38) is always solvable. However, it is not clear whether
the algebraic constraints are (exactly or approximately) satisfied, which is a big dis-
advantage of this method. Furthermore, similarly to the fully implicit method, the
dependence on the input is non-strictly causal, which is not necessarily the expected
solution behavior.

Finally, Backward Differentiation Formulae (BDF) are an established numerical
method to approximate solutions of singular systems in continuous time [31] and can
be seen as multi-step generalizations of the implicit Euler method. As such, they will
result in higher order switched singular systems, of which the solution theory is not
fully established; this is a topic of future research.

9 Conclusion and Outlooks

Two solvability notions have been introduced for inhomogeneous singular linear
switched systems: solvability (initial values are dependent on the input) and strong
solvability (initial values and inputs are independent of each other).

The characterizations have been fully established. With respect to switching sig-
nals, the characterizations have been formulated for fixed switching signals, fixed mode
sequences with arbitrary switching times, and arbitrary switching signals whereas with
respect to input sequences, the characterizations have been formulated for a given
input sequence and arbitrary inputs.

Six (strict) index-1 notions of switched, sequentially, and jointly index-1 have been
introduced, and they are necessary and sufficient conditions for the (strong) solvability
w.r.t. fixed switching signals, fixed mode sequences, and arbitrary switching signals,
respectively.
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For every solvable system, a surrogate system has been established, and the explicit
solution formula of the original singular system can then be written in its original
state. Furthermore, in terms of inputs, the solutions of solvable systems are causal (the
current input can affect the current state) whereas the solutions of strongly solvable
systems are strictly causal (the current input cannot affect the current state).

In future works, we will exploit the surrogate systems to further study their origi-
nal solvable singular switched systems. These future studies include model reduction,
controllability analysis, stability characterizations, and control designs, among others.
Another important future research topic is the consideration of numerical aspects and
the robust implementation of analysis and simulation tools, in particular for large-scale
systems.
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