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Comments on “Relaxed Conditions for the Input-to-State Stability of
Switched Nonlinear Time-Varying Systems”

Gokhan Sahan and Stephan Trenn Senior Member

Abstract— This study addresses the deficiencies in the assump-
tions of the results in Chen and Yang, 2017 [1] due to the lack of
uniformity. We first show the missing hypothesis by presenting a
counterexample. Then we prove why they are wrong in that form
and show the errors in the proof of the main result of [1]. Next,
we compare the assumptions and related results of [1] with similar
works in the literature. Lastly, we give suggestions to complement
the shortcomings of the hypotheses and thus correct them.

Index Terms— Indefinite Lyapunov Function, Nonlinear
Time-varying Systems, Uniform Asymptotic Stability, Uni-
form Attractivity.

[. INTRODUCTION

We consider the nonlinear control system
z(t) = f(t,z(t),u(t)), =(to) =m0, t >ty >0, (e8]

where x(-) is state of the system, u(-) is measurable and locally
essentially bounded control input and f : RT x R™® x R™ — R"
is locally Lipschitz in (¢, ), uniformly continuous in w and satisfies
f(t,0,0) =0 for all ¢ > 0.

The authors of [1] provide some relaxed hypotheses (compared to
[10]) to guarantee input-to-state stability (ISS) and uniform asymp-
totic stability (UAS) for (1). The same results are then adapted
to switched non-linear time-varying (SNTV) systems. However, the
results have some missing assumptions that lead to imprecise conclu-
sions. More precisely, uniformity, which is crucial for ISS and UAS,
is not included in the hypotheses.

This work consists of six sections. Section 2 includes preliminaries.
Section 3 explains with a counterexample why the hypotheses made
in [1] do not imply UAS and therefore do not imply ISS. Section 4
shows what the errors are in the proof of the main results. Section
5 compares the conclusions of [1] with those similar to those in the
literature and presents some recommendations to correct the errors.
Section 6 gives the conclusions and the Authorship Contribution
Statement.

Notations: We use the following abbreviations and definitions. R
is the set of real numbers, R := [0,00). K, Koo and KL are the
families of class K, Koo and KL functions [4]. |.| is the standard
Euclidean norm. Some other abbreviations are also addressed when
they are first mentioned.

[I. FUNDAMENTAL DEFINITIONS
We first give some preliminaries, [4], [14], and [17].

Definition 1. Consider the zero input case of (1). The equilibrium
x = 0 is said to be:
o Lyapunov stable (or simply stable) if, for each € > 0 and tg > 0,
there exists § = d(¢, o) > 0 such that for all solutions z(-):

|z(to)] <0 = Vt>to:|z(t)| <c¢ 2)
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o uniformly stable (US) if, for each € > 0 there isa 6 = d(e) > 0
such that for all ¢g > 0, all solutions z(-) and all ¢ > t¢ the
inequality (2) is satisfied, i.e. & does not depend on tp;

e attractive if for each tg > 0 there is a positive constant ¢ =
¢(to) > 0 such that for all solutions z(-) with |z(to)| < c:

z(t) >0 as t — co. 3)

o uniformly attractive (UA) if there exists ¢ > 0, independent of
to, such that (3) holds uniformly for all £g > 0, that is, for each
1 > 0 there is a number 7" = T'(n) > 0 such that for all ¢y > 0
and all solutions z(-):

lz(to)| <c = Vt=to+T(n): [x®) <n. 4

o asymptotically stable (AS) if it is stable and attractive
o uniformly asymptotically stable (UAS) if it is US and UA

Definition 2. The equilibrium « = 0 of (1) is said to be input-to-
state stable (ISS) if there exists ¢ > 0 and 8 € KL and v € K
(all independent from tg) such that for any {9 > 0, any initial state
|z(to)| < ¢, any bounded input u(t), and any ¢ > ¢g, all solutions
satisfy

lz(t)] < B(lz(to)|,t — to) +( sup
to<s<t

u(s)])- )

It is clear that if a system is ISS, it must already be UAS when
u = 0. However, the converse is not true, in general. There exist
UAS systems that do not satisfy the ISS property (see Section 4.9 of
[4] and 1.3.3 of [7]). Some more equivalent conditions can be given
via comparison functions [4].

Lemma 1. Consider the zero input case of (1). The equilibrium point
x = 0 is UAS if and only if there exist 5 € KL and ¢ > 0, both
independent of to, such that for all to > 0, all t > tg and all
solutions x(-) with |z(tg)| < ¢

[z(®)] < B(lz(to)l,t — to)- (6)

Remark 1 (Uniformity). Now we explain the uniformity concept
in more detail. Nonlinear time-varying (NTV) (or nonautonomous)
systems have a distinguishing feature compared to nonlinear time-
invariant (NTI) (or autonomous) systems: “uniformity”. While the
solution of an NTI system depends only on ¢t — ¢ty by default, it
depends on both ¢ and tg for NTV systems (see p.148 of [4]).
Uniformity is related to the independence of ¢ in the definitions
of stability (2) and attractivity (3). This property may be useful for
NTV systems when looking at stability and attractivity properties.
On the other hand, if we do not utilize a strict Lyapunov function,
it is challenging to check the uniformity of a time-varying system,
[12]. For attractivity, i) the radius of the ball of attraction and ii)
the convergence to the equilibria generally depends on tg. Different
variants of these conditions are studied in the literature in detail, [5],
[8], and [9]. Consequently, providing UA, the initial time ¢( affects
neither the asymptotic convergence rate of solutions of (1) to the
equilibrium nor the radius of the ball of attraction; see [2, p. 828].
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[11. MISTAKES IN [1] AND COUNTEREXAMPLE
We first present the original statements from [1].

Assertion 1 (Theorem 2 of [1]). Consider the system (1). Suppose
there exist a continuously differentiable function V : RT x R" —
R+, two class Ko functions a1 and g, a class K function p, a
continuous function g : RT™ — R, and a constant M > 0 such that

D on(lz]) SV (E,z) < ax(|z]),

2) V(t, l’) S g(t)V(t x) for V(t,z) = p(lu(t)]),

3) [ g(t)dt = —o0,

4) [Jg(r dT<MVt>s>t0

Then the system (1) is ISS with v(s) = al_l(QeMp(s)).

As a corollary of this result, the following conclusion is given
in [1].

Assertion 2 (Corollary 1 of [1]). Consider the system (1) with
zero input. Suppose there exist a continuously differentiable function
V:RT xR"* — R+, two class Koo functions o1 and o, and a
continuous function g : RT — R such that

D oq(lz]) SV (E,2) < ax(|z]),

2) V(t,z) < g(t)V(t,z) with ft t)dt =

Then the system (1) is UAS.

We first note that in both assertions (replicated unaltered from
the source) the quantors for the variables x, t, tg are missing; our
interpretation is that in all cases “for all « / t / to” is added.
Assertion 1 claims that the conditions from 1) to 4) imply ISS and so
UAS for u = 0. Therefore, these conditions must satisfy that x = 0
is both US and UA. However, we will clearly show that they only
provide US and attractivity, not UA. More precisely, the conditions
of Assertion 1 do not satisfy uniformity in attractivity. Hence, they
cannot guarantee ISS. The same problem is valid also for Assertion
2.

We now express the main problem in [1] mathematically but leave
the detailed error analysis of the proof to Section 4. In the proof
of Assertion 1 of [1], for u = 0, the following inequality can be
received.

V(t,2(t)) < V(to, z(to))eo 7% ™

This leads us to the following estimate by item 1 of Assertion 1:

t
lo(t)] < a7 M [az (2 (to)])elio 9], @®)

where a1, g € K. This is the zero input version of (13) of [1].
We know by Lemma 1 above that to receive UAS, it is necessary and
sufficient that the solution must be bounded by a 8(|z(to)|,t —to) €
KCL. There shouldn’t exist any other ¢ or tg term in S except the ones
in t — tg. The right- hand side of (8) is tried to make a CL function
in [1]. By defining G(¢ ft s)ds, we have

afl[az(\x(to)\)em] < ay ' [az(|z(to)])e™

So the UA of the equilibrium is provided by the available condi-
tions of Assertion 1, (see Lemma 4.5 of [4]). But item 3 of Assertion 1
(this is the condition G(t) — —oo as t — oo) just implies that the
right-hand side of (8) is a class £ function of ¢, and generally it
is not a function of ¢ — ¢g. Thus, G or another upper bound of it
should be limited by an a(t — ¢o) € L. Although this necessity was
noticed in the proof of Assertion 1, it was forgotten in the conditions
of Assertions 1 and 2 and the rest of the proof is not true. Thus, both
item 3 of Assertion 1 and item 2 of Assertion 2 may fail to imply
UA. They provide just attractivity. We reinforce our claim with a
known example; see [4, Ex. 4.18] and [7, Ex. 1.3.5].

] ek

Example 1: Consider the following equation

. 1
Choose V() = 2. Then

with g(t) = 1+t Choosing a; (|z|) = %x2, as(|z|) = 222, all

the conditions of Assertion 1 and 2 hold. However, this system is
known to be not UAS. In fact, the solution is explicitly given by
1+t
z(t) = z(to) Tt
It is claimed in [4] and [7] that this system is not UAS, but in order
to be self-contained we provide the mathematical argument for that
claim here as well. Note that the example is US (just choose § := ¢€)
and attractive, but attractivity is not uniform, because (4) cannot be
satisfied. In fact, for the solution (10) to satisfy (4) for all initial
values |z(tg)| < ¢ we need to choose T'(n) > (¢ —n)(1 + tg)/n
which, for n < ¢, clearly grows unbounded for ¢t — oo; thus the
convergence is not uniform. Some interesting counterexamples can
be found in the literature for the following variants, as well:

e A system may be “UA but not US”, see [5, Ex. 5],

e Attractivity even may not imply stability, see [13, Sec. 3.6],
(see also the references [3], [7], [11, Ex. 6.11], [4, Sec. 4.5], [8,
Exs. 1-2], and [15, Exs. 1-5]). This shows that NTV systems have
many variants from the point of view of uniformity.

Now, let us review Assertion 2. We have the following observations
for this result.

(10)

e Attractivity is given in the same way by an improper integral
condition without implying the uniformity property.

e Moreover, the boundedness condition for the integral of g(¢),
i.e. item 4 of Assertion 1, has been completely removed. This
could prevent the system (1) from being US, see [13, Sec. 3.6]
as already emphasized above.

Remark 2 (Comments on the rest of the results of [1]). The same
problems continue for the following conclusions of Section IV of [1].
In that section, the results of the previous section are tried to adapt
to SNTV systems. G(¢) is improved such that it includes also the
number of the switches A(t, ¢p). In that case,
t
G(O) = Atsto) b+ [ g (r)dr (an
to

is required to converge to —oo [1, Theorem 3]. But that convergency
again is not uniform. The following theorems and corollaries of the
same section can be regarded as problematic in the same fashion.

V. THE ERROR IN THE PROOF OF THE MAIN RESULT

In this section we would like to highlight the error in the proof of
Assertion 1 given in [1] Therem the authors consider the antideriva-
tive of g, denoted G(t) := f to 7)dr, and a first problem is the
omittance of the dependence on the 1n1tlal time tg. To highlight this
dependence, we use in the following the notation G(t, to) instead;
for the above counter-example, we have G(t,tp) = In % e tO . They
then fix an upper bound ¢ > 0 for G which in fact can be chosen
independently from tg as ¢ = M, where M is a uniform bound
for G(t,s) assumed to exist in item 4 of Assertion 1 (in fact,
item 2 of Assertion 1 can also be utilized to bound G, however,
the independence from ¢y is then not so clear). As a next step the
authors of [1] postulate the existence of a sequence {t;} such that
tj, converges to infinity for kK — oo and

G(t,tg) < c—kh

for t > t;,
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for some A > 0. At this point, it is unclear whether the authors
allow h to be dependent on ¢y or not. In any case, already at this
point, there is a fundamental problem with notation, because clearly
the authors assume that ¢ > tg for all k, but this means that the
sequence actually needs to depend on ¢g! Furthermore, the authors
continue to define a function H(t —tg) = c— (k—1)h — tk:itftkh
for t —to € [tx —to, tk+1 — to), which clearly is not just a function
of the argument ¢ — ¢y bu but also depends on tg because t — tf, =
(t—to) — (tx —to) and also the boundaries of the piecewisely defined
function H depend on tg. However, this oversight can be fixed easily
by instead considering a relative time-sequence {sj} replacing the
absolute time sequence {t5 } such that t;, = ¢g+sg. The construction
of H takes then the form

H(t—to) = c— (k—1)h— -—10 =Sk,

for t—tg € [8k78k+1).
Sk+1 — Sk

Together with the adjusted assumption on h > 0 and ¢ > 0 given by

G(t,tg) <c—kh fort>tg+ sk (12)

we can indeed conclude that
G(t,to) < H(t —to).

Based on this inequality the authors of [1] then construct a KL-
function bounding the state x with a convergence to zero only
depending on t —tg, which would indeed show uniform convergence.
However, to arrive at this conclusion it is important that A > 0 as well
as the actual time sequence {sj} can be chosen independently from
to (so that H is indeed only a function of ¢t — tg). But this exactly is
the error of the proof, because such a choice is not always possible!
This can be seen by considering the above-given counterexample:
Clearly, we can choose ¢ = 0 and if we assume that thereisa h > 0
and a sequence {sg} such that (12) holds, then, in particular for
k=1,
G(s1 +to,tp) < —h < 0.

However, we see that G(s1 +1tg,%0) = In Hljﬁ — 0 as tg — oo,
i.e. for sufficiently large tg we have that G(s1 + to,t0) > —h.
Consequently, it is not possible to choose h > 0 and a sequence

{5y} independently of ty such that (12) holds.

V. LITERATURE REVIEW AND FIXING THE RESULTS
FROM [1]

To fix the Assertions of [1],

1) all items of Assertion 1 and 2 should include the necessary
quantifiers such as “for all z”, “for all ¢” and/or “for all ¢¢”;

2) the uniformity property should be incorporated into item 3 of
Assertion 1 and item 2 of Assertion 2;

3) item 4 of Assertion 1 also needs to be included in Assertion 2.

The second fix can be realized in different ways.

1) For example, the work [6] that cites [1], uses an attractivity
condition similar to item 3 of Assertion 1. The work [6] studied
the stability of SNTV systems. For US, [6] uses boundedness:

/t: (IH(TW)+g(s)>ds<)\eR+

in Theorem 3 of [6] where T is the average dwell time, V; <
~V;. When uniformity is needed for attractivity, i.e. for UA,
Theorem 4 of [6] gives a similar condition with item 3 of
Assertion 1 but [6] especially emphasizes uniformity:

13)

lim
t—o00

t
(IH(V) + g(s)) ds = —oo, uniformly in ty. (14)
. T

But Assertion 1 item 3 does not include uniformity.

Even the expressions “uniformly in to” and “at a uniform
rate” are used to help to identify uniform convergence by many
authors quite commonly, p.150 of [4], p.140 of [14], they can be
regarded too imprecise. Thus, we also serve a definition-based
statement. The missing uniform convergence part in Assertions
1 and 2 can also be fixed as follows:

If for all n > O there exists a number T = T'(n) > 0 such
that for all ¢y > 0, all solutions z(-) with |z(tg)| < ¢ and all

t > to +T(n):

t
/ g(\)dA < In O‘lc(”). (15)
2

0

2) Now, let us consider the work [16] that considers almost the
same problems. We first give some preliminaries on notations,
[15] and [16]. If the equilibrium y = O of a linear time-varying
(LTV) system,

y(t) = p(t)y(t), t € [0,00). (16)

is US (or UA), then p is called a US (or UA) function. Now,
we continue with Theorems 1 and 3 of [16]. Here, the same
system (1) is considered, and items 1 and 2 of Assertion 1 are
assumed. In addition, the coefficient g in Assertions 1 and 2
(which is named g in [16]) is assumed to be a UAS function
(or equivalently Uniformly Exponentially Stable-UES, [11]) in
Theorems 1 and 3 of [16]. This means that the equilibrium
y = 0 of the system (16) is US and UA. Then [16] defines

a7 [an(Jz(to)]) 0 PO = B(lalto)] ¢ — to) € KL

(this follows from the fact that 1 is a UAS function). Therefore,
the rest of the conditions in Assertion 1 and 2, that is, the
conditions 3 and 4 of Assertion 1 must have been equivalent
to UAS of g(t). That is, US and UA of g(t) are represented
by items 4 and 3 of Assertion 1, respectively.

In summary, the missing uniformity assumption in Assertion 1 can
be fixed using one of the following options.

e Adding the expression “uniformly in ¢p” to item 3 as in the
condition (14), but preferably with an additional clarification of
what “uniformly in ¢o” precisely means, e.g. condition (15).

e Adding the condition that g(¢) is a UAS function instead of
conditions 3 and 4.

Remark 3 (Comments on Examples of [1]). The work [1] also
includes an example in Section V to show the efficiency of the results.
The example is chosen as an LTV control system and the coefficient
matrix A(t) is chosen to be periodic. AS, ES and uniform exponential
stability are all equivalent concepts for periodic LTV systems [15,
Lemma 5]. Therefore, it is quite expected that the example verifies
the claims because uniformity is implied by the periodicity.

VI. CONCLUSION

This article addresses some mistakes concerning the work [1].
We emphasize the importance of uniformity in the analysis of NTV
Systems. This study also suggests some corrections to the provided
conditions and proofs.
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